Di Zhang, Zhanyun Tang, Saadi Khochbin, Zhongyi Cheng, Guillaume Charbonnier, Carlo Petosa, Sophie Barral, Anne-Laure Vitte, Sophie Rousseaux, Robert G. Roeder, Thierry Buchou, Yingming Zhao, Tieming He, Shankang Qi, Daniel Panne, Sandrine Curtet, Afsaneh Goudarzi, Emilie Montellier, Jonathan Gaucher, Alexandra Debernardi, Denis Puthier, He Huang, Oh Kwang Kwon, Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), University of Alabama [Tuscaloosa] (UA), Memorial Sloane Kettering Cancer Center [New York], Seoul National University [Seoul] (SNU), Ben May Department for Cancer Research, University of Chicago-Ben May Department for Cancer Research, The Jackson Laboratory [Bar Harbor] (JAX), Research Institute, Northeastern University [Shenyang], jingjie PTM Biolab, Hangzhou Dianzi University (HDU), Technologies avancées pour le génôme et la clinique (TAGC), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut de biologie structurale (IBS - UMR 5075 ), Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), European Molecular Biology Laboratory [Grenoble] (EMBL), Laboratory of Biochemistry and Molecular Biology, Rockefeller University [New York], Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Summary Recently discovered histone lysine acylation marks increase the functional diversity of nucleosomes well beyond acetylation. Here, we focus on histone butyrylation in the context of sperm cell differentiation. Specifically, we investigate the butyrylation of histone H4 lysine 5 and 8 at gene promoters where acetylation guides the binding of Brdt, a bromodomain-containing protein, thereby mediating stage-specific gene expression programs and post-meiotic chromatin reorganization. Genome-wide mapping data show that highly active Brdt-bound gene promoters systematically harbor competing histone acetylation and butyrylation marks at H4 K5 and H4 K8. Despite acting as a direct stimulator of transcription, histone butyrylation competes with acetylation, especially at H4 K5, to prevent Brdt binding. Additionally, H4 K5K8 butyrylation also marks retarded histone removal during late spermatogenesis. Hence, alternating H4 acetylation and butyrylation, while sustaining direct gene activation and dynamic bromodomain binding, could impact the final male epigenome features., Graphical Abstract, Highlights • Active gene TSSs are marked by competing H4 K5K8 acetylation and butyrylation • Histone butyrylation directly stimulates transcription • H4K5 butyrylation prevents binding of the testis specific gene expression-driver Brdt • H4K5K8 butyrylation is associated with delayed histone removal in spermatogenic cells, Histone butyrylation stimulates gene transcription while competing with acetylation at H4K5 to control Brdt bromodomain binding. Differential chromatin labeling with interchangeable H4 acylations is an important epigenetic regulatory mechanism controlling gene expression and chromatin reorganization.