1. Effect of different types of sugar on gut physiology and microbiota in overfed goose
- Author
-
C.C. Lu, R.X. Wei, D.H. Deng, Z.Y. Luo, M. Abdulai, H.H. Liu, B. Kang, S.Q. Hu, L. Li, H.Y. Xu, J.W. Hu, S.H. Wei, and C.C. Han
- Subjects
glucose ,fructose ,sucrose ,intestinal microorganism ,fatty liver ,Animal culture ,SF1-1100 - Abstract
ABSTRACT: To explored the difference of goose fatty liver formation induced-by different types of sugar from the intestinal physiology and the gut microflora, an integrated analysis of intestinal physiology and gut microbiota metagenomes was performed using samples collected from the geese including the normal-feeding geese and the overfed geese which were overfed with maize flour or overfeeding dietary supplementation with 10% sugar (glucose, fructose or sucrose, respectively), respectively. The results showed that the foie gras weight of the fructose group and the sucrose group was heavier (P < 0.05) than other groups. Compared with the control group, the ileum weight was significantly higher (P < 0.01), and the cecum weight was significantly lower in the sugar treatment groups (P < 0.001). Compared with the control group, the ratio of villi height to crypt depth in the fructose group was the highest in jejunum (P < 0.05); the trypsin activity of the ileum was higher in the fructose group and the sucrose group (P < 0.05). At the phylum level, Firmicutes, Proteobacteria and Bacteroidetes were the main intestinal flora of geese; and the abundance of Firmicutes in the jejunum was higher in the sugar treatment groups than that of the maize flour group. At the genus level, the abundance of Lactobacillus in the jejunum was higher (P < 0.05) in the sugar treatment groups than that of the maize flour group. In conclusion, forced-feeding diet supplementation with sugar induced stronger digestion and absorption capacity, increased the abundance of Firmicutes and Bacteroidetes and the abundance of Lactobacillus (especially fructose and sucrose) in the gut. So, the fructose and sucrose had higher induction on hepatic steatosis in goose fatty liver formation.
- Published
- 2021
- Full Text
- View/download PDF