16 results on '"SN and SNS junctions"'
Search Results
2. Semiclassical theory of integrable and rough Andreev billiards.
- Author
-
Ihra, W., Leadbeater, M., Vega, J.L., and Richter, K.
- Abstract
We study the effect on the density of states in mesoscopic ballistic billiards to which a superconducting lead is attached. The expression for the density of states is derived in the semiclassical S-matrix formalism shedding light onto the origin of the differences between the semiclassical theory and the corresponding result derived from random matrix models. Applications to a square billiard geometry and billiards with boundary roughness are discussed. The saturation of the quasiparticle excitation spectrum is related to the classical dynamics of the billiard. The influence of weak magnetic fields on the proximity effect in rough Andreev billiards is discussed and an analytical formula is derived. The semiclassical theory provides an interpretation for the suppression of the proximity effect in the presence of magnetic fields as a coherence effect of time reversed trajectories. It is shown to be in good agreement with quantum mechanical calculations. [ABSTRACT FROM AUTHOR]
- Published
- 2001
- Full Text
- View/download PDF
3. The distribution of work performed on a NIS junction:Paper
- Author
-
Santos, Jaime Eduardo Vieira da Silva Moutinho, Ribeiro, Pedro, and Kirchner, Stefan
- Subjects
Tunneling phenomena ,Andreev reflection ,Nonequilibrium and irreversible thermodynamics ,SN and SNS junctions ,Josephson effects ,Crooks–Tasaki fluctuation relation ,Proximity effects - Abstract
We propose an experimental setup to measure the work performed in a normal-metal/insulator/superconducting (NIS) junction, subjected to a voltage change and in contact with a thermal bath. We compute the performed work and argue that the associated heat release can be measured experimentally. Our results are based on an equivalence between the dynamics of the NIS junction and that of an assembly of two-level systems subjected to a circularly polarised field, for which we can determine the work-characteristic function exactly. The average work dissipated by the NIS junction, as well as its fluctuations, are determined. From the work characteristic function, we also compute the work probability-distribution and show that it does not have a Gaussian character. Our results allow for a direct experimental test of the Crooks–Tasaki fluctuation relation.
- Published
- 2016
- Full Text
- View/download PDF
4. Signatures of odd-frequency correlations in the Josephson current of superconductor/ferromagnet hybrid junctions
- Author
-
Manuel Houzet, Caroline Richard, Alexandre I. Buzdin, Julia S. Meyer, Laboratory of Quantum Theory (GT), PHotonique, ELectronique et Ingénierie QuantiqueS (PHELIQS), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), the NanoSC COST Action MP1201, and an EU-FP7 Marie Curie IRG, ANR-11-JS04-0003,GLASNOST,Lois générales pour la supraconductivité mésoscopique en régime hors d'équilibre non-stationnaire(2011), and ANR-12-BS04-0016,MASH,Etats de Majorana et d'Andreev dans des circuits hybrides combinant des matériaux magnétiques et supraconducteurs(2012)
- Subjects
Tunneling phenomena ,Josephson effect ,Flux pumping ,SN and SNS junctions ,Type-I superconductor ,FOS: Physical sciences ,Andreev reflection ,Superconductivity (cond-mat.supr-con) ,Pi Josephson junction ,Condensed Matter::Superconductivity ,Quantum mechanics ,Josephson effects ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Singlet state ,Superconductivity ,Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,Condensed Matter - Superconductivity ,Supercurrent ,PACS number(s): 74.45.+c, 74.50.+r, 75.70.Cn, 74.20.Rp ,Condensed Matter Physics ,Proximity effects ,3. Good health ,Electronic, Optical and Magnetic Materials ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,Pairing symmetries (other than s-wave) ,Magnetic properties of interfaces (multilayers superlattices heterostructures) - Abstract
Contacting a bilayer ferromagnet with a singlet even-frequency superconductor allows for the realization of an effective triplet odd-frequency superconductor. In this work, we investigate the Josephson effect between superconductors with different symmetries (e.g. odd- versus even-frequency). In particular, we study the supercurrent flowing between two triplet odd-frequency superconducting leads through a weak singlet even-frequency superconductor. We show that the peculiar temperature dependence of the critical current below the superconducting transition of the weak superconductor is a signature of the competition between odd/odd-frequency and odd/even-frequency Josephson couplings., Comment: 8 pages, 6+1 Figures
- Published
- 2015
- Full Text
- View/download PDF
5. The distribution of work performed on a NIS junction
- Author
-
Santos, Jaime E., Ribeiro, Pedro, Kirchner, Stefan, and Universidade do Minho
- Subjects
Science & Technology ,Statistical Mechanics (cond-mat.stat-mech) ,Ciências Naturais::Ciências Físicas ,Ciências Físicas [Ciências Naturais] ,SN and SNS junctions ,nonequilibrium and irreversible thermodynamics ,FOS: Physical sciences ,Non-equilibrium work distributions ,proximity effects ,Crooks-Tasaki fluctuation relation ,Stochastic processes ,Andreev reflection ,Josephson effects ,NIS junctions ,tunneling phenomena ,Condensed Matter - Statistical Mechanics - Abstract
We propose an experimental setup to measure the work performed in a normal-metal/insulator/ superconducting (NIS) junction, subjected to a voltage change and in contact with a thermal bath. We compute the performed work and argue that the associated heat release can be measured experimentally. Our results are based on an equivalence between the dynamics of the NIS junction and that of an assembly of two-level systems subjected to a circularly polarised field, for which we can determine the work-characteristic function exactly. The average work dissipated by the NIS junction, as well as its fluctuations, are determined. From the work characteristic function, we also compute the work probability-distribution and show that it does not have a Gaussian character. Our results allow for a direct experimental test of the Crooks–Tasaki fluctuation relation., Program of Recruitment of Post Doctoral Researchers for the Portuguese Scientific and Technological System, within the Operational Program Human Potential (POPH) of the QREN, participated by the European Social Fund (ESF) and national funds of the Portuguese Ministry of Education and Science (MEC); Danish National Research Foundation, Project No. DNRF58; National Natural Science Foundation of China, Grant No. 11474250
- Published
- 2015
6. Double Path Interference and Magnetic Oscillations in Cooper Pair Transport through a Single Nanowire
- Author
-
Sergei V. Mironov, Alexandre I. Buzdin, Alexandre S. Mel'Nikov, Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Institute for Physics of Microstructures of the RAS, Russian Academy of Sciences [Moscow] (RAS), Lobachevsky State University of Nizhny Novgorod (UNN), Labachevsdy State University of Nizhny Novgorod (UNN), the Russian Foundation for Basic Research, the Russian Presidential Foundation (Grant No. SP-6340.2013.5), the Russian Ministry of Scienceand Education Grant No. 02.B.49.21.0003, and Russian Science Foundation (Grant No. 15-12-10020), ANR-12-BS04-0016,MASH,Etats de Majorana et d'Andreev dans des circuits hybrides combinant des matériaux magnétiques et supraconducteurs(2012), and European Project: MP1201,NanoSC-COST
- Subjects
Josephson effect ,SN and SNS junctions ,Nanowire ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,Andreev reflection ,Superconductivity (cond-mat.supr-con) ,Pi Josephson junction ,symbols.namesake ,Condensed Matter::Superconductivity ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,010306 general physics ,Computer Science::Information Theory ,Superconductivity ,Physics ,Mesoscopic and nanoscale systems ,Zeeman effect ,Condensed matter physics ,Condensed Matter - Superconductivity ,Quantum wires ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Proximity effects ,3. Good health ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,Coupling (physics) ,symbols ,Cooper pair ,0210 nano-technology ,PACS numbers: 74.45.+c, 73.63.Nm, 74.78.Na - Abstract
We show that the critical current of the Josephson junction consisting of superconducting electrodes coupled through a nanowire with two conductive channels can reveal the multi-periodic magnetic oscillations. The multi-periodicity originates from the quantum mechanical interference between the channels affected by both the strong spin-orbit coupling and Zeeman interaction. This minimal two-channel model is shown to explain the complicated interference phenomena observed recently in Josephson transport through Bi nanowires., 5 pages, 3 figures
- Published
- 2015
- Full Text
- View/download PDF
7. Thermodynamic nature of the 0-π quantum transition in superconductor/ferromagnet/superconductor trilayers
- Author
-
Kostiantyn Torokhtii, A. V. Samokhvalov, Nicola Pompeo, Carla Cirillo, E. A. Ilyina, Enrico Silva, Alexandre I. Buzdin, Carmine Attanasio, Dipartimento di Ingegneria [Roma], Università degli Studi Roma Tre, CNR-SPIN Salerno and Dipartimento di Fisica 'E. R. CAianiello', Università degli Studi di Salerno (UNISA), Institute for Physics of Microstructures of the RAS, Russian Academy of Sciences [Moscow] (RAS), Lobachevsky State University of Nizhny Novgorod, University of Nizhny Novgorod, Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), European NanoSC COST Action MP1201, French ANR Grant No. 'MASH', the RFBR (Grant No. 13-02-97126), the program 'Quantum Mesoscopic and Disordered Structures' of the RAS, by Ministry of Education and Science of RF and Lobachevsky State University (agreement 02.B.49.21.0003), ANR-12-BS04-0016,MASH,Etats de Majorana et d'Andreev dans des circuits hybrides combinant des matériaux magnétiques et supraconducteurs(2012), Pompeo, Nicola, Torokhtii, Kostiantyn, Cirillo, C., Samokhvalov, A. V., Ilyina, E. A., Attanasio, C., Buzdin, A. I., and Silva, Enrico
- Subjects
Quantum phase transition ,Phase transition ,superlattices ,SN and SNS junctions ,London penetration depth ,FOS: Physical sciences ,Surface impedance ,Andreev reflection ,Superconductivity (cond-mat.supr-con) ,PACS numbers: 74.78.Fk, 74.25.Ha, 74.25.nn, 74.45.+c ,Wave function ,Physics ,Superconductivity ,Condensed matter physics ,Condensed Matter - Superconductivity ,Order (ring theory) ,Condensed Matter Physics ,3. Good health ,Electronic, Optical and Magnetic Materials ,Proximity effects ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,heterostructures ,Multilayers ,Magnetic properties including vortex structures and related phenomena ,Ground state - Abstract
In structures made up of alternating superconducting and ferromagnet layers (S/F/S heterostructures), it is known that the macroscopic quantum wavefunction of the ground state changes its phase difference across the F--layer from 0 to PI under certain temperature and geometrical conditions, whence the name "0-PI" for this crossover. We present here a joint experimental and theoretical demonstration that the "0-PI" is a true thermodynamic phase transition: microwave measurements of the temperature dependence of the London penetration depth in Nb/Pd_0.84Ni_0.16/Nb trilayers reveal a sudden, unusual decrease of the density of the superconducting condensate (square modulus of the macroscopic quantum wavefunction) with decreasing temperature, which is predicted by the theory here developed as a transition from the 0- to the PI-state. Our result for the jump of the amplitude of the order parameter is the first thermodynamic manifestation of such temperature-driven quantum transition., Comment: 7 pages, 5 figures. Accepted for publication in Phys. Rev. B, http://journals.aps.org/prb/
- Published
- 2014
- Full Text
- View/download PDF
8. Interference phenomena and long - range proximity effect in clean superconductor -- ferromagnet systems
- Author
-
Alexandre I. Buzdin, S. M. Kuznetsova, A. V. Samokhvalov, Alexei S. Melnikov, Institute for Physics of Microstructures of the RAS, Russian Academy of Sciences [Moscow] (RAS), Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Russian Foundation for Basic Research, FTP 'Scientific and Educational Personnel of Innovative Russia in 2009-2013,' and LEA program 'Physique Theorique et Matiere Condensee.', and European Project: 246937,EC:FP7:PEOPLE,FP7-PEOPLE-2009-IRSES,SIMTECH(2010)
- Subjects
Field (physics) ,85.25.Cp ,SN and SNS junctions ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,74.78.Na ,Andreev reflection ,Superconductivity (cond-mat.supr-con) ,Momentum ,Condensed Matter::Superconductivity ,0103 physical sciences ,Proximity effect (superconductivity) ,74.45.+c ,010306 general physics ,PACS ,Superconductivity ,Physics ,Mesoscopic and nanoscale systems ,Condensed matter physics ,Condensed Matter - Superconductivity ,Josephson devices ,Supercurrent ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,3. Good health ,Proximity effects ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,Ferromagnetism ,Quasiparticle ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology - Abstract
We study peculiarities of proximity effect in clean superconductor -- ferromagnet structures caused by either spatial or momentum dependence of the exchange field. Even a small modulation of the exchange field along the quasiparticle trajectories is shown to provide a long range contribution to the supercurrent due to the specific interference of particle- and hole- like wave functions. The momentum dependence of the exchange field caused by the spin -- orbit interaction results in the long -- range superconducting correlations even in the absence of ferromagnetic domain structure and can explain the recent experiments on ferromagnetic nanowires., 5 pages, 2 figures
- Published
- 2012
- Full Text
- View/download PDF
9. Vanishing Meissner effect as a hallmark of in-plane FFLO instability in superconductor - ferromagnet layered systems
- Author
-
Mironov, S. V., Mel'Nikov, A. S., Buzdin, Alexandre I., Institute for Physics of Microstructures of the RAS, Russian Academy of Sciences [Moscow] (RAS), Laboratoire Ondes et Matière d'Aquitaine (LOMA), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), program of LEA Physique Theorique et Matiere Condensee, the Russian Foundation for Basic Research, the 'Dynasty' Foundation, and FTP 'Scientific and educational personnel of innovative Russia in 2009-2013.', and European Project: 246937,EC:FP7:PEOPLE,FP7-PEOPLE-2009-IRSES,SIMTECH(2010)
- Subjects
Condensed Matter::Quantum Gases ,superlattices ,Condensed Matter - Superconductivity ,SN and SNS junctions ,FOS: Physical sciences ,Proximity effects ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,Superconductivity (cond-mat.supr-con) ,Multilayers ,heterostructures ,Andreev reflection ,Condensed Matter::Superconductivity ,74.45.+c ,PACS ,74.78.Fk - Abstract
We demonstrate that in a wide class of multilayered superconductor - ferromagnet structures (e.g., S/F, S/F/N and S/F/F') the vanishing Meissner effect signals the appearance of the in-plane Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) modulated superconducting phase. In contrast to the bulk superconductors the FFLO instability in these systems can emerge at temperatures close to the critical one and is effectively controlled by the S layer thickness and the angle between magnetization vectors in the F/F' bilayers. The predicted FFLO state reveals through the critical temperature oscillations vs the perpendicular magnetic field component., 5 pages, 5 figures
- Published
- 2012
- Full Text
- View/download PDF
10. Current-voltage characteristics of tunnel Josephson junctions with a ferromagnetic interlayer
- Author
-
Alexandre Avraamovitch Golubov, Frank W. J. Hekking, Shiro Kawabata, F. S. Bergeret, Andrey S. Vasenko, M. Yu. Kupriyanov, Claudine Lacroix, Interfaces and Correlated Electron Systems, Laboratoire de physique et modélisation des milieux condensés (LPM2C), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Donostia International Physics Center DIPC, Donostia International Physics Center, National Institute of Advanced Industrial Science and Technology (AIST), Faculty of Science and Technology, University of Twente [Netherlands], D.V. Skobeltsyn Institute of Nuclear Physics (SINP), Lomonosov Moscow State University (MSU), Théorie de la Matière Condensée (TMC), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Centro de Fisica de Materiales (CFM-MPC), and CSIC-UPV/EHU
- Subjects
Josephson effect ,Tunneling phenomena ,superlattices ,Quantum dynamics ,SN and SNS junctions ,Exchange and superexchange interactions ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,Superconductivity (cond-mat.supr-con) ,Condensed Matter::Superconductivity ,0103 physical sciences ,Josephson effects ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,010306 general physics ,Penetration depth ,Quantum tunnelling ,Superconductivity ,Physics ,METIS-280422 ,Andreev effect ,point contacts ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Superconductivity ,Fermi energy ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Electronic, Optical and Magnetic Materials ,Proximity effects ,weak links ,Multilayers ,heterostructures ,Quasiparticle ,Density of states ,[PHYS.COND.CM-SCE]Physics [physics]/Condensed Matter [cond-mat]/Strongly Correlated Electrons [cond-mat.str-el] ,0210 nano-technology - Abstract
11 páginas, 9 figuras.-- PACS number(s): 74.45.+c, 74.50.+r, 74.78.Fk, 75.30.Et.-- et al., We present a quantitative study of the current-voltage characteristics (CVC) of diffusive superconductor/insulator/ferromagnet/superconductor (SIFS) tunnel Josephson junctions. In order to obtain the CVC we calculate the density of states (DOS) in the F/S bilayer for arbitrary length of the ferromagnetic layer, using quasiclassical theory. For a ferromagnetic layer thickness larger than the characteristic penetration depth of the superconducting condensate into the F layer, we find an analytical expression which agrees with the DOS obtained from a self-consistent numerical method. We discuss general properties of the DOS and its dependence on the parameters of the ferromagnetic layer. In particular we focus our analysis on the DOS oscillations at the Fermi energy. Using the numerically obtained DOS we calculate the corresponding CVC and discuss their properties. Finally, we use CVC to calculate the macroscopic quantum tunneling (MQT) escape rate for the current biased SIFS junctions by taking into account the dissipative correction due to the quasiparticle tunneling. We show that the influence of the quasiparticle dissipation on the macroscopic quantum dynamics of SIFS junctions is small, which is an advantage of SIFS junctions for superconducting qubits applications., This work was supported by NanoSCIERA project Nanofridge, ANR DYCOSMA, RFBR Project No. N11-02-12065, JSTCREST, a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan (Grant No. 22710096), the Invitation Program for Foreign Young Researchers in the G-COE program “Education and Research Center for Material Innovation,” and the Spanish MICINN (Contract No. FIS2008-04209). F.S.B. thanks Intramural Special Project (Ref. 2009601036). A.A.G. thanks Dutch FOM for support.
- Published
- 2011
- Full Text
- View/download PDF
11. Tunable superconducting phase transition in metal-decorated graphene sheets
- Author
-
Alex Zettl, Ç. Ö. Girit, Vincent Bouchiat, B. M. Kessler, Systèmes hybrides de basse dimensionnalité (HYBRID), Institut Néel (NEEL), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
Phase transition ,Materials science ,Magnetism ,SN and SNS junctions ,General Physics and Astronomy ,chemistry.chemical_element ,FOS: Physical sciences ,02 engineering and technology ,Substrate (electronics) ,Superconducting films and low-dimensional structures ,01 natural sciences ,law.invention ,law ,Condensed Matter::Superconductivity ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,010306 general physics ,Nanoscopic scale ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Superconductivity ,Mesoscopic physics ,Andreev effect ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Graphene ,Transition temperature variations ,021001 nanoscience & nanotechnology ,Proximity effects ,chemistry ,Josephson junction arrays and wire networks ,0210 nano-technology ,Tin - Abstract
Using typical experimental techniques it is difficult to separate the effects of carrier density and disorder on the superconducting transition in two dimensions. Using a simple fabrication procedure based on metal layer dewetting, we have produced graphene sheets decorated with a non-percolating network of nanoscale tin clusters. These metal clusters both efficiently dope the graphene substrate and induce long-range superconducting correlations. This allows us to study the superconducting transition at fixed disorder and variable carrier concentration. We find that despite structural inhomogeneity on mesoscopic length scales (10-100 nm), this material behaves electronically as a homogenous dirty superconductor. Our simple self-assembly method establishes graphene as an ideal tunable substrate for studying induced two-dimensional electronic systems at fixed disorder and our technique can readily be extended to other order parameters such as magnetism.
- Published
- 2009
- Full Text
- View/download PDF
12. Proximity effect in atomic-scaled hybrid superconductor/ferromagnet structures: crucial role of electron spectra
- Author
-
M. Daumens, D. Gusakova, Alexandre I. Buzdin, X. Montiel, Centre de physique moléculaire optique et hertzienne (CPMOH), Université Sciences et Technologies - Bordeaux 1-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), and ANR-07-NANO-0011,ELEC-EPR,Electronic EPR Source(2007)
- Subjects
Materials science ,superlattices ,SN and SNS junctions ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,Superconductivity (cond-mat.supr-con) ,Metal ,0103 physical sciences ,Proximity effect (superconductivity) ,010306 general physics ,Anisotropy ,Spin (physics) ,Superconductivity ,Andreev effect ,Condensed matter physics ,Electron spectra ,Condensed Matter - Superconductivity ,021001 nanoscience & nanotechnology ,Proximity effects ,[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con] ,Ferromagnetism ,Multilayers ,heterostructures ,visual_art ,visual_art.visual_art_medium ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,Fermi Gamma-ray Space Telescope ,PACS : 74.45.+c ,74.78.Fk - Abstract
International audience; We study the influence of the configuration of the majority and minority spin subbands of electron spectra on the properties of atomic-scaled superconductor-ferromagnet S-F-S and F-S-F hybrid structures. At low temperatures, the S/F/S junction is either a 0 or junction depending on the energy shift between S and F materials and the anisotropy of the Fermi surfaces. We found that the spin switch effect in F/S/F system can be reversed if the minority spin electron spectra in F metal is of the hole-like type.
- Published
- 2009
- Full Text
- View/download PDF
13. Gate-tuned high frequency response of carbon nanotube Josephson junctions
- Author
-
Wolfgang Wernsdorfer, Marc Monthioux, Serge Florens, Vincent Bouchiat, Jean-Pierre Cleuziou, Sabine Andergassen, Thierry Ondarçuhu, Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Circuits électroniques quantiques Alpes (NEEL - QuantECA), Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Théorie Quantique des Circuits (NEEL - ThQC), Systèmes hybrides de basse dimensionnalité (NEEL - HYBRID), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Circuits électroniques quantiques Alpes (QuantECA), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Théorie Quantique des Circuits (ThQC), and Systèmes hybrides de basse dimensionnalité (HYBRID)
- Subjects
Josephson effect ,Tunneling phenomena ,Nanotube ,Materials science ,SN and SNS junctions ,General Physics and Astronomy ,FOS: Physical sciences ,Carbon nanotube ,01 natural sciences ,Capacitance ,010305 fluids & plasmas ,law.invention ,Pi Josephson junction ,Superconductivity (cond-mat.supr-con) ,law ,Condensed Matter::Superconductivity ,0103 physical sciences ,Josephson effects ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,010306 general physics ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Superconductivity ,point contacts ,Andreev effect ,Nanotubes ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Quantum dots ,Condensed Matter - Superconductivity ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Proximity effects ,weak links ,Quantum dot ,Superconducting tunnel junction - Abstract
Carbon nanotube (CNT) Josephson junctions in the open quantum dot limit exhibit superconducting switching currents which can be controlled with a gate electrode. Shapiro voltage steps can be observed under radiofrequency current excitations, with a damping of the phase dynamics that strongly depends on the gate voltage. These measurements are described by a standard RCSJ model showing that the switching currents from the superconducting to the normal state are close to the critical current of the junction. The effective dynamical capacitance of the nanotube junction is found to be strongly gate-dependent, suggesting a diffusive contact of the nanotube., 14 pages, 8 figures
- Published
- 2007
- Full Text
- View/download PDF
14. Dephasing of Andreev pairs entering a charge density wave
- Author
-
Régis Mélin, Sylvie Duhot, Théorie Quantique des Circuits (ThQC), Institut Néel (NEEL), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Superconductivity ,Josephson effect ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Dephasing ,PACS. 73.23.-b Electronic transport in mesoscopic systems - 72.15.Nj Collective modes - 74.45.+c Proximity effects ,Andreev effect ,SN and SNS junctions ,FOS: Physical sciences ,Electron ,Condensed Matter Physics ,01 natural sciences ,010305 fluids & plasmas ,Electronic, Optical and Magnetic Materials ,Coherence length ,symbols.namesake ,Condensed Matter::Superconductivity ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,symbols ,Spin density wave ,Condensed Matter::Strongly Correlated Electrons ,010306 general physics ,Hamiltonian (quantum mechanics) ,Charge density wave ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] - Abstract
An Andreev pair from a s-wave superconductor (S) entering a conventional gapless charge density wave (CDW) below the Peierls gap dephases on the Fermi wavelength while one particle states are localized on the CDW coherence length. The paths following different sequences of impurities interfere destructively, due to the different electron and hole densities in the CDW. The same conclusion holds for averaging over the conduction channels in the ballistic system. We apply two microscopic approaches to this phenomenon: i) a Blonder, Tinkham, Klapwijk (BTK) approach for a single highly transparent S-CDW interface; and ii) the Hamiltonian approach for the Josephson effect in a clean CDW and a CDW with non magnetic disorder. The Josephson effect through a spin density wave (SDW) is limited by the coherence length, not by the Fermi wave-length., 8 pages, 2 figures, revised manuscript
- Published
- 2006
- Full Text
- View/download PDF
15. Voltage and temperature dependence of current noise in double-barrier normal-superconducting structures
- Author
-
G. Bignon, Fabio Pistolesi, Manuel Houzet, Laboratoire de physique et modélisation des milieux condensés (LPM2C), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut Nanosciences et Cryogénie (INAC), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Fano factor ,Current (mathematics) ,chaos ,SN and SNS junctions ,Fluctuations (noise ,01 natural sciences ,Noise (electronics) ,Electronic transport in mesoscopic systems ,Noise processes and phenomena ,localization ,010305 fluids & plasmas ,Condensed Matter::Superconductivity ,etc.) ,0103 physical sciences ,010306 general physics ,nonequilibrium sc ,[PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] ,Superconductivity ,Physics ,Andreev effect ,Condensed matter physics ,Condensed Matter Physics ,72.70.+m, 74.45.+c, 74.40.+k ,Electronic, Optical and Magnetic Materials ,Proximity effects ,Distribution (mathematics) ,Differential (mathematics) ,Energy (signal processing) ,Communication channel - Abstract
International audience; We study theoretically the current-noise energy (voltage bias and temperature) dependence for a N-N'-S structure, where N and S stand for bulk normal metal and superconductor, respectively, and N' for a short diffusive normal metal. Using quasiclassical theory of current fluctuations we determine the noise for arbitrary distributions of channel transparencies on both junctions. The differential Fano factor turns out to depend on both junction transparencies and the ratio of the two conductances. We discuss analytically the coherent and incoherent regimes and the case when one of the two conductances dominates the other one. Measurement of differential conductance and noise can be used to probe the channel distribution of the interfaces. We discuss recent experiments in the light of our results.
- Published
- 2006
- Full Text
- View/download PDF
16. Broken Time-reversal Symmetry in Josephson Junction Involving Two-band Superconductors
- Author
-
Ng, Tai Kai, Nagaosa, Naoto, Ng, Tai Kai, and Nagaosa, Naoto
- Abstract
A novel time-reversal symmetry breaking state is found theoretically in the Josephson junction between a two-gap superconductor and a conventional s-wave superconductor. This occurs as a result of frustration between the three order parameters analogous to two antiferromagnetically coupled XY-spins put under a magnetic field. This leads to formation of interface states with energies inside the superconducting gap and modified flux quantization condition for a ring composed of the two types of superconductors. Copyright © 2009 EPLA.
- Published
- 2009
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.