IntroductionEvapotranspiration is one of the key components of water balance and irrigation planning. Thus, the accurate estimation of this component and the water consumption of plants can improve the management of water use and increase the efficiency of water consumption. Due to the limitation of tools for measuring evaporation-transpiration, remote sensing methods can be used for this purpose. There are several remote sensing algorithms for actual evaporation estimation including SEBAL, SEBS, Metric, etc. In this study we used the triangle method which only was used by Salimifard et al. (2022) in Mashhad Plain. They evaluated the results for the agricultural products, i.e., wheat and maize. The aim of this study is to evaluate the triangle method for a horticultural crop, i.e., pistachio in Kerman Plain. MethodologyThe study area is Kerman Plain in which pistachio is one of the most important agricultural products. Due to water scarcity in this plain, determining the water requirement of the crops is crucial for agricultural activities. Accordingly, it is important to have an appropriate estimation of actual evapotranspiration in the plain. In this paper, the triangular algorithm was used to estimate actual evapotranspiration in the Kerman Plain in the growing seasons of 2020 (1399) and 2021 (1400). For this purpose, the Landsat 8 satellite images with less than 10% cloudiness were used. The variables such as NDVI, LST, etc., were calculated by using the JAVA programming language in the Google Earth Engine code (GEE) system environment. The required meteorological data of Kerman station were acquired from IRIMO. The triangular algorithm is based on the two-dimensional spatial plot of normalized LST and normalized NDVI, which were calculated using bands 10, 5, and 4 of the Landsat 8 in the GEE. Estimation of the wet and dry edges was conducted by MATLAB code. the actual evapotranspiration obtained using the triangular method for a pistachio orchard, which was under irrigation management, was compared to the values obtained by the FAO-56 method. The results were evaluated by correlation coefficient (r), Root Mean Square Error (RMSE), and Mean Error (ME).Results and discussionThe results showed that the amount of evapotranspiration for pistachio was estimated with acceptable accuracy (r= 0.73 and RMSE=1.8, nRMSE=0.4, ME=-1.6). However, the NSE less than zero (-1.3) shows that the observed (FAO-56) mean is a better predictor than the Triangle algorithm. The values obtained from the triangular algorithm were lower than the values of FAO 56, which was in line with the results of the previous studies for both Agricultural and horticultural crops. This underestimation could be due to the uncertainty of the algorithm, uncertainty in the measured data, or due to the time difference between the date of the selected images and the date of irrigation. Moreover, inappropriate quality of water and soil in Kerman Plain and the uncertainty of plant coefficients used are among the factors that can underestimate evapotranspiration values by the algorithm. ConclusionsIn this study, the triangular algorithm was used to estimate actual evapotranspiration in Kerman plain using remote sensing data. Actual evapotranspiration values obtained from the triangular algorithm were lower than FAO 56 values, which might be due to the uncertainty of the algorithm, uncertainty in the measured data, uncertainty of plant coefficients, or due to the time difference between the date of the selected images and the date of irrigation. To have a better evaluation of the remote sensing algorithms, it can be suggested to develop and apply a micro lysimeter in the farms and orchards, or to use the soil water balance of the farms and orchards. These may help to choose the more appropriate algorithm for the given study area, leading to providing the more proper and applicable advices for the farmers for managing the shortage of the water resources. Furthermore, it may help to update the crop coefficients which may lead to better estimation of evapotranspiration.