The properties of metal-metal bonding for transition metal homonuclear diatomics from groups 10, 11 and 12 are studied within the framework of the quantum theory of atoms in molecules (QTAIM) at the coupled cluster CCSD and CCSD(T) levels of theory. A novel approximate method developed by Keith and Frisch is used to augment electron densities calculated with pseudopotentials with the missing relativistic core densities to obtain approximations to the total densities of the dimers. The calculated delocalization indices for group 10 dimers are: [Ni.sub.2] (1.6), [Pd.sub.2] (0.44, an outlier in the group), and [Pt.sub.2] (1.8); for group 11 dimers: [Cu.sub.2] and [Ag.sub.2] (1.01), and [Au.sub.2] (1.13), all covalent bonds; for group 12: [Zn.sub.2] (0.06), [Cd.sub.2] (0.08), and [Hg.sub.2] (0.09), all consistent with weak van der Waals complexes. The picture of bonding obtained by examining the values of the electron density at the bond critical points is consistent with the one obtained on the basis of these delocalization indices. A curious linear (instead of exponential) dependence of the delocalization index on the electron density at the bond critical point is presented here as an observation and will be investigated in more depth in later work. Several correlations between bond properties and bond dissociation energies are also explored. It is found that, with the exception of the [Ni.sub.2] dimer that exhibits considerable multi-reference character, there are correlations between the calculated bond dissociation energies of the studied diatomics and several bond critical point properties. These correlations are novel as they span a set of bonds between different pairs of elements, while traditionally these correlations were reported for bonds between the same pair or elements but with different substituents. Key words: topology of the electron density, chemical bonding in transition metals, quantum theory of atoms in molecules, QTAIM, metal-metal bonding. Resume : Les proprietes des liaisons metal-metal pour les dimeres homonucleaires des metaux de transition des groupes 10,11 et 12 sont etudies dans le cadre de la theorie quantique des atomes-dans-les-molecules (QTAIM) en faisant appel aux niveaux de theorie CCSD et CCSD (T). Une nouvelle methode developpee par Keith et Frisch est utilisee pour augmenter des densites electroniques calculees a l'entremise de pseudo potentiels avec les densites de cceur relativistes manquantes pour obtenir des approximations aux densites totales des dimeres. Les indices de delocalisation calcules pour les dimeres du groupe 10 : [Ni.sub.2] (1.6), [Pd.sub.2] (0.44, qui est en ecart du reste du groupe) et [Pt.sub.2] (1.8); pour les dimeres du groupe 11: [Cu.sub.2] et [Ag.sub.2] (1.01) et [Au.sub.2] (1.13), toutes les liaisons etant covalentes; et pour le groupe 12 : [Zn.sub.2] (0.06), [Cd.sub.2] (0.08) et [Hg.sub.2] (0.09) indiquant de faibles liaisons du type van der Waals. L'image qui emerge a propos de la nature de la liaison chimique obtenu en examinant les valeurs de la densite electronique aux points critiques est completement en accord avec celle obtenue sur la base des indices de delocalisation. Une curieuse dependance lineaire (au lieu d'exponentielle) de l'indice de delocalisation sur la densite electronique au point critique est presente ici comme une observation et sera enquete en plus de profondeur dans un travail future. Plusieurs correlations entre les proprietes des liaisons chimiques et les energies de leur dissociation sont aussi explorees. Il est constate que, a l'exception du dimer de [Ni.sub.2], dote d'un caractere multireferenciel considerable, il existe des correlations entre les energies de dissociation des dimeres etudies et plusieurs des proprietes de leur point critiques de liaisons. Ces correlations sont nouvelles car ils s'etendent sur un ensemble de liaisons entre de paires d'elements differentes, quand traditionnellement ces correlations ont ete trouvees pour les liaisons entre une meme paire d'element, mais avec des substituents differents. Mots-cles: la topologie de la densite electronique, la liaison chimique des metaux de transition, la theorie quantique des atomes dans les molecules (QTAIM/TQADM), la liaison metal-metal., Introduction Transition metal dimers have been studied for a number of years (1) and continue to provide challenges for ab initio methods. As noted by Yanagisawa, Tsuneda, and Hirao, nonhybrid [...]