Arne Raasakka, Erik I. Hallin, Petri Kursula, Marc F. Lensink, Anushik Safaryan, Salla Ruskamo, Oda C. Krokengen, Guillaume Brysbaert, Saara Laulumaa, Ilpo Vattulainen, Tuomo Nieminen, Department of Physics, Tampere University, Physics, University of Eastern Finland, Univ Oulu, Bioctr Oulu, Oulu, Finland, Unité de Glycobiologie Structurale et Fonctionnelle UMR 8576 (UGSF), Université de Lille-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Department of Physics [Helsinki], Falculty of Science [Helsinki], University of Helsinki-University of Helsinki, Institut des Hautes Etudes Scientifiques (IHES), IHES, Unité de Glycobiologie Structurale et Fonctionnelle - UMR 8576 (UGSF), Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Recherche Agronomique (INRA), Université de Lille-Centre National de la Recherche Scientifique (CNRS), and Helsingin yliopisto = Helsingfors universitet = University of Helsinki-Helsingin yliopisto = Helsingfors universitet = University of Helsinki
Background Myelin is a multilayered proteolipid sheath wrapped around selected axons in the nervous system. Its constituent proteins play major roles in forming of the highly regular membrane structure. P2 is a myelin-specific protein of the fatty acid binding protein (FABP) superfamily, which is able to stack lipid bilayers together, and it is a target for mutations in the human inherited neuropathy Charcot-Marie-Tooth disease. A conserved residue that has been proposed to participate in membrane and fatty acid binding and conformational changes in FABPs is Phe57. This residue is thought to be a gatekeeper for the opening of the portal region upon ligand entry and egress. Results We performed a structural characterization of the F57A mutant of human P2. The mutant protein was crystallized in three crystal forms, all of which showed changes in the portal region and helix α2. In addition, the behaviour of the mutant protein upon lipid bilayer binding suggested more unfolding than previously observed for wild-type P2. On the other hand, membrane binding rendered F57A heat-stable, similarly to wild-type P2. Atomistic molecular dynamics simulations showed opening of the side of the discontinuous β barrel, giving important indications on the mechanism of portal region opening and ligand entry into FABPs. The results suggest a central role for Phe57 in regulating the opening of the portal region in human P2 and other FABPs, and the F57A mutation disturbs dynamic cross-correlation networks in the portal region of P2. Conclusions Overall, the F57A variant presents similar properties to the P2 patient mutations recently linked to Charcot-Marie-Tooth disease. Our results identify Phe57 as a residue regulating conformational changes that may accompany membrane surface binding and ligand exchange in P2 and other FABPs. Electronic supplementary material The online version of this article (10.1186/s12900-018-0087-2) contains supplementary material, which is available to authorized users.