1. A Coil-to-Helix Transition Serves as a Binding Motif for hSNF5 and BAF155 Interaction
- Author
-
Jeongmin Han, Iktae Kim, Jae-Hyun Park, Ji-Hye Yun, Keehyoung Joo, Taehee Kim, Gye-Young Park, Kyoung-Seok Ryu, Yoon-Joo Ko, Kenji Mizutani, Sam-Young Park, Rho Hyun Seong, Jooyoung Lee, Jeong-Yong Suh, and Weontae Lee
- Subjects
BAF155 ,hSNF5 ,coupled folding and binding ,NMR spectroscopy ,X-ray crystallography ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Human SNF5 and BAF155 constitute the core subunit of multi-protein SWI/SNF chromatin-remodeling complexes that are required for ATP-dependent nucleosome mobility and transcriptional control. Human SNF5 (hSNF5) utilizes its repeat 1 (RPT1) domain to associate with the SWIRM domain of BAF155. Here, we employed X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and various biophysical methods in order to investigate the detailed binding mechanism between hSNF5 and BAF155. Multi-angle light scattering data clearly indicate that hSNF5171–258 and BAF155SWIRM are both monomeric in solution and they form a heterodimer. NMR data and crystal structure of the hSNF5171–258/BAF155SWIRM complex further reveal a unique binding interface, which involves a coil-to-helix transition upon protein binding. The newly formed αN helix of hSNF5171–258 interacts with the β2–α1 loop of hSNF5 via hydrogen bonds and it also displays a hydrophobic interaction with BAF155SWIRM. Therefore, the N-terminal region of hSNF5171–258 plays an important role in tumorigenesis and our data will provide a structural clue for the pathogenesis of Rhabdoid tumors and malignant melanomas that originate from mutations in the N-terminal loop region of hSNF5.
- Published
- 2020
- Full Text
- View/download PDF