RESUMEN En los últimos 15 años, los científicos han mejorado la habilidad para generar modelos estructurales de las proteínas, cuya estructura tridimensional (3D) se desconoce, gracias al crecimiento del número de estructuras depositadas en la base de datos Protein Data Bank (PDB). En la actualidad, uno de métodos más usados y más rápidos para la generación de modelos estructurales es el servidor bioinformático SWISS-MODEL, creado para el modelado por homología de estructuras 3D, que comparten hasta 30% de identidad en su secuencia de aminoácidos con otras proteínas de estructura conocida. La calidad de los modelos resultantes se evalúa con varios parámetros bioquímicos (por ejemplo: QMEAN, RAMACHANDRAN plot). El modelo puede mejorarse al incluir el SWISS-MODEL en una línea de trabajo, seguido del servidor CHARMM-GUI y el programa GROMACS. Mientras el servidor CHARMM-GUI aplica al modelo producido, parámetros de un campo de fuerza para crear un sistema proteína-agua, bajo condiciones relevantes biológicamente, apto para simulación, el programa GROMACS minimiza la energía del modelo hasta alcanzar una estructura energéticamente estable, más cercana a como se encuentra en solución o en el sistema biológico. Los modelos generados por esta línea de trabajo pueden ser analizados a detalle por los biólogos estructurales en programas para visualización, como PyMOL, para obtener un mayor entendimiento del fenómeno biológico bajo estudio. ABSTRACT In the last 15 years, scientists have improved their ability to generate structural models for proteins, whose three-dimensional (3D) structure is unknown, thanks to the growing number of structures stored in the Protein Data Bank (PDB) database. Nowadays, one of the most widely used and fastest methods for model generation is SWISS-MODEL, a structural bioinformatics web server created for homology modeling of 3D protein structures, sharing down to 30% identity of their amino acid sequences. The quality of the resulting models is assessed with different biochemical parameters (QMEAN, RAMACHANDRAN plot). The model can be refined by including SWISS-MODEL in a pipeline, followed by the CHARMM-GUI server and the GROMACS programs. While the CHARMM-GUI server applies force field parameters to generate a protein-water system, under biologically relevant conditions, suitable for simulation, the GROMACS program minimizes the model energy to energetically stable structure, closer to that found in solution or in a biological system. The models generated by such pipelines can be analyzed in detail by structural biologists in visualization programs, such as PyMOL, to better understand the biological phenomenon under study., {"references":["Plourde AR, Bloch EM. A literature review of zika virus. Emerg Infect Dis 2016;22:1185–92. https://doi.org/10.3201/eid2207.151990.","Gormley M. The first \"molecular disease\": a story of Linus Pauling, the intellectual patron. Endeavour 2007;31:71–7. https://doi.org/10.1016/j.endeavour.2007.05.009.","Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, et al. The protein data bank. Acta Crystallogr Sect D Biol Crystallogr 2002;58:899–907. https://doi.org/10.1107/S0907444902003451.","Burley SK. Impact of structural biologists and the Protein Data Bank on small-molecule drug discovery and development. J Biol Chem 2021;296:100559. https://doi.org/10.1016/j.jbc.2021.100559.","Blundell TL. The first resolution revolution in protein structure analysis: X-ray diffraction of polypeptide conformations and globular protein folds in 1950s and 1960s. Prog Biophys Mol Biol 2021;167:32–40. https://doi.org/10.1016/j.pbiomolbio.2021.09.002.","Scarborough NM, Godaliyadda GMDP, Ye DH, Kissick DJ, Zhang S, Newman JA, et al. Dynamic X-ray diffraction sampling for protein crystal positioning. J Synchrotron Radiat 2017;24:188–95. https://doi.org/10.1107/S160057751601612X.","Ishima R, Torchia DA. Protein dynamics from NMR. Nat Struct Biol 2000;7:740–3. https://doi.org/10.1038/78963.","Letertre MPM, Giraudeau P, de Tullio P. Nuclear Magnetic Resonance Spectroscopy in Clinical Metabolomics and Personalized Medicine: Current Challenges and Perspectives. Front Mol Biosci 2021;8:1–25. https://doi.org/10.3389/fmolb.2021.698337.","Murata K, Wolf M. Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochim Biophys Acta - Gen Subj 2018;1862:324–34. https://doi.org/10.1016/j.bbagen.2017.07.020.","Carroni M, Saibil HR. Cryo electron microscopy to determine the structure of macromolecular complexes. Methods 2016;95:78–85. https://doi.org/10.1016/j.ymeth.2015.11.023.","Soni N, Madhusudhan MS. Computational modeling of protein assemblies. Curr Opin Struct Biol 2017;44:179–89. https://doi.org/10.1016/j.sbi.2017.04.006.","Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res 2018;46:W296–303. https://doi.org/10.1093/nar/gky427.","Zheng W, Zhang C, Bell EW, Zhang Y. I-TASSER gateway: A protein structure and function prediction server powered by XSEDE. Futur Gener Comput Syst 2019;99:73–85. https://doi.org/10.1016/j.future.2019.04.011.","Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 2014;42:252–8. https://doi.org/10.1093/nar/gku340.","Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 2011;27:343–50. https://doi.org/10.1093/bioinformatics/btq662.","Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER suite: Protein structure and function prediction. Nat Methods 2014;12:7–8. https://doi.org/10.1038/nmeth.3213.","Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 2015;10:845–58. https://doi.org/10.1038/nprot.2015.053.","Kim S, Lee J, Jo S, Brooks CL, Lee HS, Im W. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules. J Comput Chem 2017;38:1879–86. https://doi.org/10.1002/jcc.24829.","Jo S, Cheng X, Lee J, Kim S, Park SJ, Patel DS, et al. CHARMM-GUI 10 years for biomolecular modeling and simulation. J Comput Chem 2017;38:1114–24. https://doi.org/10.1002/jcc.24660.","Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: Fast, flexible, and free. J Comput Chem 2005;26:1701–18. https://doi.org/10.1002/jcc.20291.","Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera - A visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605–12. https://doi.org/10.1002/jcc.20084.","Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 2018;27:14–25. https://doi.org/10.1002/pro.3235.","Chen JE, Huang CC, Ferrin TE. RRDistMaps: A UCSF Chimera tool for viewing and comparing protein distance maps. Bioinformatics 2015;31:1484–6. https://doi.org/10.1093/bioinformatics/btu841.","Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graph 1996;14:33–8. https://doi.org/10.1016/0263-7855(96)00018-5.","Yuan S, Chan HCS, Hu Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip Rev Comput Mol Sci 2017;7. https://doi.org/10.1002/wcms.1298.","Hanes MS, Jude KM, Berger JM, Bonomo RA, Handel TM. Structural and biochemical characterization of the interaction between KPC-2 β-lactamase and β-lactamase inhibitor protein. Biochemistry 2009;48:9185–93. https://doi.org/10.1021/bi9007963.","Golemi D, Maveyraud L, Vakulenko S, Samama JP, Mobashery S. Critical involvement of a carbamylated lysine in catalytic function of class D β-lactamases. Proc Natl Acad Sci U S A 2001;98:14280–5. https://doi.org/10.1073/pnas.241442898.","Alahuhta M, Salin M, Casteleijn MG, Kemmer C, El-Sayed I, Augustyns K, et al. Structure-based protein engineering efforts with a monomeric TIM variant: The importance of a single point mutation for generating an active site with suitable binding properties. Protein Eng Des Sel 2008;21:257–66. https://doi.org/10.1093/protein/gzn002.","Parthasarathy S, Eaazhisai K, Balaram H, Balaram P, Murthy MRN. Structure of Plasmodium falciparum Triose-phosphate Isomerase-2-Phosphoglycerate Complex at 1.1-Å Resolution. J Biol Chem 2003;278:52461–70. https://doi.org/10.1074/jbc.M308525200.","Murphy JE, Tibbitts TT, Kantrowitz ER. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases. J Mol Biol 1995;253:604–17. https://doi.org/10.1006/jmbi.1995.0576.","Holtz KM, Kantrowitz ER, Stec B, Myers JK, Antonelli SM, Widlanski TS. Alternate modes of binding in two crystal structures of alkaline phosphatase-inhibitor complexes. Protein Sci 2000;9:907–15. https://doi.org/10.1110/ps.9.5.907.","Murali R, Sharkey DJ, Daiss JL, Krishna Murthy HM. Crystal structure of Taq DNA polymerase in complex with an inhibitory Fab: The Fab is directed against an intermediate in the helix-coil dynamics of the enzyme. Proc Natl Acad Sci U S A 1998;95:12562–7. https://doi.org/10.1073/pnas.95.21.12562.","Kropp HM, Dürr SL, Peter C, Diederichs K, Marx A. Snapshots of a modified nucleotide moving through the confines of a DNA polymerase. Proc Natl Acad Sci U S A 2018;115:9992–7. https://doi.org/10.1073/pnas.1811518115.","Pinto D, Park YJ, Beltramello M, Walls AC, Tortorici MA, Bianchi S, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 2020;583:290–5. https://doi.org/10.1038/s41586-020-2349-y.","Gohain N, Tolbert WD, Acharya P, Yu L, Liu T, Zhao P, et al. Cocrystal Structures of Antibody N60-i3 and Antibody JR4 in Complex with gp120 Define More Cluster A Epitopes Involved in Effective Antibody-Dependent Effector Function against HIV-1. J Virol 2015;89:8840–54. https://doi.org/10.1128/jvi.01232-15.","Satyanarayana SDV, Krishna MSR, Pavan Kumar P, Jeereddy S. In silico structural homology modeling of nif A protein of rhizobial strains in selective legume plants. J Genet Eng Biotechnol 2018;16:731–7. https://doi.org/10.1016/j.jgeb.2018.06.006.","Vargas-Jaimes L, Rodriguez MC, Argotte-Ramos R, Juárez-González VR, Pastor N, Cesa-Luna C, et al. Recombinant C-Terminal Domains from Scorpine-like Peptides Inhibit the Plasmodium berghei Ookinete Development In Vitro. Int J Pept Res Ther 2021;27:817–29. https://doi.org/10.1007/s10989-020-10130-7.","Weng G, Wang E, Wang Z, Liu H, Zhu F, Li D, et al. HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Res 2019;47:W322–30. https://doi.org/10.1093/nar/gkz397.","Yan Y, Zhang D, Zhou P, Li B, Huang SY. HDOCK: A web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res 2017;45:W365–73. https://doi.org/10.1093/nar/gkx407.","Borrel A, Regad L, Xhaard H, Petitjean M, Camproux AC. PockDrug: A model for predicting pocket druggability that overcomes pocket estimation uncertainties. J Chem Inf Model 2015;55:882–95. https://doi.org/10.1021/ci5006004.","Siddiqa MA, Rao DS, Suvarna G, Chennamachetty VK, Verma MK, Rao MVR. In-Silico Drug Designing of Spike Receptor with Its ACE2 Receptor and Nsp10/Nsp16 MTase Complex Against SARS-CoV-2. Int J Pept Res Ther 2021;27:1633–40. https://doi.org/10.1007/s10989-021-10196-x."]}