11 results on '"Sánchez de la Vega G"'
Search Results
2. Conservation genomics of the wild pumpkin Cucurbita radicans in Central Mexico: The influence of a changing environment on the genetic diversity and differentiation of a rare species.
- Author
-
Gasca-Pineda J, Monterrubio B, Sánchez-de la Vega G, Aguirre-Planter E, Lira-Saade R, and Eguiarte LE
- Subjects
- Mexico, Conservation of Natural Resources, Polymorphism, Single Nucleotide, Genome, Plant, Genotype, Genomics, Ecosystem, Climate Change, Environment, Cucurbita genetics, Genetic Variation, Endangered Species
- Abstract
The genetic diversity found in natural populations is the result of the evolutionary forces in response to historical and contemporary factors. The environmental characteristics and geological history of Mexico promoted the evolution and diversification of plant species, including wild relatives of crops such as the wild pumpkins (Cucurbita). Wild pumpkin species are found in a variety of habitats, evidencing their capability to adapt to different environments. Despite the potential value of wild Cucurbita as a genetic reservoir for crops, there is a lack of studies on their genetic diversity. Cucurbita radicans is an endangered species threatened by habitat destruction leading to low densities in small and isolated populations. Here, we analyze Genotype by Sequencing genomic data of the wild pumpkin C. radicans to evaluate the influence of factors like isolation, demographic history, and the environment shaping the amount and distribution of its genetic variation. We analyzed 91 individuals from 14 localities along its reported distribution. We obtained 5,107 SNPs and found medium-high levels of genetic diversity and genetic structure distributed in four main geographic areas with different environmental conditions. Moreover, we found signals of demographic growth related to historical climatic shifts. Outlier loci analysis showed significant association with the environment, principally with precipitation variables. Also, the outlier loci displayed differential changes in their frequencies in response to future global climate change scenarios. Using the results of genetic structure, outlier loci and multivariate analyses of the environmental conditions, we propose priority localities for conservation that encompass most of the genetic diversity of C. radicans., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. The genome sequence of the endemic Mexican common mustached Bat, Pteronotus mexicanus. Miller, 1902 [Mormoopidae; Pteronotus].
- Author
-
Sánchez-de la Vega G, Gasca-Pineda J, Martínez-Cárdenas A, Vernes SC, Teeling EC, Mai M, Aguirre-Planter E, Eguiarte LE, Phillips CD, and Ortega J
- Subjects
- Animals, Mexico, Male, Sequence Analysis, DNA methods, Chiroptera genetics, Chiroptera classification, Genome
- Abstract
We describe here the first characterization of the genome of the bat Pteronotus mexicanus, an endemic species of Mexico, as part of the Mexican Bat Genome Project which focuses on the characterization and assembly of the genomes of endemic bats in Mexico. The genome was assembled from a liver tissue sample of an adult male from Jalisco, Mexico provided by the Texas Tech University Museum tissue collection. The assembled genome size was 1.9 Gb. The assembly of the genome was fitted in a framework of 110,533 scaffolds and 1,659,535 contigs. The ecological importance of bats such as P. mexicanus, and their diverse ecological roles, underscores the value of having complete genomes in addressing information gaps and facing challenges regarding their function in ecosystems and their conservation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Population Genomics of Domesticated Cucurbita ficifolia Reveals a Recent Bottleneck and Low Gene Flow with Wild Relatives.
- Author
-
Aguirre-Dugua X, Barrera-Redondo J, Gasca-Pineda J, Vázquez-Lobo A, López-Camacho A, Sánchez-de la Vega G, Castellanos-Morales G, Scheinvar E, Aguirre-Planter E, Lira-Saade R, and Eguiarte LE
- Abstract
Cucurbita ficifolia is a squash grown from Mexico to Bolivia. Its ancestor is unknown, but it has limited compatibility with wild xerophytic Cucurbita from Mexico's highlands. We assembled the reference genome of C. ficifolia and assessed the genetic diversity and historical demography of the crop in Mexico with 2524 nuclear single nucleotide polymorphisms (SNPs). We also evaluated the gene flow between C. ficifolia and xerophytic taxa with 6292 nuclear and 440 plastome SNPs from 142 individuals sampled in 58 sites across their area of sympatry. Demographic modelling of C. ficifolia supports an eight-fold decrease in effective population size at about 2409 generations ago (95% CI = 464-12,393), whereas plastome SNPs support the expansion of maternal lineages ca. 1906-3635 years ago. Our results suggest a recent spread of C. ficifolia in Mexico, with high genetic diversity ( π = 0.225, F
ST = 0.074) and inbreeding ( FIS = 0.233). Coalescent models suggest low rates of gene flow with C. radicans and C. pedatifolia , whereas ABBA-BABA tests did not detect significant gene flow with wild taxa. Despite the ecogeographic proximity of C. ficifolia and its relatives, this crop persists as a highly isolated lineage of puzzling origin.- Published
- 2023
- Full Text
- View/download PDF
5. The domestication of Cucurbita argyrosperma as revealed by the genome of its wild relative.
- Author
-
Barrera-Redondo J, Sánchez-de la Vega G, Aguirre-Liguori JA, Castellanos-Morales G, Gutiérrez-Guerrero YT, Aguirre-Dugua X, Aguirre-Planter E, Tenaillon MI, Lira-Saade R, and Eguiarte LE
- Abstract
Despite their economic importance and well-characterized domestication syndrome, the genomic impact of domestication and the identification of variants underlying the domestication traits in Cucurbita species (pumpkins and squashes) is currently lacking. Cucurbita argyrosperma, also known as cushaw pumpkin or silver-seed gourd, is a Mexican crop consumed primarily for its seeds rather than fruit flesh. This makes it a good model to study Cucurbita domestication, as seeds were an essential component of early Mesoamerican diet and likely the first targets of human-guided selection in pumpkins and squashes. We obtained population-level data using tunable Genotype by Sequencing libraries for 192 individuals of the wild and domesticated subspecies of C. argyrosperma across Mexico. We also assembled the first high-quality wild Cucurbita genome. Comparative genomic analyses revealed several structural variants and presence/absence of genes related to domestication. Our results indicate a monophyletic origin of this domesticated crop in the lowlands of Jalisco. We found evidence of gene flow between the domesticated and wild subspecies, which likely alleviated the effects of the domestication bottleneck. We uncovered candidate domestication genes that are involved in the regulation of growth hormones, plant defense mechanisms, seed development, and germination. The presence of shared selected alleles with the closely related species Cucurbita moschata suggests domestication-related introgression between both taxa.
- Published
- 2021
- Full Text
- View/download PDF
6. Phylogeographic and population genetic analyses of Cucurbita moschata reveal divergence of two mitochondrial lineages linked to an elevational gradient.
- Author
-
Hernández-Rosales HS, Castellanos-Morales G, Sánchez-de la Vega G, Aguirre-Planter E, Montes-Hernández S, Lira-Saade R, and Eguiarte LE
- Subjects
- DNA, Mitochondrial, Genetic Variation, Haplotypes, Mexico, Phylogeny, Phylogeography, Cucurbita
- Abstract
Premise: Domestication usually involves local adaptation to environmental conditions. Cucurbita species are a promising model for studying these processes. Cucurbita moschata is the third major crop in the genus because of its economic value and because it displays high landrace diversity, but research about its genetic diversity, population structure, and phylogeography is limited. We aimed at understanding how geography and elevation shape the distribution of genetic diversity in C. moschata landraces in Mexico., Methods: We sampled fruits from 24 localities throughout Mexico. We assessed 11 nuclear microsatellite loci, one mtDNA region, and three cpDNA regions but found no variation in cpDNA. We explored genetic structure with cluster analysis, and phylogeographic relationships with haplotype network analysis., Results: Mitochondrial genetic diversity was high, and nuclear genetic differentiation among localities was intermediate compared to other domesticated Cucurbita. We found high levels of inbreeding. We recovered two mitochondrial lineages: highland (associated with the Trans-Mexican Volcanic Belt) and lowland. Nuclear microsatellites show that localities from the Yucatan Peninsula constitute a well-differentiated group., Conclusions: Mexico is an area of high diversity for C. moschata, and these landraces represent important plant genetic resources. In Mexico this species is characterized by divergence processes linked to an elevational gradient, which could be related to adaptation and may be of value for applications in agriculture. The Isthmus of Tehuantepec may be a partial barrier to gene flow. Morphological variation, agricultural management, and cultural differences may be related to this pattern of genetic structure, but further studies are needed., (© 2020 Botanical Society of America.)
- Published
- 2020
- Full Text
- View/download PDF
7. Evolutionary Dynamics of Transferred Sequences Between Organellar Genomes in Cucurbita.
- Author
-
Aguirre-Dugua X, Castellanos-Morales G, Paredes-Torres LM, Hernández-Rosales HS, Barrera-Redondo J, Sánchez-de la Vega G, Tapia-Aguirre F, Ruiz-Mondragón KY, Scheinvar E, Hernández P, Aguirre-Planter E, Montes-Hernández S, Lira-Saade R, and Eguiarte LE
- Subjects
- Biological Evolution, Evolution, Molecular, Genes, Plant genetics, Genome, Plant genetics, Mitochondria genetics, Phylogeny, Sequence Analysis, DNA, Cucurbita genetics, Genome, Mitochondrial genetics, Plastids genetics
- Abstract
Twenty-nine DNA regions of plastid origin have been previously identified in the mitochondrial genome of Cucurbita pepo (pumpkin; Cucurbitaceae). Four of these regions harbor homolog sequences of rbcL, matK, rpl20-rps12 and trnL-trnF, which are widely used as molecular markers for phylogenetic and phylogeographic studies. We extracted the mitochondrial copies of these regions based on the mitochondrial genome of C. pepo and, along with published sequences for these plastome markers from 13 Cucurbita taxa, we performed phylogenetic molecular analyses to identify inter-organellar transfer events in the Cucurbita phylogeny and changes in their nucleotide substitution rates. Phylogenetic reconstruction and tree selection tests suggest that rpl20 and rbcL mitochondrial paralogs arose before Cucurbita diversification whereas the mitochondrial matK and trnL-trnF paralogs emerged most probably later, in the mesophytic Cucurbita clade. Nucleotide substitution rates increased one order of magnitude in all the mitochondrial paralogs compared to their original plastid sequences. Additionally, mitochondrial trnL-trnF sequences obtained by PCR from nine Cucurbita taxa revealed higher nucleotide diversity in the mitochondrial than in the plastid copies, likely related to the higher nucleotide substitution rates in the mitochondrial region and loss of functional constraints in its tRNA genes.
- Published
- 2019
- Full Text
- View/download PDF
8. Tracing back the origin of pumpkins (Cucurbita pepo ssp. pepo L.) in Mexico.
- Author
-
Castellanos-Morales G, Ruiz-Mondragón KY, Hernández-Rosales HS, Sánchez-de la Vega G, Gámez N, Aguirre-Planter E, Montes-Hernández S, Lira-Saade R, and Eguiarte LE
- Subjects
- Cell Nucleus genetics, Chloroplasts genetics, Mexico, Phylogeography, Cucurbita genetics, Domestication, Genetic Variation, Microsatellite Repeats genetics
- Abstract
Cucurbita pepo is an economically important crop, which consists of cultivated C. pepo ssp. pepo, and two wild taxa (C. pepo ssp. fraterna and C. pepo ssp. ovifera). We aimed at understanding the domestication and the diversity of C. pepo in Mexico. We used two chloroplast regions and nine nuclear microsatellite loci to assess the levels of genetic variation and structure for C. pepo ssp. pepo's landraces sampled in 13 locations in Mexico, five improved varieties, one C. pepo ssp. fraterna population and ornamental C. pepo ssp. ovifera. We tested four hypotheses regarding the origin of C. pepo ssp. pepo's ancestor through approximate Bayesian computation: C. pepo ssp. ovifera as the ancestor; C. pepo ssp. fraterna as the ancestor; an unknown extinct lineage as the ancestor; and C. pepo ssp. pepo as hybrid from C. pepo ssp. ovifera and C. pepo ssp. fraterna ancestors. Cucurbita pepo ssp. pepo showed high genetic variation and low genetic differentiation. Cucurbita pepo ssp. fraterna and C. pepo ssp. pepo shared two chloroplast haplotypes. The three subspecies were well differentiated for microsatellite loci. Cucurbita pepo ssp. fraterna was probably C. pepo ssp. pepo's wild ancestor, but subsequent hybridization between taxa complicate defining C. pepo ssp. pepo's ancestor.
- Published
- 2019
- Full Text
- View/download PDF
9. The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita.
- Author
-
Barrera-Redondo J, Ibarra-Laclette E, Vázquez-Lobo A, Gutiérrez-Guerrero YT, Sánchez de la Vega G, Piñero D, Montes-Hernández S, Lira-Saade R, and Eguiarte LE
- Subjects
- Evolution, Molecular, Kinetics, Phylogeny, Cucurbita genetics, Genes, Plant genetics, Plant Proteins genetics, RNA, Long Noncoding genetics
- Abstract
Whole-genome duplications are an important source of evolutionary novelties that change the mode and tempo at which genetic elements evolve within a genome. The Cucurbita genus experienced a whole-genome duplication around 30 million years ago, although the evolutionary dynamics of the coding and noncoding genes in this genus have not yet been scrutinized. Here, we analyzed the genomes of four Cucurbita species, including a newly assembled genome of Cucurbita argyrosperma, and compared the gene contents of these species with those of five other members of the Cucurbitaceae family to assess the evolutionary dynamics of protein-coding and long intergenic noncoding RNA (lincRNA) genes after the genome duplication. We report that Cucurbita genomes have a higher protein-coding gene birth-death rate compared with the genomes of the other members of the Cucurbitaceae family. C. argyrosperma gene families associated with pollination and transmembrane transport had significantly faster evolutionary rates. lincRNA families showed high levels of gene turnover throughout the phylogeny, and 67.7% of the lincRNA families in Cucurbita showed evidence of birth from the neofunctionalization of previously existing protein-coding genes. Collectively, our results suggest that the whole-genome duplication in Cucurbita resulted in faster rates of gene family evolution through the neofunctionalization of duplicated genes., (Copyright © 2019 The Author. Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
10. Historical biogeography and phylogeny of Cucurbita: Insights from ancestral area reconstruction and niche evolution.
- Author
-
Castellanos-Morales G, Paredes-Torres LM, Gámez N, Hernández-Rosales HS, Sánchez-de la Vega G, Barrera-Redondo J, Aguirre-Planter E, Vázquez-Lobo A, Montes-Hernández S, Lira-Saade R, and Eguiarte LE
- Subjects
- Biodiversity, Chloroplasts genetics, Principal Component Analysis, Time Factors, Cucurbita classification, Ecosystem, Phylogeny, Phylogeography
- Abstract
Knowledge of the role of geographical and ecological events associated to the divergence process of wild progenitors is important to understand the process of domestication. We analysed the temporal, spatial and ecological patterns of the diversification of Cucurbita, an American genus of worldwide economic importance. We conducted a phylogenetic analysis based on six chloroplast regions (5907 bp) to estimate diversification rates and dates of divergence between taxa. This is the first phylogenetic study to include C. radicans, a wild species that is endemic to the Trans Mexican Volcanic Belt. We performed analysis of ancestral area reconstruction and paleoreconstructions of species distribution models to understand shifts in wild species ranges. We used principal component analysis (PCA) and multivariate analysis of variance (MANOVA) to evaluate the environmental differentiation among taxa within each clade. The phylogenetic analyses showed good support for at least six independent domestication events in Cucurbita. The genus Cucurbita showed a time of divergence of 11.24 Ma (6.88-17 Ma 95% HDP), and the dates of divergence between taxa within each group ranged from 0.35 to 6.58 Ma, being the divergence between C. lundelliana and C. okeechobeensis subsp. martinezii the most recent. The diversification rate of the genus was constant through time. The diversification of most wild taxa occurred during the Pleistocene, and its date of divergence is concordant with the dates of divergence reported for specialized bees of the genera Xenoglossa and Peponapis, suggesting a process of coevolution between Cucurbita and their main pollinators that should be further investigated. Tests of environmental differentiation together with ancestral area reconstruction and species distribution models past projections suggest that divergence was promoted by the onset of geographic barriers and secondary range contraction and by expansion related to glacial-interglacial cycles., (Copyright © 2018 Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
11. Genetic Resources in the "Calabaza Pipiana" Squash ( Cucurbita argyrosperma ) in Mexico: Genetic Diversity, Genetic Differentiation and Distribution Models.
- Author
-
Sánchez-de la Vega G, Castellanos-Morales G, Gámez N, Hernández-Rosales HS, Vázquez-Lobo A, Aguirre-Planter E, Jaramillo-Correa JP, Montes-Hernández S, Lira-Saade R, and Eguiarte LE
- Abstract
Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma , known in Mexico as calabaza pipiana , and its wild relative C. argyrosperma ssp. sororia . The main aim of this study was to use molecular data (microsatellites) to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia , and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia , in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs) for sororia to identify changes in this wild subspecies' distribution from the Holocene (∼6,000 years ago) to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies ( H
E = 0.428 in sororia , and HE = 0.410 in argyrosperma ). Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation ( FST ) among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango). We detected low levels of gene flow among populations at a regional scale (<0.01), except for the Yucatan Peninsula, and the northern portion of the Pacific Coast. Our analyses suggested that the Isthmus of Tehuantepec is an effective barrier isolating southern populations. Our SDM results indicate that environmental characteristics in the Balsas-Jalisco region, a potential center of domestication, were suitable for the presence of sororia during the Holocene.- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.