22 results on '"S. Chappa"'
Search Results
2. Squeeze-and-Excitation SqueezeNext: An Efficient DNN for Hardware Deployment.
- Author
-
Ravi Teja N. V. S. Chappa and Mohamed El-Sharkawy
- Published
- 2020
- Full Text
- View/download PDF
3. Rat behavior and dopamine release are modulated by conspecific distress
- Author
-
Nina T Lichtenberg, Brian Lee, Vadim Kashtelyan, Bharadwaja S Chappa, Henok T Girma, Elizabeth A Green, Shir Kantor, Dave A Lagowala, Matthew A Myers, Danielle Potemri, Meredith G Pecukonis, Robel T Tesfay, Michael S Walters, Adam C Zhao, R James R Blair, Joseph F Cheer, and Matthew R Roesch
- Subjects
dopamine ,accumbens ,striatum ,empathy ,social ,reward ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Rats exhibit ‘empathy’ making them a model to understand the neural underpinnings of such behavior. We show data consistent with these findings, but also that behavior and dopamine (DA) release reflects subjective rather than objective evaluation of appetitive and aversive events that occur to another. We recorded DA release in two paradigms: one that involved cues predictive of unavoidable shock to the conspecific and another that allowed the rat to refrain from reward when there were harmful consequences to the conspecific. Behavior and DA reflected pro-social interactions in that DA suppression was reduced during cues that predicted shock in the presence of the conspecific and that DA release observed on self-avoidance trials was present when the conspecific was spared. However, DA also increased when the conspecific was shocked instead of the recording rat and DA release during conspecific avoidance trials was lower than when the rat avoided shock for itself.
- Published
- 2018
- Full Text
- View/download PDF
4. Rat behavior and dopamine release are modulated by conspecific distress
- Author
-
Brian Lee, Meredith G Pecukonis, Henok T Girma, Dave A Lagowala, Robel T Tesfay, Danielle Potemri, Nina T. Lichtenberg, Michael S Walters, Matthew R. Roesch, Elizabeth A Green, R. James R. Blair, Matthew A. Myers, Joseph F. Cheer, Bharadwaja S Chappa, Adam C Zhao, Shir Kantor, and Vadim Kashtelyan
- Subjects
Male ,0301 basic medicine ,QH301-705.5 ,striatum ,Science ,media_common.quotation_subject ,Empathy ,Striatum ,General Biochemistry, Genetics and Molecular Biology ,Rats, Sprague-Dawley ,03 medical and health sciences ,0302 clinical medicine ,Dopamine ,medicine ,Animals ,Biology (General) ,Social Behavior ,empathy ,reward ,media_common ,Electroshock ,Behavior, Animal ,General Immunology and Microbiology ,General Neuroscience ,social ,General Medicine ,accumbens ,Distress ,030104 developmental biology ,Shock (circulatory) ,Rat ,Medicine ,Objective evaluation ,dopamine ,medicine.symptom ,Psychology ,Neuroscience ,030217 neurology & neurosurgery ,Research Article ,medicine.drug - Abstract
Rats exhibit ‘empathy’ making them a model to understand the neural underpinnings of such behavior. We show data consistent with these findings, but also that behavior and dopamine (DA) release reflects subjective rather than objective evaluation of appetitive and aversive events that occur to another. We recorded DA release in two paradigms: one that involved cues predictive of unavoidable shock to the conspecific and another that allowed the rat to refrain from reward when there were harmful consequences to the conspecific. Behavior and DA reflected pro-social interactions in that DA suppression was reduced during cues that predicted shock in the presence of the conspecific and that DA release observed on self-avoidance trials was present when the conspecific was spared. However, DA also increased when the conspecific was shocked instead of the recording rat and DA release during conspecific avoidance trials was lower than when the rat avoided shock for itself.
- Published
- 2018
- Full Text
- View/download PDF
5. Author response: Rat behavior and dopamine release are modulated by conspecific distress
- Author
-
Bharadwaja S Chappa, Michael S Walters, Elizabeth A Green, Shir Kantor, Brian Lee, Robel T Tesfay, Vadim Kashtelyan, Nina T. Lichtenberg, Joseph F. Cheer, R. James R. Blair, Matthew A. Myers, Matthew R. Roesch, Danielle Potemri, Adam C Zhao, Meredith G Pecukonis, Henok T Girma, and Dave A Lagowala
- Subjects
medicine.medical_specialty ,Distress ,Endocrinology ,Dopamine ,business.industry ,Internal medicine ,medicine ,business ,medicine.drug - Published
- 2018
- Full Text
- View/download PDF
6. Wildlife visits to farm facilities assessed by camera traps in a bovine tuberculosis-infected area in France
- Author
-
S. Chappa, Ariane Payne, Jean Hars, Emmanuelle Gilot-Fromont, Barbara Dufour, Biodémographie évolutive, Département écologie évolutive [LBBE], Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Ministere de l'Agriculture de l'Agroalimentaire et de la Foret, Conseil Regional de Bourgogne, Conseil General de la Cote d'Or, Federation Departementale des Chasseurs de Cote d'Or, Groupement de Defense Sanitaire de Cote d'Or, Federation Nationale des Chasseurs, and Office National de la Chasse et de la Faune Sauvage
- Subjects
0106 biological sciences ,Veterinary medicine ,Badger ,040301 veterinary sciences ,[SDV]Life Sciences [q-bio] ,Biosecurity ,Wildlife ,Management, Monitoring, Policy and Law ,010603 evolutionary biology ,01 natural sciences ,Bovine tuberculosis ,law.invention ,0403 veterinary science ,Wildlife-livestock interface ,Wild boar ,law ,biology.animal ,Camera trap ,Ecology, Evolution, Behavior and Systematics ,Nature and Landscape Conservation ,2. Zero hunger ,biology ,business.industry ,Ecology ,04 agricultural and veterinary sciences ,Interspecific competition ,Multi-host system ,Transmission (mechanics) ,Geography ,Livestock ,business - Abstract
International audience; When bovine tuberculosis (bTB) circulates in a multi-host system, it is paramount to characterize the interactions between wildlife and livestock as they may lead to interspecific transmission. To that purpose, we undertook a 1-year survey in 25 farms located in an infected area in the Burgundy region (east central France). We used camera traps deployed on 101 water and food access points located in pastures and farm buildings considered as attractive points for red deer, wild boar, and badgers. For each species, we analyzed the duration of each visit, the number of individuals, their behavior, and the frequency of visits. Wild boar was the most frequent species, with 5.0 visits/100 nights, and their visits occurred most frequently around water sources and in summer. The frequency of visits from red deer was highest at salt licks and in summer. Badger was more frequent in winter and on pasture feed troughs. These results highlight the wide variation in the patterns of contact at the wildlife-cattle interface among the different bTB-susceptible species. Combined with other epidemiological data, these data could be used both to assess the risk of bTB transmission in Burgundy and to implement biosecurity measures.
- Published
- 2015
- Full Text
- View/download PDF
7. The New Muon g-2 experiment at Fermilab
- Author
-
B. Abi T. Albahri, S. Al-Kilani, D. Allspach, L. P. Alonzi, A. Anastasi, F. Azfar, D. Babusci, S. Baessler, V. A. Baranov, E. Barzi, R. Bjorkquist, T. Bowcock, G. Cantatore, R. M. Carey, J. Carroll, B. Casey, D. Cauz, A. Chapelain, S. Chappa, S. Chattopadhyay, R. Chislett, T. E. Chupp, M. Convery, G. Corradi, J. Crnkovic, S. Dabagov, P. T. Debevec, G. Di Sciascio, R. Di Stefano, B. Drendel, V. P. Druzhinin, V. N. Duginov, M. Eads, N. Eggert, A. Epps, R. Fatemi, C. Ferrari, M. Fertl, A. T. Fienberg, A. Fioretti, D. Flay, A. S. Frankenthal, H. Friedsam, E. Frlez, N. S. Froemming, C. Fu, C. Gabbanini, M. Gaisser, S. Ganguly, A. Garcia, J. George, L. K. Gibbons, K. L. Giovanetti, S. Goadhouse, W. Gohn, T. Gorringe, J. Grange, F. Gray, S. Haciomeroglu, T. Halewood-Leagas, D. Hampai, E. Hazen, S. Henry, D. W. Hertzog, J. L. Holzbauer, M. Iacovacci, C. Johnstone, J. A. Johnstone, K. Jungmann, H. Kamal Sayed, P. Kammel, M. Karuza, J. Kaspar, D. Kawall, L. Kelton, K. S. Khaw, N. V. Khomutov, B. Kiburg, S. C. Kim, Y. I. Kim, B. King, N. Kinnaird, I. A. Koop, I. Kourbanis, V. A. Krylov, A. Kuchibhotla, N. A. Kuchinskiy, M. Lancaster, M. J. Lee, S. Lee, S. Leo, L. Li, I. Logashenko, G. Luo, K. R. Lynch, A. Lyon, S. Marignetti, S. Mastroianni, S. Maxfield, M. McEvoy, Z. Meadows, W. Merritt, A. A. Mikhailichenko, J. P. Miller, J. P. Morgan, D. Moricciani, W. M. Morse, J. Mott, E. Motuk, H. Nguyen, Y. Orlov, R. Osofsky, J. -F. Ostiguy, A. Palladino, G. Pauletta, K. Pitts, D. Pocanic, N. Pohlman, C. Polly, J. Price, B. Quinn, N. Raha, E. Ramberg, N. T. Rider, J. L. Ritchie, B. L. Roberts, M. Rominsky, D. L. Rubin, L. Santi, C. Schlesier, Y. K. Semertzidis, Y. M. Shatunov, M. Shenk, A. Smith, M. W. Smith, A. Soha, E. Solodov, D. Still, D. Stöckinger, T. Stuttard, H. E. Swanson, D. A. Sweigart, M. J. Syphers, S. Szustkowski, D. Tarazona, T. Teubner, A. E. Tewlsey-Booth, V. Tishchenko, G. Venanzoni, V. P. Volnykh, T. Walton, M. Warren, L. Welty-Rieger, M. Whitley, P. Winter, A. Wolski, E. Won, M. Wormald, W. Wu, H. Yang, C. Yoshikawa, Albahri, B. Abi T., Al-Kilani, S., Allspach, D., Alonzi, L. P., Anastasi, A., Azfar, F., Babusci, D., Baessler, S., Baranov, V. A., Barzi, E., Bjorkquist, R., Bowcock, T., Cantatore, G., Carey, R. M., Carroll, J., Casey, B., Cauz, D., Chapelain, A., Chappa, S., Chattopadhyay, S., Chislett, R., Chupp, T. E., Convery, M., Corradi, G., Crnkovic, J., Dabagov, S., Debevec, P. T., Di Sciascio, G., Di Stefano, R., Drendel, B., Druzhinin, V. P., Duginov, V. N., Eads, M., Eggert, N., Epps, A., Fatemi, R., Ferrari, C., Fertl, M., Fienberg, A. T., Fioretti, A., Flay, D., Frankenthal, A. S., Friedsam, H., Frlez, E., Froemming, N. S., Fu, C., Gabbanini, C., Gaisser, M., Ganguly, S., Garcia, A., George, J., Gibbons, L. K., Giovanetti, K. L., Goadhouse, S., Gohn, W., Gorringe, T., Grange, J., Gray, F., Haciomeroglu, S., Halewood-Leagas, T., Hampai, D., Hazen, E., Henry, S., Hertzog, D. W., Holzbauer, J. L., Iacovacci, M., Johnstone, C., Johnstone, J. A., Jungmann, K., Kamal Sayed, H., Kammel, P., Karuza, M., Kaspar, J., Kawall, D., Kelton, L., Khaw, K. S., Khomutov, N. V., Kiburg, B., Kim, S. C., Kim, Y. I., King, B., Kinnaird, N., Koop, I. A., Kourbanis, I., Krylov, V. A., Kuchibhotla, A., Kuchinskiy, N. A., Lancaster, M., Lee, M. J., Lee, S., Leo, S., Li, L., Logashenko, I., Luo, G., Lynch, K. R., Lyon, A., Marignetti, S., Mastroianni, S., Maxfield, S., Mcevoy, M., Meadows, Z., Merritt, W., Mikhailichenko, A. A., Miller, J. P., Morgan, J. P., Moricciani, D., Morse, W. M., Mott, J., Motuk, E., Nguyen, H., Orlov, Y., Osofsky, R., Ostiguy, J. -F., Palladino, A., Pauletta, G., Pitts, K., Pocanic, D., Pohlman, N., Polly, C., Price, J., Quinn, B., Raha, N., Ramberg, E., Rider, N. T., Ritchie, J. L., Roberts, B. L., Rominsky, M., Rubin, D. L., Santi, L., Schlesier, C., Semertzidis, Y. K., Shatunov, Y. M., Shenk, M., Smith, A., Smith, M. W., Soha, A., Solodov, E., Still, D., Stöckinger, D., Stuttard, T., Swanson, H. E., Sweigart, D. A., Syphers, M. J., Szustkowski, S., Tarazona, D., Teubner, T., Tewlsey-Booth, A. E., Tishchenko, V., Venanzoni, G., Volnykh, V. P., Walton, T., Warren, M., Welty-Rieger, L., Whitley, M., Winter, P., Wolski, A., Won, E., Wormald, M., Wu, W., Yang, H., and Yoshikawa, C.
- Subjects
Precision Physics, Muon magnetic anomaly, Muon g-2 experiment - Abstract
There is a long standing discrepancy between the Standard Model prediction for the muon and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy between experiment and theory. Two new proposals – at Fermilab and J-PARC – plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.
- Published
- 2015
8. A 96-channel FPGA-based Time-to-Digital Converter (TDC) and fast trigger processor module with multi-hit capability and pipeline
- Author
-
H. Sanders, Ting Miao, R. Klein, Mary K. Heintz, R. DeMaat, P. Wilson, Thomas J. Phillips, Henry J. Frisch, Mircea Bogdan, Alexander Paramonov, and S. Chappa
- Subjects
Physics ,Nuclear and High Energy Physics ,business.industry ,Firmware ,Pipeline (computing) ,computer.software_genre ,Time-to-digital converter ,Memory address ,Upgrade ,Backplane ,Stratix ,business ,Field-programmable gate array ,Instrumentation ,computer ,Computer hardware - Abstract
We describe an field-programmable gate arrays based (FPGA), 96-channel, Time-to-Digital converter (TDC) and trigger logic board intended for use with the Central Outer Tracker (COT) [T. Affolder et al., Nucl. Instr. and Meth. A 526 (2004) 249] in the CDF Experiment [The CDF-II detector is described in the CDF Technical Design Report (TDR), FERMILAB-Pub-96/390-E. The TDC described here is intended as a further upgrade beyond that described in the TDR] at the Fermilab Tevatron. The COT system is digitized and read out by 315 TDC cards, each serving 96 wires of the chamber. The TDC is physically configured as a 9U VME card. The functionality is almost entirely programmed in firmware in two Altera Stratix FPGAs. The special capabilities of this device are the availability of 840 MHz LVDS inputs, multiple phase-locked clock modules, and abundant memory. The TDC system operates with an input resolution of 1.2 ns, a minimum input pulse width of 4.8 ns and a minimum separation of 4.8 ns between pulses. Each input can accept up to 7 hits per collision. The time-to-digital conversion is done by first sampling each of the 96 inputs in 1.2-ns bins and filling a circular memory; the memory addresses of logical transitions (edges) in the input data are then translated into the time of arrival and width of the COT pulses. Memory pipelines with a depth of 5.5 μ s allow deadtime-less operation in the first-level trigger; the data are multiple-buffered to diminish deadtime in the second-level trigger. The complete process of edge-detection and filling of buffers for readout takes 12 μ s . The TDC VME interface allows a 64-bit Chain Block Transfer of multiple boards in a crate with transfer-rates up to 47 Mbytes/s. The TDC module also produces prompt trigger data every Tevatron crossing via a deadtimeless fast logic path that can be easily reprogrammed. The trigger bits are clocked onto the P3 VME backplane connector with a 22-ns clock for transmission to the trigger. The full TDC design and multi-card test results are described. There is no measurable cross-talk between channels; linearity is limited by the least-count time bin. The physical simplicity ensures low-maintenance; the functionality being in firmware allows reprogramming for other applications.
- Published
- 2005
- Full Text
- View/download PDF
9. The Silicon Vertex Trigger upgrade at CDF
- Author
-
J. ADELMAN, A. ANNOVI, M. AOKI, A. BARDI, M. BARI, J. BELLINGER, M. BITOSSI, M. BOGDAN, R. CAROSI, P. CATASTINI, A. CERRI, S. CHAPPA, M. DELLORSO, DI RUZZA B., IVAN K. FURIC, P. GIANETTI, P. GIOVACCHINI, T. H. LIU, T. MARUYAMA, I. PEDRON, M. PIENDIBENE, M. PITKANEN, B. RIESERT, M. RESCIGNO, L. RISTORI, H. SANDERS, L. SARTORI, M. SHOCHET, B. SIMONI, F. SPINELLA, S. TORRE, R. TRIPICCIONE, F. TANGA, U. K. YANG, A. M. ZANETTI, DI RUZZA, BENEDETTO, J., Adelman, A., Annovi, M., Aoki, A., Bardi, M., Bari, J., Bellinger, M., Bitossi, M., Bogdan, R., Carosi, P., Catastini, A., Cerri, S., Chappa, M., Dellorso, DI RUZZA, B., DI RUZZA, Benedetto, IVAN K., Furic, P., Gianetti, P., Giovacchini, T. H., Liu, T., Maruyama, I., Pedron, M., Piendibene, M., Pitkanen, B., Riesert, M., Rescigno, L., Ristori, H., Sander, L., Sartori, M., Shochet, B., Simoni, F., Spinella, S., Torre, R., Tripiccione, F., Tanga, U. K., Yang, and A. M., Zanetti
- Published
- 2007
10. Real Time Secondary Vertexing at CDF
- Author
-
J. ADELMAN, A. ANNOVI, M. AOKI, A. BARDI, J. BELLINGER, M. BITOSSI, M. BOGDAN, R. CAROSI, P. CATASTINI, A. CERRI, S. CHAPPA, M. DELLORSO, DI RUZZA B., IVAN K. FURIC, P. GIANETTI, P. GIOVACCHINI, T. LIU, T. MARUYAMA, I. PEDRON, M. PIENDIBENE, M. PITKANEN, B. RIESERT, M. RESCIGNO, L. RISTORI, H. SANDERS, L. SARTORI, M. SHOCHET, B. SIMONI, F. SPINELLA, S. TORRE, R. TRIPICCIONE, F. TANG, U. K. YANG, A. M. ZANETTI, DI RUZZA, BENEDETTO, J., Adelman, A., Annovi, M., Aoki, A., Bardi, J., Bellinger, M., Bitossi, M., Bogdan, R., Carosi, P., Catastini, A., Cerri, S., Chappa, M., Dellorso, DI RUZZA, B., DI RUZZA, Benedetto, IVAN K., Furic, P., Gianetti, P., Giovacchini, T., Liu, T., Maruyama, I., Pedron, M., Piendibene, M., Pitkanen, B., Riesert, M., Rescigno, L., Ristori, H., Sander, L., Sartori, M., Shochet, B., Simoni, F., Spinella, S., Torre, R., Tripiccione, F., Tang, U. K., Yang, and A. M., Zanetti
- Published
- 2006
11. On-line tracking processors at hadron colliders: The SVT experience at CDF II and beyond
- Author
-
S. Torre, T. Liu, M. Bitossi, Ivan-Kresimir Furic, B. Di Ruzza, T. Maruyama, S. Chappa, U. Yang, G. Volpi, P. Catastini, F. Schifano, M. Piendibene, I. Pedron, L. Sartori, Alberto Annovi, S. Donati, C.M. Ginsburg, M. Pitkanen, M. Rescigno, Fabrizio Palla, Fukun Tang, B. Reisert, Raffaele Tripiccione, F. Spinella, Alessandro Cerri, E. Berry, Anna Zanetti, L. Ristori, Paola Giannetti, M. Dell ' Orso, James Nugent Bellinger, M. Aoki, R. Carosi, F. Sforza, M. J. Shochet, Francesco Crescioli, Giovanni Punzi, Mircea Bogdan, H. Sanders, and Jahred Adelman
- Subjects
Quark ,Physics ,Nuclear and High Energy Physics ,Particle physics ,Real time pattern recognition ,Hadron ,Online tracking ,Data acquisition ,Position-sensitive detectors ,Trigger ,NO ,Upgrade ,Computer engineering ,Instrumentation - Abstract
The Silicon Vertex Trigger (SVT) provides the CDF experiment with a powerful tool for fast and precise track finding and fitting at trigger level. The system enhances the experiment's reach on B-physics and large P T -physics coupled to b quarks. We review the main design features and the performance of the SVT with particular attention to the recent upgrade that improved its capabilities. Finally, we will focus on additional improvements of the functionality of such a system in a more general experimental context.
- Published
- 2007
12. The Silicon Vertex Trigger upgrade at CDF
- Author
-
Ivan K. Furić, H. Sanders, M. Piendibene, Alessandro Cerri, I. Pedron, S. Torre, M. Dell'Orso, M. Pitkanen, Raffaele Tripiccione, Alberto Annovi, M. J. Shochet, Fukun Tang, U. Yang, T. Maruyama, Rodolfo Carosi, James Nugent Bellinger, M. Aoki, B. Di Ruzza, L. Ristori, P. Giovacchini, L. Sartori, A. Bardi, S. Chappa, M. Rescigno, Mircea Bogdan, J. Adelman, P. Catastini, B. Riesert, Anna Zanetti, M. Bari, P. Gianetti, F. Spinella, B. Simoni, T. Liu, and M. Bitossi
- Subjects
Physics ,Nuclear and High Energy Physics ,Vertex (computer graphics) ,Silicon ,business.industry ,High Energy Physics::Phenomenology ,chemistry.chemical_element ,trigger ,Tracking (particle physics) ,Upgrade ,Data acquisition ,chemistry ,CDF ,High Energy Physics::Experiment ,business ,Instrumentation ,Computer hardware - Abstract
Motivations, design, performance and upgrade of the CDF Silicon Vertex Trigger are presented. The system provides CDF with a powerful tool for online tracking with offline quality in order to enhance the reach on B-physics and large P t-physics coupled to b quarks.
- Published
- 2007
13. Real time secondary vertexing at CDF
- Author
-
H. Sanders, Anna Zanetti, B. Simoni, A. Bardi, J. Adelman, Rodolfo Carosi, B. Reisert, B. Di Ruzza, M. Piendibene, I. Pedron, F. Spinella, T. Maruyama, M. Pitkanen, S. Torre, Alberto Annovi, Mauro Dell'Orso, T. Liu, M. Bitossi, L. Sartori, S. Chappa, L. Ristori, P. Catastini, Alessandro Cerri, Paola Giannetti, Mircea Bogdan, M. J. Shochet, P. Giovacchini, Ivan-Kresimir Furic, Fukun Tang, Raffaele Tripiccione, James Nugent Bellinger, M. Aoki, M. Rescigno, and U. Yang
- Subjects
Physics ,Nuclear and High Energy Physics ,Luminosity (scattering theory) ,Real-time computing ,Tevatron ,Tracking (particle physics) ,Online Tracking ,Trigger ,Data acquisition ,Upgrade ,Vertexing ,Real time pattern recognition ,Position-sensitive detectors ,Instrumentation [Data acquisition] ,Instrumentation ,Real time pattern recognition [Data acquisition] - Abstract
The Online Silicon Vertex Tracker (SVT) is the trigger processor dedicated to the 2-D reconstruction of charged particle trajectories at the Level 2 of the CDF trigger. As the Tevatron luminosity rises, multiple interactions increase the complexity of events and thus the SVT processing time, reducing the amount of data CDF can record. The SVT upgrade aims to increase the SVT processing power to restore at high luminosity the original CDF Data Acquisition capability. In this paper we review the tracking algorithms implemented in the SVT and we report on the first step in the SVT upgrade.
- Published
- 2006
14. A 96-channel FPGA-based time-to-digital converter
- Author
-
Ting Miao, Alexander Paramonov, Mircea Bogdan, H. Sanders, Mary K. Heintz, Henry J. Frisch, R. DeMaat, S. Chappa, Thomas J. Phillips, R. Klein, and P. Wilson
- Subjects
Physics ,Firmware ,business.industry ,computer.software_genre ,Time-to-digital converter ,Memory address ,Transmission (telecommunications) ,Backplane ,Stratix ,Field-programmable gate array ,business ,computer ,Computer hardware ,VMEbus - Abstract
We describe an FPGA-based, 96-channel, time-to-digital converter (TDC) intended for use with the Central Outer Tracker (COT) [1] in the CDF Experiment [2] at the Fermilab Tevatron. The COT system is digitized and read out by 315 TDC cards, each serving 96 wires of the chamber. The TDC is physically configured as a 9U VME card. The functionality is almost entirely programmed in firmware in two Altera Stratix FPGA’s. The special capabilities of this device are the availability of 840 MHz LVDS inputs, multiple phase-locked clock modules, and abundant memory. The TDC system operates with an input resolution of 1.2 ns, a minimum input pulse width of 4.8 ns and a minimum separation of 4.8 ns between pulses. Each input can accept up to 7 hits per collision. The time-to-digital conversion is done by first sampling each of the 96 inputs in 1.2-ns bins and filling a circular memory; the memory addresses of logical transitions (edges) in the input data are then translated into the time of arrival and width of the COT pulses. Memory pipelines with a depth of 5.5 μs allow deadtime-less operation in the first-level trigger; the data are multiple-buffered to diminish deadtime in the second-level trigger.more » The complete process of edge-detection and filling of buffers for readout takes 12 μs. The TDC VME interface allows a 64-bit Chain Block Transfer of multiple boards in a crate with transfer-rates up to 47 Mbytes/sec. The TDC also contains a separately-programmed data path that produces prompt trigger data every Tevatron crossing. The trigger bits are clocked onto the P3 VME backplane connector with a 22-ns clock for transmission to the trigger. The full TDC design and multi-card test results are described. The physical simplicity ensures low-maintenance; the functionality being in firmware allows reprogramming for other applications.« less
- Published
- 2005
- Full Text
- View/download PDF
15. First steps in the silicon vertex trigger upgrade at CDF
- Author
-
H. Sanders, J. D. Lewis, Alberto Annovi, T. Maruyama, F. Schifano, G. Volpi, Rodolfo Carosi, M. Bogdan, U. K. Yang, M. Carlsmith, Mauro Dell'Orso, G. Punzi, A. Zanetti, Yongsun Kim, F. Spinella, A. Cerri, I. Pedron, S. Beiforte, M. Pitkanen, S. Donati, S. Torre, Jahred Adelman, R. Handler, Franco Bedeschi, M. Rescigno, A. Bardi, L. Sartori, B. Di Ruzza, Edmund Berry, B. Reisert, Francesco Crescioli, M. Aoki, Federico Sforza, Granville Ott, F. Tang, J. N. Bellinger, W. H. Chung, L. Ristori, S. Chappa, Paola Giannetti, P. Catastini, M. J. Shochet, P. Giovacchini, F. Morsani, M. Piendibene, B. Simoni, Maria Agnese Ciocci, Raffaele Tripiccione, L. Pondrom, C. M. Ginsburg, S. Galeotti, R. Mahlum, L. Zanello, I. K. Furic, P. Squillacioti, T. Liu, and M. Bitossi
- Subjects
Physics ,Vertex (computer graphics) ,Luminosity (scattering theory) ,business.industry ,Associative processing ,Content-addressable memory ,Power (physics) ,Associative storage ,Data acquisition ,Upgrade ,Electronic engineering ,Fermilab ,Silicon radiation detectors ,business ,Computer hardware - Abstract
The silicon vertex trigger (SVT) in the CDF experiment at Fermilab performs fast and precise track finding and fitting at the second trigger level and has been a crucial element in data acquisition for Run II physics. However as luminosity rises, multiple interactions increase the complexity of events and thus the SVT processing time, reducing the amount of data CDF can record. The SVT upgrade aims to increase the SVT processing power to restore at high luminosity the original CDF DAQ capability. We describe the first steps in the SVT upgrade, consisting of a new associative memory with 4 times the number of patterns, and a new track fitter to take advantage of these patterns. We describe the system, its tests and its performance
- Published
- 2005
16. Measurement of the mass differencem(Ds+)−m(D+)at CDF II
- Author
-
D. Acosta, T. Affolder, M. H. Ahn, T. Akimoto, M. G. Albrow, B. Alcorn, C. Alexander, D. Allen, D. Allspach, P. Amaral, D. Ambrose, S. R. Amendolia, D. Amidei, J. Amundson, A. Anastassov, J. Anderson, K. Anikeev, A. Annovi, J. Antos, M. Aoki, G. Apollinari, J.-F. Arguin, T. Arisawa, A. Artikov, T. Asakawa, W. Ashmanskas, A. Attal, C. Avanzini, F. Azfar, P. Azzi-Bacchetta, M. Babik, N. Bacchetta, H. Bachacou, W. Badgett, S. Bailey, J. Bakken, A. Barbaro-Galtieri, A. Bardi, M. Bari, G. Barker, V. E. Barnes, B. A. Barnett, S. Baroiant, M. Barone, E. Barsotti, A. Basti, G. Bauer, D. Beckner, F. Bedeschi, S. Behari, S. Belforte, W. H. Bell, G. Bellendir, G. Bellettini, J. Bellinger, D. Benjamin, A. Beretvas, B. Berg, A. Bhatti, M. Binkley, D. Bisello, M. Bishai, R. E. Blair, C. Blocker, K. Bloom, B. Blumenfeld, A. Bocci, A. Bodek, M. Bogdan, G. Bolla, A. Bolshov, P. S. L. Booth, D. Bortoletto, J. Boudreau, S. Bourov, M. Bowden, D. Box, C. Bromberg, W. Brown, M. Brozovic, E. Brubaker, L. Buckley-Geer, J. Budagov, H. S. Budd, K. Burkett, G. Busetto, P. Bussey, A. Byon-Wagner, K. L. Byrum, S. Cabrera, P. Calafiura, M. Campanelli, M. Campbell, P. Canal, A. Canepa, W. Carithers, D. Carlsmith, R. Carosi, K. Carrell, H. Carter, W. Caskey, A. Castro, D. Cauz, A. Cerri, C. Cerri, L. Cerrito, J. T. Chandler, J. Chapman, S. Chappa, C. Chen, Y. C. Chen, M. T. Cheng, M. Chertok, G. Chiarelli, I. Chirikov-Zorin, G. Chlachidze, F. Chlebana, I. Cho, K. Cho, D. Chokheli, M. L. Chu, J. Y. Chung, W.-H. Chung, Y. S. Chung, C. I. Ciobanu, M. A. Ciocci, S. Cisko, A. G. Clark, M. Coca, K. Coiley, A. P. Colijn, R. Colombo, A. Connolly, M. Convery, J. Conway, G. Cooper, M. Cordelli, G. Cortiana, J. Cranshaw, R. Cudzewicz, R. Culbertson, C. Currat, D. Cyr, D. Dagenhart, L. DalMonte, S. DaRonco, S. D’Auria, R. Davila, J. Dawson, T. Dawson, P. de Barbaro, C. DeBaun, S. De Cecco, S. Dell’Agnello, M. Dell’Orso, R. DeMaat, P. Demar, S. Demers, L. Demortier, M. Deninno, D. De Pedis, P. F. Derwent, G. Derylo, T. Devlin, C. Dionisi, J. R. Dittmann, P. Doksus, A. Dominguez, S. Donati, F. Donno, M. D’Onofrio, T. Dorigo, R. Downing, G. Drake, C. Drennan, V. Drollinger, I. Dunietz, A. Dyer, K. Ebina, N. Eddy, R. Ely, E. Engels, R. Erbacher, M. Erdmann, D. Errede, S. Errede, R. Eusebi, H.-C. Fang, S. Farrington, R. G. Feild, M. Feindt, J. P. Fernandez, C. Ferretti, R. D. Field, I. Fiori, M. Fischler, G. Flanagan, B. Flaugher, L. R. Flores-Castillo, A. Foland, S. Forrester, G. W. Foster, M. Franklin, H. Frisch, J. Fromm, Y. Fujii, I. Furic, S. Galeotti, G. Galet, A. Gallas, M. Gallinaro, O. Ganel, C. Garcia, M. Garcia-Sciveres, A. F. Garfinkel, M. Garwacki, G. Garzoglio, C. Gay, H. Gerberich, D. W. Gerdes, E. Gerchtein, J. Gerstenslager, L. Giacchetti, S. Giagu, P. Giannetti, A. Gibson, G. Gillespie, C. Gingu, C. Ginsburg, K. Giolo, M. Giordani, V. Glagolev, D. Glenzinski, R. Glossen, M. Gold, N. Goldschmidt, D. Goldstein, J. Goldstein, G. Gomez, M. Goncharov, H. Gonzalez, S. Gordon, I. Gorelov, A. T. Goshaw, Y. Gotra, K. Goulianos, J. Grado, M. Gregori, A. Gresele, T. Griffin, G. Grim, C. Grimm, S. Gromoll, C. Grosso-Pilcher, C. Gu, V. Guarino, M. Guenther, J. Guimaraes da Costa, C. Haber, A. Hahn, K. Hahn, S. R. Hahn, E. Halkiadakis, C. Hall, R. Handler, M. Haney, W. Hao, F. Happacher, K. Hara, M. Hare, R. F. Harr, J. Harrington, R. M. Harris, F. Hartmann, K. Hatakeyama, J. Hauser, T. Hawke, C. Hays, E. Heider, B. Heinemann, J. Heinrich, A. Heiss, M. Hennecke, R. Herber, M. Herndon, M. Herren, D. Hicks, C. Hill, D. Hirschbuehl, A. Hocker, J. Hoff, K. D. Hoffman, J. Hoftiezer, A. Holloway, L. Holloway, S. Holm, D. Holmgren, S. Hou, M. A. Houlden, J. Howell, M. Hrycyk, P. Hubbard, R. E. Hughes, B. T. Huffman, J. Humbert, J. Huston, K. Ikado, J. Incandela, G. Introzzi, M. Iori, I. Ishizawa, C. Issever, A. Ivanov, Y. Iwata, B. Iyutin, E. James, D. Jang, J. Jarrell, D. Jeans, H. Jensen, R. Jetton, M. Johnson, M. Jones, T. Jones, S. Y. Jun, T. Junk, J. Kallenbach, T. Kamon, J. Kang, M. Karagoz Unel, P. E. Karchin, S. Kartal, H. Kasha, M. Kasten, Y. Kato, Y. Kemp, R. D. Kennedy, K. Kephart, R. Kephart, D. Khazins, V. Khotilovich, B. Kilminster, B. J. Kim, D. H. Kim, H. S. Kim, J. Kim, M. J. Kim, M. S. Kim, S. B. Kim, S. H. Kim, T. H. Kim, Y. K. Kim, B. T. King, M. Kirby, M. Kirk, L. Kirsch, R. Klein, S. Klimenko, M. Knapp, D. Knoblauch, B. Knuteson, H. Kobayashi, P. Koehn, K. Kondo, D. J. Kong, J. Konigsberg, W. Kononenko, K. Kordas, A. Korn, A. Korytov, K. Kotelnikov, A. Kotwal, A. Kovalev, J. Kowalkowski, J. Kraus, I. Kravchenko, A. Kreymer, J. Kroll, M. Kruse, V. Krutelyov, S. E. Kuhlmann, A. Kumar, N. Kuznetsova, A. T. Laasanen, S. Lai, S. Lami, S. Lammel, D. Lamore, J. Lancaster, M. Lancaster, R. Lander, G. Lanfranco, K. Lannon, A. Lath, G. Latino, R. Lauhakangas, I. Lazzizzera, Y. Le, T. LeCompte, J. Lee, K. Lee, S. W. Lee, C. M. Lei, M. Leininger, G. L. Leonardi, N. Leonardo, S. Leone, T. Levshina, F. Lewis, J. D. Lewis, K. Li, C. S. Lin, M. Lindgren, T. M. Liss, D. O. Litvintsev, T. Liu, Y. Liu, O. Lobban, N. S. Lockyer, A. Loginov, J. Loken, M. Loreti, J. Loskot, P. F. Loverre, D. Lucchesi, P. Lukens, P. Lutz, L. Lyons, J. Lys, J. MacNerland, D. MacQueen, A. Madorsky, R. Madrak, K. Maeshima, P. Maksimovic, L. Malferrari, P. Mammini, G. Manca, I. Mandrichenko, C. Manea, R. Marginean, J. Marrafino, A. Martin, M. Martin, V. Martin, M. Martínez, T. Maruyama, H. Matsunaga, J. Mayer, G. M. Mayers, P. Mazzanti, K. S. McFarland, D. McGivern, P. M. McIntyre, P. McNamara, R. McNulty, S. Menzemer, A. Menzione, P. Merkel, C. Mesropian, A. Messina, A. Meyer, T. Miao, N. Michael, J. S. Miller, L. Miller, R. Miller, R. Miquel, S. Miscetti, G. Mitselmakher, A. Miyamoto, Y. Miyazaki, D. Mizicko, S. Moccia, A. Moggi, N. Moggi, S. Montero, R. Moore, T. Moore, L. Morris, F. Morsani, T. Moulik, A. Mukherjee, M. Mulhearn, T. Muller, R. Mumford, A. Munar, P. Murat, S. Murgia, J. Nachtman, V. Nagaslaev, S. Nahn, I. Nakamura, I. Nakano, A. Napier, R. Napora, V. Necula, C. Nelson, T. Nelson, C. Neu, M. S. Neubauer, D. Neuberger, W. Newby, F. M. Newcomer, C. Newman-Holmes, F. Niell, J. Nielsen, A.-S. Nicollerat, T. Nigmanov, H. Niu, L. Nodulman, W. Noe, K. Oesterberg, T. Ogawa, S. Oh, Y. D. Oh, K. Ohl, T. Ohsugi, R. Oishi, T. Okusawa, R. Oldeman, R. Orava, W. Orejudos, S. Orr, G. Pagani, C. Pagliarone, F. Palmonari, I. Ramos, S. Panacek, D. Pantano, R. Paoletti, V. Papadimitriou, R. Pasetes, S. Pashapour, D. Passuello, M. Paterno, J. Patrick, G. Pauletta, M. Paulini, T. Pauly, C. Paus, V. Pavlicek, S. Pavlon, D. Pellett, A. Penzo, B. Perington, G. Petragnani, D. Petravick, T. J. Phillips, F. Photos, G. Piacentino, C. Picciolo, L. Piccoli, J. Piedra, K. T. Pitts, R. Plunkett, A. Pompoš, L. Pondrom, G. Pope, O. Poukhov, F. Prakoshyn, T. Pratt, A. Profeti, A. Pronko, J. Proudfoot, G. Punzi, J. Rademacker, F. Rafaelli, A. Rakitine, S. Rappoccio, F. Ratnikov, J. Rauch, H. Ray, R. Rechenmacher, S. Reia, A. Reichold, V. Rekovic, P. Renton, M. Rescigno, F. Rimondi, K. Rinnert, L. Ristori, M. Riveline, C. Rivetta, W. J. Robertson, A. Robson, T. Rodrigo, S. Rolli, M. Roman, S. Rosenberg, L. Rosenson, R. Roser, R. Rossin, C. Rott, A. Ruiz, J. Russ, D. Ryan, H. Saarikko, S. Sabik, L. Sadler, A. Safonov, R. St. Denis, W. K. Sakumoto, D. Saltzberg, C. Sanchez, H. Sanders, R. Sanders, M. Sandrew, A. Sansoni, L. Santi, S. Sarkar, H. Sarraj, J. Sarraj, H. Sato, P. Savard, P. Schemitz, P. Schlabach, E. E. Schmidt, J. Schmidt, M. P. Schmidt, M. Schmitt, R. Schmitt, M. Schmitz, G. Schofield, K. Schuh, K. Schultz, L. Scodellaro, L. Scott, A. Scribano, F. Scuri, A. Sedov, S. Segler, S. Seidel, Y. Seiya, A. Semenov, F. Semeria, L. Sexton-Kennedy, I. Sfiligoi, J. Shallenberger, M. D. Shapiro, T. Shaw, T. Shears, A. Shenai, P. F. Shepard, M. Shimojima, M. Shochet, Y. Shon, M. Shoun, A. Sidoti, J. Siegrist, C. Sieh, M. Siket, A. Sill, R. Silva, V. Simaitis, P. Sinervo, I. Sirotenko, A. Sisakyan, A. Skiba, A. J. Slaughter, K. Sliwa, J. Smith, F. D. Snider, R. Snihur, S. V. Somalwar, J. Spalding, M. Spezziga, L. Spiegel, F. Spinella, M. Spiropulu, H. Stadie, R. Stanek, N. Stanfield, B. Stelzer, O. Stelzer-Chilton, J. Strologas, D. Stuart, W. Stuermer, A. Sukhanov, K. Sumorok, H. Sun, T. Suzuki, J. Syu, A. Szymulanski, A. Taffard, S. F. Takach, H. Takano, R. Takashima, Y. Takeuchi, K. Takikawa, P. Tamburello, M. Tanaka, R. Tanaka, D. Tang, N. Tanimoto, B. Tannenbaum, S. Tapprogge, R. D. Taylor, G. Teafoe, M. Tecchio, P. K. Teng, K. Terashi, T. Terentieva, R. J. Tesarek, S. Tether, J. Thom, A. Thomas, A. S. Thompson, E. Thomson, R. Thurman-Keup, S. Timm, P. Tipton, S. Tkaczyk, D. Toback, K. Tollefson, D. Tonelli, M. Tonnesmann, D. Torretta, C. Trimby, W. Trischuk, J. Trumbo, J. Tseng, R. Tsuchiya, S. Tsuno, D. Tsybychev, N. Turini, M. Turner, F. Ukegawa, T. Unverhau, S. Uozumi, D. Usynin, L. Vacavant, T. Vaiciulis, R. Van Berg, A. Varganov, E. Vataga, S. Vejcik, G. Velev, G. Veramendi, T. Vickey, R. Vidal, I. Vila, R. Vilar, M. Vittone, J. Voirin, B. Vollmer, I. Vollrath, I. Volobouev, M. von der Mey, M. Votava, R. G. Wagner, R. L. Wagner, W. Wagner, N. Wallace, T. Walter, A. Walters, Z. Wan, A. Wandersee, M. J. Wang, S. M. Wang, B. Ward, S. Waschke, D. Waters, T. Watts, M. Weber, L. Weems, H. Wenzel, W. Wester, B. Whitehouse, W. Wickenberg, A. B. Wicklund, E. Wicklund, R. Wigmans, C. Wike, T. Wilkes, H. H. Williams, P. Wilson, B. L. Winer, P. Wittich, S. Wolbers, M. Wolter, M. Wong, M. Worcester, R. Worland, S. Worm, T. Wright, J. Wu, X. Wu, F. Würthwein, A. Wyatt, A. Yagil, K. Yamamoto, T. Yamashita, U. K. Yang, W. Yao, R. Yarema, G. P. Yeh, K. Yi, D. Yocum, J. Yoh, P. Yoon, K. Yorita, T. Yoshida, I. Yu, S. Yu, Z. Yu, J. C. Yun, M. Zalokar, L. Zanello, A. Zanetti, I. Zaw, F. Zetti, J. Zhou, T. Zimmerman, A. Zsenei, and S. Zucchelli
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,0103 physical sciences ,Channel (broadcasting) ,010306 general physics ,01 natural sciences - Abstract
We present a measurement of the mass difference m(D-s(+))-m(D+), where both the D-s(+) and D+ are reconstructed in the phipi(+) decay channel. This measurement uses 11.6 pb(-1) of data collected by CDF II using the new displaced-track trigger. The mass difference is found to be m(D-s(+))-m(D+)=99.41+/-0.38(stat)+/-0.21(syst) MeV/c(2).
- Published
- 2003
- Full Text
- View/download PDF
17. The Fermilab D0 master clock system
- Author
-
A. Dyer, M. Rauch, M. Fachin, C. Rotolo, S. Chappa, and C. Needles
- Subjects
Nuclear and High Energy Physics ,Signal generator ,Data acquisition ,Nuclear Energy and Engineering ,Computer science ,Interface (computing) ,Detector ,Electronic engineering ,Static timing analysis ,Master clock ,Electrical and Electronic Engineering ,Synchronization ,Clock synchronization - Abstract
The clock system provides bunch-crossing-related timing signals to various detector subsystems. Accelerator synchronization and monitoring as well as timing signal generation and distribution are discussed. The system was built using three module types implemented in Eurostandard hardware with a VME communications interface. The first two types of modules were used to facilitate synchronization with the accelerator and to generate 23 timing signals that were programmable with one RF bucket (18.8-ns) resolution and 1-ns accuracy. Fifty-four modules of the third type were used to distribute the timing signals and two synchronous 53-MHz and 106-MHz clocks to various detector subsystems. >
- Published
- 2002
- Full Text
- View/download PDF
18. Status of the Segment Interconnect, Cable Segment Ancillary Logic, and the Cable Segment Hybrid Driver Projects
- Author
-
S. Chappa, G. Moore, E. Barsotti, J. Urish, C. Swoboda, D. Lesny, G. Goeransson, R. Downing, and C. Rotolo
- Subjects
Nuclear and High Energy Physics ,Engineering ,business.industry ,Path (computing) ,Electrical engineering ,Block diagram ,Nuclear Energy and Engineering ,Parallel processing (DSP implementation) ,Backplane ,Asynchronous communication ,Logic gate ,Control system ,Electrical and Electronic Engineering ,business ,Computer hardware ,Data transmission - Abstract
The FASTBUS Segment Interconnect (SI) provides a communication path between two otherwise independent, asynchronous bus segments. In particular, the Segment Interconnect links a backplane crate segment to a cable segment. All standard FASTBUS address and data transactions can be passed through the SI or any number of SIs and segments in a path. Thus systems of arbitrary connection complexity can be formed, allowing simultaneous independent processing, yet still permitting devices associated with one segment to be accessed from others. The model S1 Segment Interconnect and the Cable Segment Ancillary Logic covered in this report comply with all the mandatory features stated in the FASTBUS specification document DOE/ER-0189. A block diagram of the SI is shown.
- Published
- 1985
- Full Text
- View/download PDF
19. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm.
- Author
-
Aguillard DP, Albahri T, Allspach D, Anisenkov A, Badgley K, Baeßler S, Bailey I, Bailey L, Baranov VA, Barlas-Yucel E, Barrett T, Barzi E, Bedeschi F, Berz M, Bhattacharya M, Binney HP, Bloom P, Bono J, Bottalico E, Bowcock T, Braun S, Bressler M, Cantatore G, Carey RM, Casey BCK, Cauz D, Chakraborty R, Chapelain A, Chappa S, Charity S, Chen C, Cheng M, Chislett R, Chu Z, Chupp TE, Claessens C, Convery ME, Corrodi S, Cotrozzi L, Crnkovic JD, Dabagov S, Debevec PT, Di Falco S, Di Sciascio G, Drendel B, Driutti A, Duginov VN, Eads M, Edmonds A, Esquivel J, Farooq M, Fatemi R, Ferrari C, Fertl M, Fienberg AT, Fioretti A, Flay D, Foster SB, Friedsam H, Froemming NS, Gabbanini C, Gaines I, Galati MD, Ganguly S, Garcia A, George J, Gibbons LK, Gioiosa A, Giovanetti KL, Girotti P, Gohn W, Goodenough L, Gorringe T, Grange J, Grant S, Gray F, Haciomeroglu S, Halewood-Leagas T, Hampai D, Han F, Hempstead J, Hertzog DW, Hesketh G, Hess E, Hibbert A, Hodge Z, Hong KW, Hong R, Hu T, Hu Y, Iacovacci M, Incagli M, Kammel P, Kargiantoulakis M, Karuza M, Kaspar J, Kawall D, Kelton L, Keshavarzi A, Kessler DS, Khaw KS, Khechadoorian Z, Khomutov NV, Kiburg B, Kiburg M, Kim O, Kinnaird N, Kraegeloh E, Krylov VA, Kuchinskiy NA, Labe KR, LaBounty J, Lancaster M, Lee S, Li B, Li D, Li L, Logashenko I, Lorente Campos A, Lu Z, Lucà A, Lukicov G, Lusiani A, Lyon AL, MacCoy B, Madrak R, Makino K, Mastroianni S, Miller JP, Miozzi S, Mitra B, Morgan JP, Morse WM, Mott J, Nath A, Ng JK, Nguyen H, Oksuzian Y, Omarov Z, Osofsky R, Park S, Pauletta G, Piacentino GM, Pilato RN, Pitts KT, Plaster B, Počanić D, Pohlman N, Polly CC, Price J, Quinn B, Qureshi MUH, Ramachandran S, Ramberg E, Reimann R, Roberts BL, Rubin DL, Santi L, Schlesier C, Schreckenberger A, Semertzidis YK, Shemyakin D, Sorbara M, Stöckinger D, Stapleton J, Still D, Stoughton C, Stratakis D, Swanson HE, Sweetmore G, Sweigart DA, Syphers MJ, Tarazona DA, Teubner T, Tewsley-Booth AE, Tishchenko V, Tran NH, Turner W, Valetov E, Vasilkova D, Venanzoni G, Volnykh VP, Walton T, Weisskopf A, Welty-Rieger L, Winter P, Wu Y, Yu B, Yucel M, Zeng Y, and Zhang C
- Abstract
We present a new measurement of the positive muon magnetic anomaly, a_{μ}≡(g_{μ}-2)/2, from the Fermilab Muon g-2 Experiment using data collected in 2019 and 2020. We have analyzed more than 4 times the number of positrons from muon decay than in our previous result from 2018 data. The systematic error is reduced by more than a factor of 2 due to better running conditions, a more stable beam, and improved knowledge of the magnetic field weighted by the muon distribution, ω[over ˜]_{p}^{'}, and of the anomalous precession frequency corrected for beam dynamics effects, ω_{a}. From the ratio ω_{a}/ω[over ˜]_{p}^{'}, together with precisely determined external parameters, we determine a_{μ}=116 592 057(25)×10^{-11} (0.21 ppm). Combining this result with our previous result from the 2018 data, we obtain a_{μ}(FNAL)=116 592 055(24)×10^{-11} (0.20 ppm). The new experimental world average is a_{μ}(exp)=116 592 059(22)×10^{-11} (0.19 ppm), which represents a factor of 2 improvement in precision.
- Published
- 2023
- Full Text
- View/download PDF
20. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm.
- Author
-
Abi B, Albahri T, Al-Kilani S, Allspach D, Alonzi LP, Anastasi A, Anisenkov A, Azfar F, Badgley K, Baeßler S, Bailey I, Baranov VA, Barlas-Yucel E, Barrett T, Barzi E, Basti A, Bedeschi F, Behnke A, Berz M, Bhattacharya M, Binney HP, Bjorkquist R, Bloom P, Bono J, Bottalico E, Bowcock T, Boyden D, Cantatore G, Carey RM, Carroll J, Casey BCK, Cauz D, Ceravolo S, Chakraborty R, Chang SP, Chapelain A, Chappa S, Charity S, Chislett R, Choi J, Chu Z, Chupp TE, Convery ME, Conway A, Corradi G, Corrodi S, Cotrozzi L, Crnkovic JD, Dabagov S, De Lurgio PM, Debevec PT, Di Falco S, Di Meo P, Di Sciascio G, Di Stefano R, Drendel B, Driutti A, Duginov VN, Eads M, Eggert N, Epps A, Esquivel J, Farooq M, Fatemi R, Ferrari C, Fertl M, Fiedler A, Fienberg AT, Fioretti A, Flay D, Foster SB, Friedsam H, Frlež E, Froemming NS, Fry J, Fu C, Gabbanini C, Galati MD, Ganguly S, Garcia A, Gastler DE, George J, Gibbons LK, Gioiosa A, Giovanetti KL, Girotti P, Gohn W, Gorringe T, Grange J, Grant S, Gray F, Haciomeroglu S, Hahn D, Halewood-Leagas T, Hampai D, Han F, Hazen E, Hempstead J, Henry S, Herrod AT, Hertzog DW, Hesketh G, Hibbert A, Hodge Z, Holzbauer JL, Hong KW, Hong R, Iacovacci M, Incagli M, Johnstone C, Johnstone JA, Kammel P, Kargiantoulakis M, Karuza M, Kaspar J, Kawall D, Kelton L, Keshavarzi A, Kessler D, Khaw KS, Khechadoorian Z, Khomutov NV, Kiburg B, Kiburg M, Kim O, Kim SC, Kim YI, King B, Kinnaird N, Korostelev M, Kourbanis I, Kraegeloh E, Krylov VA, Kuchibhotla A, Kuchinskiy NA, Labe KR, LaBounty J, Lancaster M, Lee MJ, Lee S, Leo S, Li B, Li D, Li L, Logashenko I, Lorente Campos A, Lucà A, Lukicov G, Luo G, Lusiani A, Lyon AL, MacCoy B, Madrak R, Makino K, Marignetti F, Mastroianni S, Maxfield S, McEvoy M, Merritt W, Mikhailichenko AA, Miller JP, Miozzi S, Morgan JP, Morse WM, Mott J, Motuk E, Nath A, Newton D, Nguyen H, Oberling M, Osofsky R, Ostiguy JF, Park S, Pauletta G, Piacentino GM, Pilato RN, Pitts KT, Plaster B, Počanić D, Pohlman N, Polly CC, Popovic M, Price J, Quinn B, Raha N, Ramachandran S, Ramberg E, Rider NT, Ritchie JL, Roberts BL, Rubin DL, Santi L, Sathyan D, Schellman H, Schlesier C, Schreckenberger A, Semertzidis YK, Shatunov YM, Shemyakin D, Shenk M, Sim D, Smith MW, Smith A, Soha AK, Sorbara M, Stöckinger D, Stapleton J, Still D, Stoughton C, Stratakis D, Strohman C, Stuttard T, Swanson HE, Sweetmore G, Sweigart DA, Syphers MJ, Tarazona DA, Teubner T, Tewsley-Booth AE, Thomson K, Tishchenko V, Tran NH, Turner W, Valetov E, Vasilkova D, Venanzoni G, Volnykh VP, Walton T, Warren M, Weisskopf A, Welty-Rieger L, Whitley M, Winter P, Wolski A, Wormald M, Wu W, and Yoshikawa C
- Abstract
We present the first results of the Fermilab National Accelerator Laboratory (FNAL) Muon g-2 Experiment for the positive muon magnetic anomaly a_{μ}≡(g_{μ}-2)/2. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency ω_{a} between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ω[over ˜]_{p}^{'} in a spherical water sample at 34.7 °C. The ratio ω_{a}/ω[over ˜]_{p}^{'}, together with known fundamental constants, determines a_{μ}(FNAL)=116 592 040(54)×10^{-11} (0.46 ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both μ^{+} and μ^{-}, the new experimental average of a_{μ}(Exp)=116 592 061(41)×10^{-11} (0.35 ppm) increases the tension between experiment and theory to 4.2 standard deviations.
- Published
- 2021
- Full Text
- View/download PDF
21. Change in the Affinity of Ethylene Glycol Methacrylate Phosphate Monomer and Its Polymer Anchored on a Graphene Oxide Platform toward Uranium(VI) and Plutonium(IV) Ions.
- Author
-
Chappa S, Singha Deb AK, Ali SM, Debnath AK, Aswal DK, and Pandey AK
- Abstract
The complexation behavior of the carbonyl and phosphoryl ligating groups bearing ethylene glycol methacrylate phosphate (EGMP) monomer and its polymer fixed on a graphene oxide (GO) platform was studied to understand the coordination ability of segregated EGMP units and polymer chains toward UO2(2+) and Pu(4+) ions. The cross-linked poly(EGMP) gel and EGMP dissolved in solution have a similar affinity toward these ions. UV-initiator induced polymerization was used to graft poly(EGMP) on the GO platform utilizing a double bond of EGMP covalently fixed on it. X-ray photoelectron spectroscopy (XPS) of the GO and GO-EGMP was done to confirm covalent attachment of the EGMP via a -C-O-P- link between GO and EGMP. The extent of poly(EGMP) grafting on GO by thermal analyses was found to be 5.88 wt %. The EGMP units fixed on the graphene oxide platform exhibited a remarkable selectivity toward Pu(4+) ions at high HNO3 conc. where coordination is a dominant mode involved in the sorption of ions. The ratio of distribution coefficients of Pu(IV) to U(VI) (DPu(IV)/DU(VI)) followed a trend as cross-linked poly(EGMP) (0.95) < EGMP in solvent methyl isobutyl ketone (1.3) < GO-poly(EGMP) (25) < GO-EGMP (181); the DPu(IV)/DU(VI) values are given in parentheses. The density functional theory computations have been performed for the complexation of UO2(2+) and Pu(4+) ions with the EGMP molecule anchored on GO in the presence of nitrate ions. This computational modeling suggested that Pu(4+) ion formed a strong coordination complex with phosphoryl and carbonyl ligating groups of the GO-EGMP as compared to UO2(2+) ions. Thus, the nonselective EGMP becomes highly selective to Pu(IV) ions when it interacts as a single unit fixed on a GO platform.
- Published
- 2016
- Full Text
- View/download PDF
22. Boomer ready initiative: identification of wellness needs.
- Author
-
Chappa S, Chao S, and Edelstein S
- Subjects
- Adult, Dietary Supplements statistics & numerical data, Educational Status, Employment, Exercise, Family Characteristics, Health Education statistics & numerical data, Health Education trends, Health Status, Humans, Income, Insurance, Health classification, Mass Screening economics, Mass Screening statistics & numerical data, Middle Aged, Population Dynamics, United States, Health Promotion standards, Health Services Needs and Demand trends, Nutritional Sciences education
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.