1. Methods for quantitative assessment of passenger flow influence on train dwell time in dense traffic areas
- Author
-
Selim Cornet, François Ramond, Paul Bouvarel, Joaquin Rodriguez, Christine Buisson, SNCF Réseau, Laboratoire d'Ingénierie Circulation Transport (LICIT UMR TE), Université de Lyon-École Nationale des Travaux Publics de l'État (ENTPE)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), SNCF Innovation & Recherche, Évaluation des Systèmes de Transports Automatisés et de leur Sécurité (IFSTTAR/COSYS/ESTAS), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-PRES Université Lille Nord de France, SNCF Réseau [La Plaine st Denis], Département Composants et Systèmes (IFSTTAR/COSYS), PRES Université Lille Nord de France-PRES Université Nantes Angers Le Mans (UNAM)-Université de Lyon-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), SNCF : Innovation & Recherche, SNCF, Cadic, Ifsttar, and Cornet, Sélim
- Subjects
DWELL TIME ,0209 industrial biotechnology ,Computer science ,Real-time computing ,Flow (psychology) ,Transportation ,02 engineering and technology ,TRAIN ,Management Science and Operations Research ,TABLE HORAIRE ,020901 industrial engineering & automation ,Component (UML) ,0502 economics and business ,11. Sustainability ,Stochastic simulation ,Quantitative assessment ,STATIONNEMENT ,Civil and Structural Engineering ,PLANIFICATION ,MODELE STOCHASTIQUE ,050210 logistics & transportation ,TRAITEMENT DES DONNEES ,OPTIMISATION ,05 social sciences ,Process (computing) ,[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC] ,Conditional probability distribution ,Traffic flow ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,TRANSPORT FERROVIAIRE ,TRAITEMENT EN TEMPS REEL ,Dwell time ,SIMULATION ,Automotive Engineering ,RAIWAY OPERATIONS ,[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] - Abstract
Railway operations in dense traffic areas are very sensitive even to small disturbances, and thus require careful planning and real-time management. Dwell times in stations are in particular subject to a high variability and are hard to predict; this is mostly due to the interactions between passengers and the railway system during the dwelling process. This paper presents a data-driven approach for assessing the influence of the numbers of alighting, boarding and on board passengers on the dwell time. We propose to split the dwell time into a deterministic component depending on the passenger flow, called the Minimum Dwell Time, and a random component. A method for estimating the minimum dwell time is provided. Based on the knowledge of this value, observations can be classified according to the main determinant of dwell time, namely timetable constraints or passenger exchange. The latter observations are used for estimating the conditional distribution of dwell time given passenger flows. Numerical experiments are carried out on stations located inside the dense traffic area of Paris suburban network. The obtained results indicate that the presented method can be used for a variety of applications, such as capacity assessment or stochastic simulation.
- Published
- 2019
- Full Text
- View/download PDF