26 results on '"Rynkiewicz, M."'
Search Results
2. Cardiopoietic cell therapy for advanced ischemic heart failure : results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial
- Author
-
Bartunek, Jozef, Terzic, Andre, Davison, Beth A, Filippatos, Gerasimos S, Radovanovic, Slavica, Beleslin, Branko, Merkely, Bela, Musialek, Piotr, Wojakowski, Wojciech, Andreka, Peter, Horvath, Ivan G, Katz, Amos, Dolatabadi, Dariouch, El Nakadi, Badih, Arandjelovic, Aleksandra, Edes, Istvan, Seferovic, Petar M, Obradovic, Slobodan, Vanderheyden, Marc, Jagic, Nikola, Petrov, Ivo, Atar, Shaul, Halabi, Majdi, Gelev, Valeri L, Shochat, Michael K, Kasprzak, Jaroslaw D, Sanz Ruiz, Ricardo, Heyndrickx, Guy R, Nyolczas, Noémi, Legrand, Victor, Guédès, Antoine, Heyse, Alex, Moccetti, Tiziano, Fernandez Aviles, Francisco, Jimenez Quevedo, Pilar, Bayes Genis, Antoni, Hernandez Garcia, Jose Maria, Ribichini, Flavio, Gruchala, Marcin, Waldman, Scott A, Teerlink, John R, Gersh, Bernard J, Povsic, Thomas J, Henry, Timothy D, Metra, Marco, Hajjar, Roger J, Tendera, Michal, Behfar, Atta, Alexandre, Bertrand, Seron, Aymeric, Stough, Wendy Gattis, Sherman, Warren, Cotter, Gad, Wijns, W. i. l. l. i. a. m. Collaborators Clinical investigators, Dens, sites Belgium: Ziekenhuis Oost Limburg: J., Dupont, M., Mullens, W., Janssens, M., Dolatabadi, Hoˆpital Civil de Charleroi: D., De Bruyne, Y., Lalmand, J., Dubois, P., El Nakadi, B., Aminian, A., De Vuyst, E., Gurnet, P., Gujic, M., Blankoff, I., Guedes, CHU Mont Godinne UCL: A., Gabriel, L., Seldrum, S., Doyen, C., Andre´, M., Heyse, AZ Glorieux: A., Van Durme, F., Verschuere, J., Legrand, Domaine Universitaire du Sart Tilman: V., Gach, O., D’Orio, V., Davin, L., Lancellotti, P., Baudoux, E., Ancion, A., Dulgheru, R., Vanderheyden, OLV Ziekenhuis Aalst – Cardiologie: M., Bartunek, J., Wijns, W., Verstreken, S., Penicka, . M., Gelev, P. Meeus Bulgaria: Tokuda Hospital Sofia: V., Zheleva Kichukova, I., Parapunova, R., Melamed, R., Sardovski, S., Radev, O., Yordanov, A., Radinov, A., Nenov, D., Amine, I., Petrov, City Hospital Clinic Cardiology Center: I., Kichukov, K., Nikitasov, L., Stankov, Z., Stoyanov, H., Tasheva Dimitrova, I., Angelova, M., Dimitrov, E., Minchev, M., Garvanski, I., Botev, C., Polomski, P., Alexandrovska University Hospital, Vassilev, Sofia: D., Karamfiloff, K., Tarnovska Kadreva, R., Vladimirova, L., Dimitrov, G., Hadzhiev, E., Tzvetkova, G., Andreka, . M. Atanasova Hungary: Gottsegen Gyo¨ rgy Orszagos Kardiologiai Inte´zet: P., Fontos, G., Fabian, J., Csepregi, A., Uzonyi, G., Gelei, A., Edes, Debreceni Egyetem Orvos e´s Ege´szse´gtudomanyi Centrum Altalanos Orvostudomanyi Kar Kardiologia Inte´zet: I., Balogh, L., Vajda, G., Darago, A., Gergely, S., Fulop, T., Jenei, C., Horvath, Pe´csi Tudomanyegyetem Klinikai Ko¨zpont Szıvgyogyaszati Klinika: I., Magyari, B., Nagy, A., Cziraki, A., Faludi, R., Kittka, B., Alizadeh, H., Merkely, Semmelweis Egyetem Varosmajori Szıv e´s Ergyogyaszati Klinika: B., Geller, L., Farkas, P., Szombath, G., Foldes, G., Skopal, J., Kovacs, A., Kosztin, A., Gara, E., Sydo, N., Nyolczas, MH Ege´szse´gu¨gyi Ko¨zpont Kardiologiai Osztaly: N., Kerecsen, G., Korda, A., Kiss, . M., Borsanyi, T., Polgar, B., Muk, B., Sharif, Z. Bari Ireland: HRB Clinical Research Facility: F., Atar, Y. M. Smyth Israel:Western Galilee Hospital: S., Shturman, A., Akria, L., Kilimnik, M., Brezins, M., Halabi, Ziv Medical Center: M., Dally, N., Goldberg, A., Aehab, K., Rosenfeld, I., Levinas, T., Saleem, D., Katz, Barzilai Medical Center: A., Plaev, T., Drogenikov, T., Nemetz, A., Barshay, Y., Jafari, J., Orlov, I., Nazareth Hospital EMMS: M. Omory, N. Kogan Nielsen, Shochat, Hillel Yaffe Medical Center: M., Shotan, A., Frimerman, A., Meisel, S., Asif, A., Sofer, O., Blondheim, D. S., Vazan, A., Metra, L. Arobov Italy: A. O. Spedali Civili di Brescia: M., Bonadei, I., Inama, L., Chiari, E., Lombardi, C., Magatelli, M., Russo, D., Lazzarini, V., Carubelli, V., Vassanelli, AOUI Verona – Borgo Trento Hospital: C., Ribichini, Flavio Luciano, Bergamini, C., Krampera, Mauro, Cicoria, M. A., Zanolla, L., Dalla Mura, D., Gambaro, A., Rossi, A., Pesarini Poland: Jagiellonian University Department of Cardiac, G., Musialek, Vascular Diseases at John Paul II Hospital in Krakow: P., Mazurek, A., Drabik, L., Ka˛dzielski, A., Walter, Z., Dzieciuch Rojek, M., Rubis, P., Plazak, . W., Tekieli, L., Podolec, J., Orczyk, W., Sutor, U., Zmudka, K., Olszowska, M., Podolec, P., Gruchala, Uniwersyteckie Centrum Kliniczne: M., Ciecwierz, D., Mielczarek, M., Burakowski, S., Chmielecki, M., Zielinska, M., Frankiewicz, A., Wdowczyk, J., Stopczynska, I., Bellwon, J., Mosakowska, K., Nadolna, R., Wroblewska, J., Rozmyslowska, M., Rynkiewicz, M., Marciniak, I., Raczak, G., Tarnawska, M., Taszner, M., Kasprzak, Bieganski Hospital: J., Plewka, M., Fiutowska, D., Rechcinski, T., Lipiec, P., Sobczak, M., Weijner Mik, P., Wraga, M., Krecki, R., Markiewicz, M., Haval Qawoq, D., Wojakowski, Gornosla˛skie Centrum Medyczne Sla˛skie j. Akademii Medycznej: W., Ciosek, J., Dworowy, S., Gaszewska Zurek, E., Ochala, A., Cybulski, W., Jadczyk, T., Wanha, W., Parma, Z., Kozlowski, M., Dzierzak, M., Markiewicz Serbia: Clinical Hospital Center Zvezdara, M., Arandjelovic, Cardiology Clinic: A., Sekularac, N., Boljevic, D., Bogdanovic, A., Zivkovic, S., Cvetinovic, N., Loncar, G., Clinical Centre of Serbia, Beleslin, Cardiology Clinic: B., Nedeljkovic, M., Trifunovic, D., Giga, V., Banovic, M., Nedeljkovic, I., Stepanovic, J., Vukcevic, V., Djordjevic Dikic, A., Dobric, M., Obrenovic Kircanski, B., Seferovic, Cardiology Clinic: P., Orlic, D., Tesic, M., Petrovic, O., Milinkovic, I., Simeunovic, D., Jagic, Clinical Center of Kragujevac: N., Tasic, M., Nikolic, D., Miloradovic, V., Djurdjevic, P., Sreckovic, M., Zornic, N., Clinical Hospital Center Bezanijska Kosa, Radovanovic, Cardiology Department: S., Saric, J., Hinic, S., Djokovic, A., Ðordevic, S., Bisenic, V., Markovic, O., Stamenkovic, S., Malenkovic, V., Tresnjak, J., Misic, G., Cotra, D., Tomovic, L., Vuckovic, V., Clinic of Emergency Internal Medicine, Obradovic, Military Medical Academy: S., Jovic, Z., Vukotic, S., Markovic, D., Djenic, N., Ristic Andjelkov, A., Bayes Genis, D. Ljubinka Spain: Hospital Universitario Germans Trias I. Pujol: A., Rodriguez Leor, O., Labata, C., Vallejo, N., Ferrer, E., Batlle, M., Fernandez Aviles, Hospital General Universitario Gregorio Mara~non: F., Sanz Ruiz, R., Casado, A., Loughlin, G., Zatarain, E., Anguita, J., Ferna ndez Santos, M. E., Pascual, C., Bermejo, J., Hernandez Garcia, Hospital Clinico Universitario Virgen de la Victoria: J. M., Jimenez Navarro, M., Dominguez, A., Carrasco, F., Mu~noz, A., Garcia Pinilla, J. M., Ruiz, J., Queipo de Llano, M. P., Hernandez, A., Fernandez, A., Jimenez Quevedo, Hospital Clinico San Carlos: P., Guerra, R., Biagioni, C., Gonzalez, R. A., Gomez deDiego, J. J., Mansson Broberg, L. Perez de Isla Sweden: Karolinska University Hospital: A., Sylve´n, C., Leblanc, K., Winter, R., Blomberg, P., Gunyeli, E., Ruck, A., Silva, C., Fo¨rstedt Switzerland: CardioCentro Ticino, J., Moccetti, Switzerland: T., Rossi, M., Pasotti, E., Petrova, I., Crljenica, C., Monti, C., Murzilli, R., Su¨rder, D., Moccetti, M., Turchetto, L., Locicero, V., Chiumiento, L., Maspoli, S., Mombelli, M., Anesini, A., Biggiogero, M., Ponti, G., Camporini, C., Polledri, S., Hill, G. Dolci United Kingdom: Kings College Hospital: J., Plymen, C., Amin Youssef, G., Mcdonagh, T., Drasar, E., Mijovic, A., Jouhra, F., Mcloman, D., Dworakowski, R., Webb, I., Byrne, J., and Potter, V.
- Subjects
0301 basic medicine ,Male ,Cardiopoiesis ,Cardiovascular disease ,Disease severity ,Marker ,Precision medicine ,Regenerative medicine ,Stem cell ,Target population ,Adult ,Aged ,Double-Blind Method ,Female ,Heart Failure ,Humans ,Mesenchymal Stem Cell Transplantation ,Middle Aged ,Myocardial Ischemia ,Prospective Studies ,Treatment Outcome ,Young Adult ,Cardiology and Cardiovascular Medicine ,Cell- and Tissue-Based Therapy ,mesenchymal stem-cells ,030204 cardiovascular system & hematology ,Cardiorespiratory Medicine and Haematology ,outcomes ,Fast-Track Clinical Research ,Sudden cardiac death ,0302 clinical medicine ,Ischemia ,cardiovascular disease ,Clinical endpoint ,target population ,CHART Program ,Ejection fraction ,bone-marrow ,Heart Failure/Cardiomyopathy ,3. Good health ,Cohort ,Cardiology ,Fast Track ,disease severity ,delivery ,medicine.medical_specialty ,precision medicine ,Clinical Sciences ,regenerative medicine ,03 medical and health sciences ,cardiopoiesis ,Internal medicine ,medicine ,Adverse effect ,marker ,disease ,business.industry ,medicine.disease ,mortality ,Confidence interval ,Clinical trial ,stem cell ,Editor's Choice ,030104 developmental biology ,predictors ,Cardiovascular System & Hematology ,Heart failure ,business - Abstract
Altres ajuts: This work was supported by Celyad, SA (Mont-Saint-Guibert, Belgium). Celyad has received research grants from the Walloon Region (Belgium, DG06 funding). Cardiopoietic cells, produced through cardiogenic conditioning of patients' mesenchymal stem cells, have shown preliminary efficacy. The Congestive Heart Failure Cardiopoietic Regenerative Therapy (CHART-1) trial aimed to validate cardiopoiesis-based biotherapy in a larger heart failure cohort. This multinational, randomized, double-blind, sham-controlled study was conducted in 39 hospitals. Patients with symptomatic ischaemic heart failure on guideline-directed therapy (n = 484) were screened; n = 348 underwent bone marrow harvest and mesenchymal stem cell expansion. Those achieving > 24 million mesenchymal stem cells (n = 315) were randomized to cardiopoietic cells delivered endomyocardially with a retention-enhanced catheter (n = 157) or sham procedure (n = 158). Procedures were performed as randomized in 271 patients (n = 120 cardiopoietic cells, n = 151 sham). The primary efficacy endpoint was a Finkelstein–Schoenfeld hierarchical composite (all-cause mortality, worsening heart failure, Minnesota Living with Heart Failure Questionnaire score, 6-min walk distance, left ventricular end-systolic volume, and ejection fraction) at 39 weeks. The primary outcome was neutral (Mann–Whitney estimator 0.54, 95% confidence interval [CI] 0.47–0.61 [value > 0.5 favours cell treatment], P = 0.27). Exploratory analyses suggested a benefit of cell treatment on the primary composite in patients with baseline left ventricular end-diastolic volume 200–370 mL (60% of patients) (Mann–Whitney estimator 0.61, 95% CI 0.52–0.70, P = 0.015). No difference was observed in serious adverse events. One (0.9%) cardiopoietic cell patient and 9 (5.4%) sham patients experienced aborted or sudden cardiac death. The primary endpoint was neutral, with safety demonstrated across the cohort. Further evaluation of cardiopoietic cell therapy in patients with elevated end-diastolic volume is warranted.
- Published
- 2017
3. Program and abstracts for the 2011 Meeting of the Society for Glycobiology
- Author
-
Hollingsworth, MT, Hart, GW, Paulson, JC, Stansell, E, Canis, K, Huang, IC, Panico, M, Morris, H, Haslam, S, Farzan, M, Dell, A, Desrosiers, R, von Itzstein, M, Matroscovich, M, Luther, KB, Hülsmeier, AJ, Schegg, B, Hennet, T, Nycholat, C, McBride, R, Ekiert, D, Xu, R, Peng, W, Razi, N, Gilbert, M, Wakarchuk, W, Wilson, IA, Gahlay, G, Geisler, C, Aumiller, JJ, Moremen, K, Steel, J, Labaer, J, Jarvis, DL, Drickamer, K, Taylor, M, Nizet, V, Rabinovich, G, Lewis, C, Cobb, B, Kawasaki, N, Rademacher, C, Chen, W, Vela, J, Maricic, I, Crocker, P, Kumar, V, Kronenberg, M, Paulson, J, Glenn, K, Mallinger, A, Wen, H, Srivastava, L, Tundup, S, Harn, D, Menon, AK, Yamaguchi, Y, Mkhikian, H, Grigorian, A, Li, C, Chen, HL, Newton, B, Zhou, RW, Beeton, C, Torossian, S, Tatarian, GG, Lee, SU, Lau, K, Walker, E, Siminovitch, KA, Chandy, KG, Yu, Z, Dennis, JW, Demetriou, M, Pandey, MS, Baggenstoss, BA, Washburn, JL, Weigel, PH, Chen, CI, Keusch, JJ, Klein, D, Hofsteenge, J, Gut, H, Szymanski, C, Feldman, M, Schaffer, C, Gao, Y, Strum, S, Liu, B, Schutzbach, JS, Druzhinina, TN, Utkina, NS, Torgov, VI, Szarek, WA, Wang, L, Brockhausen, I, Hitchen, P, Peyfoon, E, Meyer, B, Albers, SV, Chen, C, Newburg, DS, Jin, C, Dinglasan, RD, Beverley, SM, Guo, H, Novozhilova, N, Hickerson, S, Elnaiem, DE, Sacks, D, Turco, SJ, McKay, D, Castro, E, Takahashi, H, Straus, AH, Stalnaker, SH, Live, D, Boons, GJ, Wells, L, Stuart, R, Aoki, K, Boccuto, L, Zhang, Q, Wang, H, Bartel, F, Fan, X, Saul, R, Chaubey, A, Yang, X, Steet, R, Schwartz, C, Tiemeyer, M, Pierce, M, Kraushaar, DC, Condac, E, Nakato, H, Nishihara, S, Sasaki, N, Hirano, K, Nasirikenari, M, Collins, CC, Lau, JT, Devarapu, SK, Jeyaweerasinkam, S, Albiez, RS, Kiessling, L, Gu, J, Clark, GF, Gagneux, P, Ulm, C, Mahavadi, P, Müller, S, Rinné, S, Geyer, H, Gerardy-Schahn, R, Mühlenhoff, M, Günther, A, Geyer, R, Galuska, SP, Shibata, T, Sugihara, K, Nakayama, J, Fukuda, M, Fukuda, MN, Ishikawa, A, Terao, M, Kimura, A, Kato, A, Katayama, I, Taniguchi, N, Miyoshi, E, Aderem, A, Yoneyama, T, Angata, K, Bao, X, Chanda, S, Lowe, J, Sonon, R, Ishihara, M, Talabnin, K, Wang, Z, Black, I, Naran, R, Heiss, C, Azadi, P, Hurum, D, Rohrer, J, Balland, A, Valliere-Douglass, J, Kodama, P, Mujacic, M, Eakin, C, Brady, L, Wang, WC, Wallace, A, Treuheit, M, Reddy, P, Schuman, B, Fisher, S, Borisova, S, Coates, L, Langan, P, Evans, S, Yang, SJ, Zhang, H, Hizal, DB, Tian, Y, Sarkaria, V, Betenbaugh, M, Lütteke, T, Agravat, S, Cholleti, S, Morris, T, Saltz, J, Song, X, Cummings, R, Smith, D, Hofhine, T, Nishida, C, Mialy, R, Sophie, D, Sebastien, F, Patricia, C, Eric, S, Stephane, H, Mokros, D, Joosten, RP, Dominik, A, Vriend, G, Nguyen, LD, Martinez, J, Hinderlich, S, Reissig, HU, Reutter, W, Fan, H, Saenger, W, Moniot, S, Asada, H, Nakahara, T, Miura, Y, Stevenson, T, Yamazaki, T, De Castro, C, Burr, T, Lanzetta, R, Molinaro, A, Parrilli, M, Sule, S, Gerken, TA, Revpredo, L, Thome, J, Cardenas, G, Almeida, I, Leung, MY, Yan, S, Paschinger, K, Bleuler-Martinez, S, Jantsch, V, Wilson, I, Yoshimura, Y, Adlercreutz, D, Mannerstedt, K, Wakarchuk, WW, Dovichi, NJ, Hindsgaul, O, Palcic, MM, Chandrasekaran, A, Bharadwaj, R, Deng, K, Adams, P, Singh, A, Datta, A, Konasani, V, Imamura, A, Lowry, T, Scaman, C, Zhao, Y, Zhou, YD, Yang, K, Zhang, XL, Leymarie, N, Hartshorn, K, White, M, Cafarella, T, Seaton, B, Rynkiewicz, M, Zaia, J, Acosta-Blanco, I, Ortega-Francisco, S, Dionisio-Vicuña, M, Hernandez-Flores, M, Fuentes-Romero, L, Newburg, D, Soto-Ramirez, LE, Ruiz-Palacios, G, Viveros-Rogel, M, Tong, C, Li, W, Kong, L, Qu, M, Jin, Q, Lukyanov, P, Zhang, W, Chicalovets, I, Molchanova, V, Wu, AM, Liu, JH, Yang, WH, Nussbaum, C, Grewal, PK, Sperandio, M, Marth, JD, Yu, R, Usuki, S, Wu, HC, O'Brien, D, Piskarev, V, Ramadugu, SK, Kashyap, HK, Ghirlanda, G, Margulis, C, Brewer, C, Gomery, K, Müller-Loennies, S, Brooks, CL, Brade, L, Kosma, P, Di Padova, F, Brade, H, Evans, SV, Asakawa, K, Kawakami, K, Kushi, Y, Suzuki, Y, Nozaki, H, Itonori, S, Malik, S, Lebeer, S, Petrova, M, Balzarini, J, Vanderleyden, J, Naito-Matsui, Y, Takematsu, H, Murata, K, Kozutsumi, Y, Subedi, GP, Satoh, T, Hanashima, S, Ikeda, A, Nakada, H, Sato, R, Mizuno, M, Yuasa, N, Fujita-Yamaguchi, Y, Vlahakis, J, Nair, DG, Wang, Y, Allingham, J, Anastassiades, T, Strachan, H, Johnson, D, Orlando, R, Harenberg, J, Haji-Ghassemi, O, Mackenzie, R, Lacerda, T, Toledo, M, Straus, A, Takahashi, HK, Woodrum, B, Ruben, M, O'Keefe, B, Samli, KN, Yang, L, Woods, RJ, Jones, MB, Maxwell, J, Song, EH, Manganiello, M, Chow, YH, Convertine, AJ, Schnapp, LM, Stayton, PS, Ratner, DM, Yegorova, S, Rodriguez, MC, Minond, D, Jiménez-Barbero, J, Calle, L, Ardá, A, Gabius, HJ, André, S, Martinez-Mayorga, K, Yongye, AB, Cudic, M, Ali, MF, Chachadi, VB, Cheng, PW, Kiwamoto, T, Na, HJ, Brummet, M, Finn, MG, Hong, V, Polonskaya, Z, Bovin, NV, Hudson, S, Bochner, B, Gallogly, S, Krüger, A, Hanley, S, Gerlach, J, Hogan, M, Ward, C, Joshi, L, Griffin, M, Demarco, C, Deveny, R, Aggeler, R, Hart, C, Nyberg, T, Agnew, B, Akçay, G, Ramphal, J, Calabretta, P, Nguyen, AD, Kumar, K, Eggers, D, Terrill, R, d'Alarcao, M, Ito, Y, Vela, JL, Matsumura, F, Hoshino, H, Lee, H, Kobayashi, M, Borén, T, Jin, R, Seeberger, PH, Pitteloud, JP, Cudic, P, Von Muhlinen, N, Thurston, T, von Muhlinen, N, Wandel, M, Akutsu, M, Foeglein, AÁ, Komander, D, Randow, F, Maupin, K, Liden, D, Haab, B, Dam, TK, Brown, RK, Wiltzius, M, Jokinen, M, Andre, S, Kaltner, H, Bullen, J, Balsbaugh, J, Neumann, D, Hardie, G, Shabanowitz, J, Hunt, D, Hart, G, Mi, R, Ding, X, Van Die, I, Chapman, AB, Cummings, RD, Ju, T, Aryal, R, Ashley, J, Feng, X, Hanover, JA, Wang, P, Keembiyehetty, C, Ghosh, S, Bond, M, Krause, M, Love, D, Radhakrishnan, P, Grandgenet, PM, Mohr, AM, Bunt, SK, Yu, F, Hollingsworth, MA, Ethen, C, Machacek, M, Prather, B, Wu, Z, Kotu, V, Zhao, P, Zhang, D, van der Wel, H, Johnson, JM, West, CM, Abdulkhalek, S, Amith, SR, Jayanth, P, Guo, M, Szewczuk, M, Ohtsubo, K, Chen, M, Olefsky, J, Marth, J, Zapater, J, Foley, D, Colley, K, Kawashima, N, Fujitani, N, Tsuji, D, Itoh, K, Shinohara, Y, Nakayama, K, Zhang, L, Ten Hagen, K, Koren, S, Yehezkel, G, Cohen, L, Kliger, A, Khalaila, I, Finkelstein, E, Parker, R, Kohler, J, Sacoman, J, Badish, L, Hollingsworth, R, Tian, E, Hoffman, M, Hou, X, Tashima, Y, Stanley, P, Kizuka, Y, Kitazume, S, Yoshida, M, Kunze, A, Nasir, W, Bally, M, Hook, F, Larson, G, Mahan, A, Alter, G, Zeidan, Q, Copeland, R, Pokrovskaya, I, Willett, R, Smith, R, Morelle, W, Kudlyk, T, Lupashin, V, Vasudevan, D, Takeuchi, H, Majerus, E, Haltiwanger, RS, Boufala, S, Lee, YA, Min, D, Kim, SH, Shin, MH, Gesteira, T, Pol-Fachin, L, Coulson-Thomas, VJ, Verli, H, Nader, H, Liu, X, Yang, P, Thoden, J, Holden, H, Tytgat, H, Sánchez-Rodríguez, A, Schoofs, G, Verhoeven, T, De Keersmaecker, S, Marchal, K, Ventura, V, Sarah, N, Joann, P, Ding, Y, Jarrell, K, Cook, MC, Gibeault, S, Filippenko, V, Ye, Q, Wang, J, Kunkel, JP, Arteaga-Cabello, FJ, Arciniega-Fuentes, MT, McCoy, J, Ruiz-Palacios, GM, Francoleon, D, Loo, RO, Loo, J, Ytterberg, AJ, Kim, U, Gunsalus, R, Costello, C, Soares, R, Assis, R, Ibraim, I, Noronha, F, De Godoy, AP, Bale, MS, Xu, Y, Brown, K, Blader, I, West, C, Chen, S, Ye, X, Xue, C, Li, G, Yu, G, Yin, L, Chai, W, Gutierrez-Magdaleno, G, Tan, C, Wu, D, Li, Q, Hu, H, Ye, M, Liu, D, Mink, W, Kaese, P, Fujiwara, M, Uchimura, K, Sakai, Y, Nakada, T, Mabashi-Asazuma, H, Toth, AM, Scott, DW, Chacko, BK, Patel, RP, Batista, F, Mercer, N, Ramakrishnan, B, Pasek, M, Boeggeman, E, Verdi, L, Qasba, PK, Tran, D, Lim, JM, Liu, M, Mo, KF, Kirby, P, Yu, X, Lin, C, Costello, CE, Akama, TO, Nakamura, T, Huang, Y, Shi, X, Han, L, Yu, SH, Zhang, Z, Knappe, S, Till, S, Nadia, I, Catarello, J, Quinn, C, Julia, N, Ray, J, Tran, T, Scheiflinger, F, Szabo, C, Dockal, M, Niimi, S, Hosono, T, Michikawa, M, Kannagi, R, Takashima, S, Amano, J, Nakamura, N, Kaneda, E, Nakayama, Y, Kurosaka, A, Takada, W, Matsushita, T, Hinou, H, Nishimura, S, Igarashi, K, Abe, H, Mothere, M, Leonhard-Melief, C, Johnson, H, Nagy, T, Nairn, A, Rosa, MD, Porterfield, M, Kulik, M, Dalton, S, Pierce, JM, Hansen, SF, McAndrew, R, Degiovanni, A, McInerney, P, Pereira, JH, Hadi, M, Scheller, HV, Barb, A, Prestegard, J, Zhang, S, Jiang, J, Tharmalingam, T, Pluta, K, McGettigan, P, Gough, R, Struwe, W, Fitzpatrick, E, Gallagher, ME, Rudd, PM, Karlsson, NG, Carrington, SD, Katoh, T, Panin, V, Gelfenbeyn, K, Freire-de-Lima, L, Handa, K, Hakomori, SI, Bielik, AM, McLeod, E, Landry, D, Mendoza, V, Guthrie, EP, Mao, Y, Wang, X, Moremen, KW, Meng, L, Ramiah, AP, Gao, Z, Johnson, R, Xiang, Y, Rosa, MDEL, Wu, SC, Gilbert, HJ, Karaveg, K, Chen, L, Wang, BC, Mast, S, Sun, B, Fulton, S, Kimzey, M, Pourkaveh, S, Minalla, A, Haxo, T, Wegstein, J, Murray, AK, Nichols, RL, Giannini, S, Grozovsky, R, Begonja, AJ, Hoffmeister, KM, Suzuki-Anekoji, M, Suzuki, A, Yu, SY, Khoo, KH, van Alphen, L, Fodor, C, Wenzel, C, Ashmus, R, Miller, W, Stahl, M, Stintzi, A, Lowary, T, Wiederschain, G, Saba, J, Zumwalt, A, Meitei, NS, Apte, A, Viner, R, Gandy, M, Debowski, A, Stubbs, K, Witzenman, H, Pandey, D, Repnikova, E, Nakamura, M, Islam, R, Kc, N, Caster, C, Chaubard, JL, Krishnamurthy, C, Hsieh-Wilson, L, Pranskevich, J, Rangarajan, J, Guttman, A, Szabo, Z, Karger, B, Chapman, J, Chavaroche, A, Bionda, N, Fields, G, Jacob, F, Tse, BW, Guertler, R, Nixdorf, S, Hacker, NF, Heinzelmann-Schwarz, V, Yang, F, Kohler, JJ, Losfeld, ME, Ng, B, Freeze, HH, He, P, Wondimu, A, Liu, Y, Zhang, Y, Su, Y, Ladisch, S, Grewal, P, Mann, C, Ditto, D, Lardone, R, Le, D, Varki, N, Kulinich, A, Kostjuk, O, Maslak, G, Pismenetskaya, I, Shevtsova, A, Takeishi, S, Okudo, K, Moriwaki, K, Terao, N, Kamada, Y, Kuroda, S, Li, Y, Peiris, D, Markiv, A, Dwek, M, Adamczyk, B, Thanabalasingham, G, Huffman, J, Kattla, J, Novokmet, M, Rudan, I, Gloyn, A, Hayward, C, Reynolds, R, Hansen, T, Klimes, I, Njolstad, P, Wilson, J, Hastie, N, Campbell, H, McCarthy, M, Rudd, P, Owen, K, Lauc, G, Wright, A, Goletz, S, Stahn, R, Danielczyk, A, Baumeister, H, Hillemann, A, Löffler, A, Stöckl, L, Jahn, D, Bahrke, S, Flechner, A, Schlangstedt, M, Karsten, U, Goletz, C, Mikolajczyk, S, Ulsemer, P, Gao, N, Cline, A, Flanagan-Steet, H, Sadler, KC, Lehrman, MA, Coulson-Thomas, YM, Gesteira, TF, Mader, AM, Waisberg, J, Pinhal, MA, Friedl, A, Toma, L, Nader, HB, Mbua, EN, Johnson, S, Wolfert, M, Dimitrievska, S, Huizing, M, Niklason, L, Perdivara, I, Petrovich, R, Tokar, EJ, Waalkes, M, Fraser, P, Tomer, K, Chu, J, Rosa, S, Mir, A, Lehrman, M, Sadler, K, Lauer, M, Hascall, V, Calabro, A, Cheng, G, Swaidani, S, Abaddi, A, Aronica, M, Yuzwa, S, Shan, X, Macauley, M, Clark, T, Skorobogatko, Y, Vosseller, K, Vocadlo, D, Banerjee, A, Baksi, K, Banerjee, D, Melcher, R, Kraus, I, Moeller, D, Demmig, S, Rogoll, D, Kudlich, T, Scheppach, W, Scheurlen, M, Hasilik, A, Steirer, L, Lee, J, Moe, G, Troy, FA, Wang, F, Xia, B, Wang, B, Yi, S, Yu, H, Suzuki, M, Kobayashi, T, Sato, Y, Zhou, H, Briscoe, A, Lee, R, Wolfert, MA, Matsumoto, Y, Hamamura, K, Yoshida, T, Akita, K, Okajima, T, Furukawa, K, Urano, T, Ruhaak, LR, Miyamoto, S, and Lebrilla, CB
- Subjects
Embryogenesis ,Cancer screening ,Cancer research ,medicine ,Cell migration ,Neural cell adhesion molecule ,Biology ,medicine.disease ,Biochemistry ,Metastasis - Abstract
Cell surface mucins configure the cell surface by presenting extended protein backbones that are heavily O-glycosylated. The glycopeptide structures establish physicochemical properties at the cell surface that enable and block the formation of biologically important molecular complexes. Some mucins, such as MUC1, associate with receptor tyrosine kinases and other cell surface receptors, and engage in signal transduction in order to communicate information regarding conditions at the cell surface to the nucleus. In that context, the MUC1 cytoplasmic tail (MUC1CT) receives phosphorylation signals from receptor tyrosine kinases and serine/threonine kinases, which enables its association with different signaling complexes that conduct these signals to the nucleus and perhaps other subcellular organelles. We have detected the MUC1CT at promoters of over 500 genes, in association with several different transcription factors, and have shown that promoter occupancy can vary under different growth factor conditions. However, the full biochemical nature of the nuclear forms of MUC1 and its function at these promoter regions remain undefined. I will present evidence that nuclear forms of the MUC1CT include extracellular and cytoplasmic tail domains. In addition, I will discuss evidence for a hypothesis that the MUC1CT possesses a novel catalytic function that enables remodeling of the transcription factor occupancy of promoters, and thereby engages in regulation of gene expression.
- Published
- 2016
4. Influence of l-carnosine on pro-antioxidant status in elite kayakers and canoeists
- Author
-
Slowinska-Lisowska, Malgorzata, primary, Zembron-Lacny, A., additional, Rynkiewicz, M., additional, Rynkiewicz, T., additional, and Kopec, W., additional
- Published
- 2014
- Full Text
- View/download PDF
5. Factor XI catalytic domain complexed with 2-guanidino-1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethyl nicotinate
- Author
-
Lazarova, T.I., primary, Jin, L., additional, Rynkiewicz, M., additional, Gorga, J.C., additional, Bibbins, F., additional, Meyers, H.V., additional, Babine, R., additional, and Strickler, J., additional
- Published
- 2006
- Full Text
- View/download PDF
6. Crystal Structure of the Catalytic Domain of Coagulation Factor XI in Complex with N-[4-Guanidino-1-(thiazole-2-carbonyl)-butyl]-2-{6-oxo-5-[(quinolin-8-ylmethyl)-amino]-2-m-tolyl-6H-pyrimidin-1-yl}-acetamide
- Author
-
Nagafuji, P., primary, Jin, L., additional, Rynkiewicz, M., additional, Quinn, J., additional, Bibbins, F., additional, Meyers, H., additional, Babine, R., additional, Strickler, J.E., additional, and Abdel-Meguid, S.S., additional
- Published
- 2006
- Full Text
- View/download PDF
7. Fate of dietary sucrose and neosynthesis of amino acids in the pea aphid, Acyrthosiphon pisum, reared on different diets
- Author
-
Febvay, G., primary, Rahbé, Y., additional, Rynkiewicz, M., additional, Guillaud, J., additional, and Bonnot, G., additional
- Published
- 1999
- Full Text
- View/download PDF
8. Transient changes in erythrocyte membrane permeability are induced by sublytic amounts of the complement membrane attack complex (C5b-9)
- Author
-
Halperin, JA, primary, Taratuska, A, additional, Rynkiewicz, M, additional, and Nicholson-Weller, A, additional
- Published
- 1993
- Full Text
- View/download PDF
9. IMPACT OF ADDITIONAL LOAD ON THE ABILITY OF PERFORMING LONG-LASTING WORK TASKS.
- Author
-
Rynkiewicz, T., Zaleska - Posmyk, I., Rynkiewicz, M., Starosta, W., and Nowak, M.
- Subjects
RESPIRATION ,HEART beat ,PERFORMANCE evaluation ,EXERCISE ,PULMONARY gas exchange ,SPIROMETRY - Abstract
The study analysed the impact of an additional load hindering breathing on the execution time of progressive effort until refusal of further exercises. Also, the recorded heart rate values were analysed. The research comprised 50 male students and 24 female students. The tested subjects were asked to execute two work tasks having increasing intensity - until refusal of further exercises on a mechanical treadmill at intervals of 7 days. In both work tasks the frequency of heart rate was recorded, and in the second one gas exchange indicators were registered. Similar values of the maximum heart rate were recorded. Hindrance of breathing led to the limitation in the ability to execute assigned work tasks. A difference of 8% was observed during the execution of the work task with additional load - an ergospirometer mask, a rucksack containing an analyser and a transmitter. The differences were similar as regards female and male subjects. [ABSTRACT FROM AUTHOR]
- Published
- 2011
10. Association between PD-L1 Expression and the Prognosis and Clinicopathologic Features of Non-Clear Cell Renal Cell Carcinoma.
- Author
-
Chrabańska M, Szweda-Gandor N, Rynkiewicz M, Hraboš D, and Drozdzowska B
- Subjects
- Humans, B7-H1 Antigen genetics, Programmed Cell Death 1 Receptor, Leukocytes, Transcription Factors, Carcinoma, Renal Cell genetics, Kidney Neoplasms genetics
- Abstract
PD-L1 is one of the two programmed cell death 1 (PD-1) ligands and a part of an immune checkpoint system (PD-1/PD-L1) with widespread clinical application. The aim of this study was to investigate PD-L1 expression and its association with clinicopathological and prognostic significance in non-clear cell renal cell carcinoma (non-ccRCC) patients. A total of 41 papillary (pRCC) and 20 chromophobe (chRCC) RCC tumors were examined for PD-L1 expression by immunohistochemistry in the cancer cells and tumor-infiltrating mononuclear cells (TIMCs). PD-L1 positivity was detected in 36.6% pRCC and 85.0% chRCC cancer cells, while PD-L1 positivity was observed in 73.2% pRCC and 50.0% chRCC TIMCs. PD-L1 positivity in both pRCC and chRCC tumor cells was not correlated with any of the examined clinicopathological features, while PD-L1 positivity in TIMCs was associated with the age of patients with pRCC. During follow-up, the death was documented among 6 patients with pRCC. Papillary RCC patients with PD-L1-positive tumor cells were significantly associated with an increased risk of death compared with patients with PD-L1-negative cancer cells. A similar trend was observed when comparing PD-L1 expression in TIMCs. However, no differences in overall survival for PD-L1-positive pRCC patients with compared to PD-L1-negative patients were observed in tumor cells or TIMCs.
- Published
- 2024
- Full Text
- View/download PDF
11. Does the Immunohistochemical Expression of CD44, MMP-2, and MMP-9 in Association with the Histopathological Subtype of Renal Cell Carcinoma Affect the Survival of Patients with Renal Cancer?
- Author
-
Chrabańska M, Rynkiewicz M, Kiczmer P, and Drozdzowska B
- Abstract
CD44, MMP-2, and MMP-9 are new potential molecular prognostic markers in renal cell carcinoma (RCC). The aim of the study was to analyze whether the expression of CD44, MMP-2, and MMP-9 in association with the histopathological subtype of RCC affects the survival of patients with renal cancer. The study population included 243 clear cell RCC (ccRCC) and 59 non-ccRCC cases. A total of 302 tumors were examined for CD44, MMP2, and MMP9 expression by immunohistochemistry. The expression levels of the proteins were scored by semi-quantitative methods, and the correlation with overall patient survival was verified. We found no significant differences in CD44 expression levels between cc-RCC and non-ccRCC cases; however, significant differences existed in the degree of MMP-2 and MMP-9 expression between cc-RCC and non-ccRCC cases. There was significantly higher MMP expression in non-ccRCC than in ccRCC cases. Univariate Cox regression analysis showed that increased CD44 expression and histopathological subtype of ccRCC were predictors of shorter overall survival. Moreover, MMP-2 overexpression slightly reduced the risk of patient death, while MMP-9 expression did not show an association with patients' survival. However, on multivariate analysis, only the histopathological subtypes of ccRCC and CD44 expression were independent risk factors for patient death.
- Published
- 2023
- Full Text
- View/download PDF
12. Immunohistochemical Expression of CD44, MMP-2, MMP-9, and Ki-67 as the Prognostic Markers in Non-Clear Cell Renal Cell Carcinomas-A Prospective Cohort Study.
- Author
-
Chrabańska M, Rynkiewicz M, Kiczmer P, and Drozdzowska B
- Abstract
CD44 is the most frequently reported marker of the cancer stem cells in renal cell carcinoma (RCC). Matrix metalloproteinases MMP-2 and MMP-9 are key regulators of tumor invasion and metastasis. The aim of this study was to investigate the clinicopathologic and prognostic values of the immunohistochemical expression of CD44, MMP2, MMP9, and Ki-67 in papillary and chromophobe RCCs. In the case of papillary RCC, MMP-2 expression was positively correlated with patient age (p < 0.05), while CD44 expression was positively correlated with tumor stage (τ = 0.26, p < 0.05). Moreover, CD44 expression positively correlated with MMP-9 (τ = 0.39, p < 0.05). In the case of chromophobe RCC, only Ki-67 expression was negatively correlated with tumor stage (τ = −0.44, p < 0.05). During follow-up, a death was documented in 6 patients with papillary RCC. In these patients, CD44 expression was not a significant factor affecting the overall survival of patients (p > 0.05), whereas there was a positive correlation between increased MMP-9 expression and shorter overall survival (p < 0.05). Taken together, carcinogenesis in papillary RCC is probably dependent on both cancer stem cells and metalloproteinases activity. Expression of CD44 and MMP-9 can significantly improve the prediction of papillary RCC prognosis in the future.
- Published
- 2022
- Full Text
- View/download PDF
13. Assessment of the RANTES Level Correlation and Selected Inflammatory and Pro-Angiogenic Molecules Evaluation of Their Influence on CRC Clinical Features: A Preliminary Observational Study.
- Author
-
Mielcarska S, Kula A, Dawidowicz M, Kiczmer P, Chrabańska M, Rynkiewicz M, Wziątek-Kuczmik D, Świętochowska E, and Waniczek D
- Subjects
- Chemokine CCL5, Humans, Lymphocytes, Tumor-Infiltrating, Neovascularization, Pathologic, Prognosis, Vascular Endothelial Growth Factor A, Vascular Endothelial Growth Factor C
- Abstract
Background and Objectives : Assessment of RANTES level and concentrations of inflammatory cytokines: programmed death ligand 1 (PD-L1), interferon gamma IFN-γ, tumor necrosis factor alpha (TNF-α), transforming growht factor β (TGF-β) (and angiogenesis factors: vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor C (VEGF C) in tumor and margin tissues of colorectal cancer (CRC,) and evaluation of RANTES influence on histopathological parameters (microvessel density (MVD), budding, tumor-infiltrating lymphocytes (TILs)), in relation to patients' clinical features. Materials and Methods : The study used 49 samples of tumor and margin tissues derived from CRC patients. To determinate the concentration of RANTES, PD-L1, IFN-γ, TNF-α, TGF-β, VEGF-A, and VEGF-C, we used the commercially available enzyme-linked immunosorbent assay kit. Additionally, RANTES and PD-L1 expression was assessed with the use of IHC staining in both tumor cells and TILS in randomly selected cases. MVD was assessed on CD34-stained specimens. The MVD and budding were assessed using a light microscope. Results : We found significantly higher levels of RANTES, PD-L1, IFN-γ, TNF-α, TGF-β, VEGF-A, and VEGF-C in the tumor in comparison with the margin. The RANTES tumor levels correlated significantly with those of PD-L1, TNF-α, TGF-β, VEGF-A, and VEGF-C. The RANTES margin levels were significantly associated with the margin levels of all proteins investigated-PD-L1, IFN-γ, TNF-α, TGF-β, VEGF-A, and VEGF-C. Additionally, we observed RANTES- and PD-L1-positive immunostaining in TILs. In a group of 24 specimens, 6 different CRC tumors were positive for RANTES and PD-L1 immunostaining. The IFN-gamma concentration in both tumor and margin and TGF-β in tumor correlated with TILs. TILs were negatively associated with the patients' disease stage and N parameter. Conclusions : RANTES activity might be associated with angiogenesis, lymphogenesis, and immune escape in CRC. RANTES is an important chemokine that is a part of the chemokine-cytokine network involved in the modulation of TME composition in CRC. Further research may verify which processes are responsible for the associations observed in the study.
- Published
- 2022
- Full Text
- View/download PDF
14. Periostin in Angiogenesis and Inflammation in CRC-A Preliminary Observational Study.
- Author
-
Kula A, Dawidowicz M, Mielcarska S, Kiczmer P, Chrabańska M, Rynkiewicz M, Świętochowska E, and Waniczek D
- Subjects
- Diagnostic Tests, Routine, Enzyme-Linked Immunosorbent Assay, Humans, Interferon-gamma, Cell Adhesion Molecules blood, Colorectal Neoplasms diagnosis, Cytokines blood, Inflammation
- Abstract
Background and Objectives : To assess the periostin level and the concentrations of pro-inflammatory cytokines: TNFα, IFN-γ, IL-1β and IL-17 in tumor and marginal tissues of CRC and to investigate the influence of periostin on angiogenesis by MVD (microvessel density) and concentration of VEGF-A in relation to clinicopathological parameters of patients. Materials and Methods : The study used 47 samples of tumor and margin tissues derived from CRC patients. To determinate the concentration of periostin, VEGF-A, TNFα, IFNγ, IL-1β and IL-17, we used the commercially available enzyme- linked immunosorbent assay kit. MVD was assessed on CD34-stained specimens. The MVD and budding were assessed using a light microscope Results : We found significantly higher concentrations of periostin, VEGF-A, IFN-γ, IL-1 β, IL-17 and TNFα in the tumor samples compared with surgical tissue margins. The tumor concentrations of periostin were correlated with tumor levels of VEGF-A, IFN-γ, IL-1β and TNFα. We observed significant correlation between margin periostin and VEGF-A, IFN-γ, IL-17 and TNFα in tumor and margin specimens. Additionally, we found a significantly negative correlation between periostin tumor concentration and microvessel density at the invasive front. Tumor periostin levels were also correlated positively with tumor budding. Conclusions: Periostin activity may be associated with pro-inflammatory cytokine levels: TNFα, IFN-γ, IL-1β and IL-17. Our results also suggest the role of periostin in angiogenesis in CRC and its upregulation in poorly vascularized tumors. Further research on the regulations between periostin and cytokines are necessary to understand the interactions between tumor and immune tumor microenvironment, which could be helpful in the development of new targeted therapy.
- Published
- 2022
- Full Text
- View/download PDF
15. The Concentration of CMKLR1 Expression on Clinicopathological Parameters of Colorectal Cancer: A Preliminary Study.
- Author
-
Kiczmer P, Mielcarska S, Chrabańska M, Dawidowicz M, Kula A, Rynkiewicz M, Seńkowska AP, Waniczek D, Piecuch J, Jopek J, Kajor M, and Świętochowska E
- Subjects
- Humans, Margins of Excision, Neovascularization, Pathologic, Colorectal Neoplasms diagnosis, Receptors, Chemokine
- Abstract
Background and Objectives : Colorectal cancer (CRC) is the second-most common cause of cancer-related deaths worldwide. Angiogenesis is crucial for cancer growth, infiltration of surrounding tissues, and metastasis and plays a key role in the pathogenesis of CRC. Chemerin/chemokine-like receptor 1 (CMKLR1) is one of the biochemical pathways involved in the regulation of angiogenesis in solid tumors. The aim of the study was to assess the CMKLR1 level in tumor and margin tissues of CRC in relation to histopathological parameters: microvessel density (MVD), budding, tumor-infiltrating lymphocytes (TILs), TNM scale, and grading. Materials and Methods : The study involved 43 samples of tumor and margin tissues obtained from CRC patients. To assess the concentration of CMKLR1 a commercially available enzyme-linked immunosorbent assay kit was used. For 35 cases, we performed CD34 immunostaining. The MVD, budding, and TILs were assessed using a light microscope. Results : The levels of CMKLR1 in both tumor and margin were negatively correlated with MVD and budding. CMKLR1 concentration in margin was higher in tissues with lymphocytic infiltration. Conclusions : Low vascularity and low budding are associated with higher CMKLR1 expression. CMKLR1 might play a multifunctional role in CRC pathogenesis by influencing tumor budding and peritumoral lymphocytic infiltration.
- Published
- 2021
- Full Text
- View/download PDF
16. Immunoexpression of RANK, RANKL and OPG in sporadic odontogenic keratocysts and their potential association with recurrence.
- Author
-
Kisielowski K, Drozdzowska B, Koszowski R, Rynkiewicz M, Szuta M, Rahnama M, Babiuch K, Tyrakowski M, Bednarczyk A, and Kaczmarzyk T
- Subjects
- Humans, NF-kappa B, Neoplasm Recurrence, Local, Osteoprotegerin, RANK Ligand, Receptor Activator of Nuclear Factor-kappa B, Odontogenic Cysts, Odontogenic Tumors
- Abstract
Background: Odontogenic keratocysts (OKCs) are clinically aggressive lesions with relatively high recurrence rates. Dysregulation of functional equilibrium in the RANK/RANKL/OPG system is responsible for osteolysis associated with the development of OKCs. Previously published findings imply that immunoexpression of these 3 proteins may correlate with bone resorption activity in OKCs., Objectives: The rationale behind this study was to assess the potential for receptor activator of nuclear factor kappa-B (RANK), receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) expression, as well as RANKL/OPG expression ratio, to serve as prognostic indicators for OKC recurrence., Material and Methods: We investigated the immunoexpression patterns of RANK, RANKL and OPG, and their correlation with recurrence rates, in 41 patients with OKCs treated with enucleation., Results: We found no statistically significant differences between recurrent and non-recurrent cysts in terms of either: epithelial (p = 0.404) and stromal (p = 0.469) immunoreactivity of RANK; epithelial (p = 0.649) and stromal (p = 0.198) immunoreactivity of RANKL; or epithelial (p = 1) and stromal (p = 0.604) immunoreactivity of OPG. We also did not find significant differences in the distribution of cases with respect to ratios of RANKL/OPG immunostaining scores between recurrent and non-recurrent OKCs, both in the epithelium and in the connective tissue (p = 1 and p = 0.237, respectively)., Conclusions: Our results suggest that immunoexpression levels of RANK, RANKL and OPG at the time of pathological diagnosis, as well as the RANKL/OPG ratio, are not useful as prognostic markers for OKC recurrence.
- Published
- 2021
- Full Text
- View/download PDF
17. Effect of Rhamnolipids on Microbial Biomass Content and Biochemical Parameters in Soil Contaminated with Coal Tar Creosote.
- Author
-
Telesiński A, Zambrana AB, Jarnuszewski G, Curyło K, Krzyśko-Łupicka T, Pawłowska B, Cybulska K, Wróbel J, and Rynkiewicz M
- Abstract
The objective of the present study was to compare the effect of rhamnolipids on the microbial biomass content and the activity of dehydrogenases (DHA), acid phosphatase (ACP), alkaline phosphatase (ALP), and urease (URE) in soil contaminated with two types of coal tar creosote: type C and type GX-Plus. The experiment was carried out on samples of sandy clay loam under laboratory conditions. Coal tar creosote was added to soil samples at a dose of 0 and 10 g·kg
-1 DM, along with rhamnolipids at a dose of 0, 10, 100, and 1000 mg·kg-1 DM. The humidity of the samples was brought to 60% maximum water holding capacity, and the samples were incubated at 20°C. Microbial and biochemical parameters were determined on days 1, 7, 21, and 63. The obtained results demonstrated that the addition of rhamnolipids did not result in any significant changes in the activity of the determined parameters in the uncontaminated soil. However, it was observed that the application of these biosurfactants, particularly at the dose of 1000 mg·kg-1 DM, largely decreased the effect of coal tar creosote on the determined parameters. Moreover, the microbial biomass and the activity of ALP and URE were found to be the best indicator of bioremediation of soil contaminated with coal tar creosote., Competing Interests: Conflict of interest: Authors state no conflict of interest, (© 2019 Arkadiusz Telesiński et al., published by De Gruyter.)- Published
- 2019
- Full Text
- View/download PDF
18. Investigation of clinicopathological parameters and expression of COX-2, bcl-2, PCNA, and p53 in primary and recurrent sporadic odontogenic keratocysts.
- Author
-
Kaczmarzyk T, Kisielowski K, Koszowski R, Rynkiewicz M, Gawełek E, Babiuch K, Bednarczyk A, and Drozdzowska B
- Subjects
- Adult, Biomarkers metabolism, Female, Humans, Immunohistochemistry, Male, Odontogenic Cysts pathology, Odontogenic Cysts surgery, Prognosis, Recurrence, Retrospective Studies, Cyclooxygenase 2 metabolism, Odontogenic Cysts metabolism, Proliferating Cell Nuclear Antigen metabolism, Tumor Suppressor Protein p53 metabolism
- Abstract
Objectives: Odontogenic keratocyst (OKC) presents considerable variation in aggressiveness and propensity for recurrence, yet hitherto, no explicit clinicopathological features have been determined to clearly demonstrate the potential for relapse. This retrospective study aims to investigate the prognostic relevance of various clinicopathological features as well as immunoexpression of COX-2, bcl-2, PCNA, and p53 in sporadic OKC., Materials and Methods: Among 41 patients with OKC treated by enucleation, the frequency of recurrence for various clinicopathological features as well as immunoexpression for COX-2, bcl-2, PCNA, and p53 was evaluated., Results: The mean follow-up was 8.49 years, and recurrences were ascertained in 29.27% of cases. We found significant differences between recurrent and non-recurrent cysts in terms of multilocularity (P = 0.029), cortical perforation (P = 0.001), and lesion size (P < 0.001). Hazard risk for the recurrence was 3.362 (95% CI 1.066-10.598) for multilocular cysts, 7.801 (95% CI 2.1-28.985) for evidence of cortical perforation, and 1.004 (1.002-1.006) for 1 mm
2 of lesion size on panoramic radiographs. We also found that immunoexpression of PCNA significantly correlates with the radiographic evidence of cortical perforation (P = 0.048) and that there is significant positive correlation between expression of COX-2 and bcl-2 (P = 0.001) as well as significant negative correlation between immunoexpression of COX-2 and age (P = 0.002). None of the other analyzed factors were associated with the recurrence., Conclusions: Larger size, multilocularity, and cortical perforation in sporadic OKC may be correlated with the relapse., Clinical Relevance: Immunohistochemical analyses of COX-2, bcl-2, PCNA, and p53 lack prognostic utility in sporadic OKC.- Published
- 2018
- Full Text
- View/download PDF
19. Identifying the Critical Domain of LL-37 Involved in Mediating Neutrophil Activation in the Presence of Influenza Virus: Functional and Structural Analysis.
- Author
-
Tripathi S, Wang G, White M, Rynkiewicz M, Seaton B, and Hartshorn K
- Subjects
- Calcium Signaling drug effects, Extracellular Traps drug effects, Extracellular Traps metabolism, Humans, Interleukin-8 biosynthesis, Intracellular Space drug effects, Intracellular Space metabolism, Neutrophils cytology, Neutrophils drug effects, Neutrophils metabolism, Neutrophils virology, Peptide Fragments pharmacology, Protein Structure, Tertiary, Receptors, Formyl Peptide metabolism, Receptors, Lipoxin metabolism, Respiratory Burst drug effects, Cathelicidins, Antimicrobial Cationic Peptides chemistry, Antimicrobial Cationic Peptides pharmacology, Influenza A Virus, H3N2 Subtype physiology, Neutrophil Activation drug effects
- Abstract
The human cathelicidin LL-37 has been shown to play a role in host defense against influenza A viruses (IAV) through direct antiviral effects and through modulating inflammatory responses to infection. We recently showed that LL-37 increases neutrophil respiratory burst and neutrophil extracellular trap (NET) responses to IAV through engaging formyl peptide receptor 2 (FPR-2). In this paper we show that a fragment of LL-37, GI-20, which is composed of the central helical segment of the peptide, has similar effects as LL-37 on neutrophil activation. In addition to increasing respiratory burst and NET responses of the cells to IAV through an FPR-2 dependent mechanism, it reduces neutrophil IL-8 production to IAV (also like LL-37). The N-terminal fragment, LL-23, did not have similar effects. Both GI-20 and LL-37 increase neutrophil intracellular calcium levels and their ability to increase neutrophil activation responses was calcium dependent and partially inhibited by pertussis toxin. These studies show that the central helix of LL-37 retains the ability of LL-37 to modulate neutrophil responses through FPR-2. Based on our findings we developed a homology model of FPR-2 and performed docking experiments of LL-37 and GI-20 with the receptor.
- Published
- 2015
- Full Text
- View/download PDF
20. Asymmetry of spinal segments mobility in canoeists and its relationship with racing speed.
- Author
-
Rynkiewicz M, Rynkiewicz T, and Starosta W
- Abstract
The aim of this study was to determine the extent of asymmetry of spinal segment mobility in canoeists. Moreover, the relationship between this parameter and racing speed was analyzed. The study included 18 canoeists with a mean age of 16.4 years. Mobility of cervical, thoracic and lumbar spine, in sagittal, coronal and transverse planes, was measured with the aid of a tensometric electrogoniometer. The racing speed was based on results achieved during the qualifying competition for the Polish national team. Spinal mobility was measured within two days after the competition. Significant associations were observed between average racing speed and the asymmetry coefficients of the cervical (r=-0.52; p=0.03) and lumbar spinal flexure in the coronal plane (r=0.57; p=0.01). The extent of the asymmetry of the cervical spine flexure in the coronal plane should possibly be reduced, because such asymmetry exerts a negative effect on racing speed. In contrast, canoeist's training should be oriented towards increasing the asymmetry of the lumbar spine flexure in the coronal plane. However, one should keep in mind that such an approach, although favorable in terms of race performance, could negatively affect the canoeist's health.
- Published
- 2013
- Full Text
- View/download PDF
21. [Kayakers' length of training period lumbar segment mobility and weak links occurrence in biokinematics chain].
- Author
-
Wójcik M, Siatkowski I, Rynkiewicz T, Rynkiewicz M, and Zurek P
- Subjects
- Adolescent, Analysis of Variance, Biomechanical Phenomena, Female, Humans, Male, Poland, Ships, Shoulder Joint physiology, Athletic Performance physiology, Low Back Pain prevention & control, Lumbar Vertebrae, Muscle, Skeletal physiology, Physical Fitness physiology, Range of Motion, Articular
- Abstract
Introduction: Strength shaping in canoeists can cause limitation of spine movement and pain symptoms. Because of the problem's importance the following study has been undertaken: in order to: 1) determine the relationship between the range of lumbar spine mobility and training experience in kayaking; 2) estimate of the relationship between the occurrence of weak links and symptoms of pain and range of motion in the lumbar spine., Material and Methods: 25 Wałcz SMS players were examined, including 8 female kayakers, 8 canoeists and 9 canadians. Age (M +/- SD) 15.60 +/- 1.04 years; training period 5.64 +/- 1.78 years. Low threshold Performance Matrix. tests were used. to assess the presence of a weak connection The participants determined the sensation of pain in the lumbar spine (LBP) on a numeric scale. Mobility in the lumbar spine was rated by electrogoniametrics method. The results were statistically analyzed using analysis of variance ANOVA, Tukey's t tests and linear regression analysis., Results: In all examined players weak connection in the lumbar spine were found in the direction of flexion, rotation and lateral flexion, and there were no weak links in the direction of extension. Only 10 players did not suffer from LBP. The other declared the existence of these symptoms. It has been found that the length of training period in kayaking is associated with reduced mobility in the lumbar spine and the occurrence of weak links. As a result pain symptoms have often occurred. Gender and specialization have no influence on the frequency and Range of LBP symptoms in kayaking., Conclusions: 1) Sports training in kayaking causes reduced mobility of the lumbar spine and may cause weak links in the chain of biokinenatics connections and symptoms of LBP. 2) Gender and sports specialization does not differentiate canoeists because of LBP symptoms. The reasons for their occurrence can be ascribed to the use of weight training.
- Published
- 2011
22. Monoclonal antibody-assisted structure-function analysis of the carbohydrate recognition domain of surfactant protein D.
- Author
-
Hartshorn KL, White MR, Rynkiewicz M, Sorensen G, Holmskov U, Head J, and Crouch EC
- Subjects
- Amino Acid Motifs, Amino Acid Substitution, Animals, Arginine, Binding Sites, Calcium metabolism, Cell Line, Collectins chemistry, Collectins genetics, Dogs, Epitopes, Humans, Influenza A virus immunology, Influenza A virus metabolism, Lysine, Mannans metabolism, Mutation, Protein Structure, Tertiary genetics, Rats, Species Specificity, Structure-Activity Relationship, Antibodies, Monoclonal immunology, Carbohydrate Metabolism, Carbohydrates chemistry, Pulmonary Surfactant-Associated Protein D immunology, Pulmonary Surfactant-Associated Protein D metabolism
- Abstract
Surfactant protein D (SP-D) plays important roles in host defense against a variety of pathogens including influenza A virus (IAV). Ligand binding by SP-D is mediated by the trimeric neck and carbohydrate recognition domain (NCRD). We used monoclonal antibodies (mAbs) against human SP-D and a panel of mutant collectin NCRD constructs to identify functionally and structurally important epitopes. The ability of SP-D to bind to IAV and mannan involved partially overlapping binding sites that are distinct from those involved in binding to the glycoprotein-340 (gp-340) scavenger receptor protein. A species-specific motif (D324,D325,R343), which has been implicated in the specific binding of several ligands, contributes to recognition by mAbs that block antiviral or mannan binding activity. D325, in particular, is involved in the epitopes of these blocking mAbs. Conversely, the interspecies substitution of arginine for Lys343 in the rat NCRD (rK343R) conferred binding to two of the mAbs. The single site substitution of alanine for R349 or E347 resulted in highly selective alterations in mAb binding and caused decreased antiviral activity. Mutations at Glu333 (E333A), Trp340 (W340F), and Phe335 (F335A), which abrogated antiviral activity, were associated with decreased binding to multiple blocking mAbs, consistent with critical structural roles. More conservative substitutions at 335, which showed a significant increase in neutralization activity, caused selective loss of binding to one mAb. The analysis reveals, for the first time, an extended binding site for IAV; calcium-dependent antiviral activity involves residues flanking the primary carbohydrate binding site as well as more remote residues displayed on the carbohydrate recognition domain surface.
- Published
- 2010
- Full Text
- View/download PDF
23. Synthesis and in vitro biological evaluation of aryl boronic acids as potential inhibitors of factor XIa.
- Author
-
Lazarova TI, Jin L, Rynkiewicz M, Gorga JC, Bibbins F, Meyers HV, Babine R, and Strickler J
- Subjects
- Anticoagulants pharmacology, Binding Sites, Crystallography, X-Ray, Drug Design, Humans, Inhibitory Concentration 50, Protein Binding, Protein Conformation, Serine Proteinase Inhibitors chemical synthesis, Serine Proteinase Inhibitors pharmacology, Structure-Activity Relationship, Anticoagulants chemical synthesis, Boronic Acids chemical synthesis, Boronic Acids pharmacology, Factor XIa antagonists & inhibitors
- Abstract
A series of functionalized aryl boronic acids were synthesized and evaluated as potential inhibitors of factor XIa. Crystal structures of the protein-inhibitor complexes led to the design and synthesis of second generation compounds showing single digit micromolar inhibition against FXIa and selectivity against thrombin, trypsin, and FXa.
- Published
- 2006
- Full Text
- View/download PDF
24. Structure of trichodiene synthase from Fusarium sporotrichioides provides mechanistic inferences on the terpene cyclization cascade.
- Author
-
Rynkiewicz MJ, Cane DE, and Christianson DW
- Subjects
- Amino Acid Sequence, Carbon-Carbon Lyases metabolism, Crystallography, X-Ray, Diphosphates chemistry, Diphosphates metabolism, Fusarium enzymology, Ligands, Models, Molecular, Molecular Sequence Data, Protein Structure, Tertiary, Terpenes metabolism, Carbon-Carbon Lyases chemistry
- Abstract
The x-ray crystal structure of recombinant trichodiene synthase from Fusarium sporotrichioides has been determined to 2.5-A resolution, both unliganded and complexed with inorganic pyrophosphate. This reaction product coordinates to three Mg(2+) ions near the mouth of the active site cleft. A comparison of the liganded and unliganded structures reveals a ligand-induced conformational change that closes the mouth of the active site cleft. Binding of the substrate farnesyl diphosphate similarly may trigger this conformational change, which would facilitate catalysis by protecting reactive carbocationic intermediates in the cyclization cascade. Trichodiene synthase also shares significant structural similarity with other sesquiterpene synthases despite a lack of significant sequence identity. This similarity indicates divergence from a common ancestor early in the evolution of terpene biosynthesis.
- Published
- 2001
- Full Text
- View/download PDF
25. Crystal structure determination of aristolochene synthase from the blue cheese mold, Penicillium roqueforti.
- Author
-
Caruthers JM, Kang I, Rynkiewicz MJ, Cane DE, and Christianson DW
- Subjects
- Binding Sites, Crystallography, X-Ray, Electrons, Evolution, Molecular, Isomerases isolation & purification, Magnesium metabolism, Models, Molecular, Molecular Sequence Data, Protein Structure, Secondary, Protein Structure, Tertiary, Recombinant Proteins chemistry, Fungal Proteins chemistry, Isomerases chemistry, Penicillium enzymology
- Abstract
The 2.5-A resolution crystal structure of recombinant aristolochene synthase from the blue cheese mold, Penicillium roqueforti, is the first of a fungal terpenoid cyclase. The structure of the enzyme reveals active site features that participate in the cyclization of the universal sesquiterpene cyclase substrate, farnesyl diphosphate, to form the bicyclic hydrocarbon aristolochene. Metal-triggered carbocation formation initiates the cyclization cascade, which proceeds through multiple complex intermediates to yield one exclusive structural and stereochemical isomer of aristolochene. Structural homology of this fungal cyclase with plant and bacterial terpenoid cyclases, despite minimal amino acid sequence identity, suggests divergence from a common, primordial ancestor in the evolution of terpene biosynthesis.
- Published
- 2000
- Full Text
- View/download PDF
26. Chemical rescue by guanidine derivatives of an arginine-substituted site-directed mutant of Escherichia coli ornithine transcarbamylase.
- Author
-
Rynkiewicz MJ and Seaton BA
- Subjects
- Binding Sites, Kinetics, Mutagenesis, Site-Directed, Point Mutation, Recombinant Proteins chemistry, Recombinant Proteins metabolism, Regression Analysis, Spectrophotometry, Ultraviolet, Structure-Activity Relationship, Urea pharmacology, Arginine, Escherichia coli enzymology, Guanidines pharmacology, Ornithine Carbamoyltransferase chemistry, Ornithine Carbamoyltransferase metabolism
- Abstract
Escherichia coli ornithine transcarbamylase (OTCase) catalyzes the production of L-citrulline and phosphate from carbamyl phosphate and L-ornithine in L-arginine biosynthesis. We show that exogenous guanidines can restore activity to (chemically rescue) a catalytically-impaired site-directed mutant OTCase, R57G, in which glycine replaces an an active site arginine. The best rescue agent is guanidine hydrochloride, which enhances the rate of the mutant 2000-fold. The turnover number for the guanidine-rescued R57G mutant is 10% that of wild-type. The addition of guanidine to the R57G mutant has little effect on KMCP values, and the rescue effect is therefore attributed principally to an increase in kcat. Other compounds were screened as potential rescue agents, but rate enhancement is highly selective for guanidines. Not all guanidines show large increases in kcat. For a comparative series that includes guanidine and alkylguanidines, substituent size is inversely related to kcat. Brønsted analysis of guanidines with varying pKa values indicates that a partial positive charge is implicated in rescue, consistent with the proposed role of arginine 57 in catalysis. In UV difference and 31P-NMR spectra, carbamyl phosphate-induced effects associated with wild-type OTCase are observed in the R57G mutant only in the presence of guanidine. The kinetic mechanism of the mutant is random in the presence or absence of guanidine, in contrast to the sequential ordered mechanism of the wild-type enzyme. Thus, chemical rescue of R57G by guanidine hydrochloride restores many but not all wild-type properties to the mutant enzyme.
- Published
- 1996
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.