315 results on '"Rutledge, G."'
Search Results
2. Numerical Investigation of the Structural Performance of Post-Tensioned Friction-Based Slab Column Connections in Two-Way Modular Precast Concrete Systems
- Author
-
Zhou, M., Hrynyk, T., Walbridge, S., Dikic, D., Rutledge, G., Arsenault, M., di Prisco, Marco, Series Editor, Chen, Sheng-Hong, Series Editor, Vayas, Ioannis, Series Editor, Kumar Shukla, Sanjay, Series Editor, Sharma, Anuj, Series Editor, Kumar, Nagesh, Series Editor, Wang, Chien Ming, Series Editor, Walbridge, Scott, editor, Nik-Bakht, Mazdak, editor, Ng, Kelvin Tsun Wai, editor, Shome, Manas, editor, Alam, M. Shahria, editor, el Damatty, Ashraf, editor, and Lovegrove, Gordon, editor
- Published
- 2023
- Full Text
- View/download PDF
3. Financial crime: the regulators perspective
- Author
-
Philip Rutledge, G, primary
- Published
- 2022
- Full Text
- View/download PDF
4. Editorial: Not your ordinary conference!
- Author
-
Rutledge, G. Philip
- Published
- 2023
- Full Text
- View/download PDF
5. Numerical Investigation of the Structural Performance of Post-Tensioned Friction-Based Slab Column Connections in Two-Way Modular Precast Concrete Systems
- Author
-
Zhou, M., primary, Hrynyk, T., additional, Walbridge, S., additional, Dikic, D., additional, Rutledge, G., additional, and Arsenault, M., additional
- Published
- 2022
- Full Text
- View/download PDF
6. Virtual Compton Scattering and the Generalized Polarizabilities of the Proton at Q^2=0.92 and 1.76 GeV^2
- Author
-
Fonvieille, H., Laveissiere, G., Degrande, N., Jaminion, S., Jutier, C., Todor, L., Di Salvo, R., Van Hoorebeke, L., Alexa, L. C., Anderson, B. D., Aniol, K. A., Arundell, K., Audit, G., Auerbach, L., Baker, F. T., Baylac, M., Berthot, J., Bertin, P. Y., Bertozzi, W., Bimbot, L., Boeglin, W. U., Brash, E. J., Breton, V., Breuer, H., Burtin, E., Calarco, J. R., Cardman, L. S., Cavata, C., Chang, C. -C., Chen, J. -P., Chudakov, E., Cisbani, E., Dale, D. S., deJager, C. W., De Leo, R., Deur, A., d'Hose, N., Dodge, G. E., Domingo, J. J., Elouadrhiri, L., Epstein, M. B., Ewell, L. A., Finn, J. M., Fissum, K. G., Fournier, G., Frois, B., Frullani, S., Furget, C., Gao, H., Gao, J., Garibaldi, F., Gasparian, A., Gilad, S., Gilman, R., Glamazdin, A., Glashausser, C., Gomez, J., Gorbenko, V., Grenier, P., Guichon, P. A. M., Hansen, J. O., Holmes, R., Holtrop, M., Howell, C., Huber, G. M., Hyde, C. E., Incerti, S., Iodice, M., Jardillier, J., Jones, M. K., Kahl, W., Kato, S., Katramatou, A. T., Kelly, J. J., Kerhoas, S., Ketikyan, A., Khayat, M., Kino, K., Kox, S., Kramer, L. H., Kumar, K. S., Kumbartzki, G., Kuss, M., Leone, A., LeRose, J. J., Liang, M., Lindgren, R. A., Liyanage, N., Lolos, G. J., Lourie, R. W., Madey, R., Maeda, K., Malov, S., Manley, D. M., Marchand, C., Marchand, D., Margaziotis, D. J., Markowitz, P., Marroncle, J., Martino, J., McCormick, K., McIntyre, J., Mehrabyan, S., Merchez, F., Meziani, Z. E., Michaels, R., Miller, G. W., Mougey, J. Y., Nanda, S. K., Neyret, D., Offermann, E. A. J. M., Papandreou, Z., Pasquini, B., Perdrisat, C. F., Perrino, R., Petratos, G. G., Platchkov, S., Pomatsalyuk, R., Prout, D. L., Punjabi, V. A., Pussieux, T., Quemener, G., Ransome, R. D., Ravel, O., Real, J. S., Renard, F., Roblin, Y., Rowntree, D., Rutledge, G., Rutt, P. M., Saha, A., Saito, T., Sarty, A. J., Serdarevic, A., Smith, T., Smirnov, G., Soldi, K., Sorokin, P., Souder, P. A., Suleiman, R., Templon, J. A., Terasawa, T., Tieulent, R., Tomasi-Gustaffson, E., Tsubota, H., Ueno, H., Ulmer, P. E., Urciuoli, G. M., Vanderhaeghen, M., Van der Meer, R. L. J., Van De Vyver, R., Vernin, P., Vlahovic, B., Voskanyan, H., Voutier, E., Watson, J. W., Weinstein, L. B., Wijesooriya, K., Wilson, R., Wojtsekhowski, B. B., Zainea, D. G., Zhang, W. -M., Zhao, J., and Zhou, Z. -L.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P_LL-P_TT/epsilon and P_LT, and the electric and magnetic generalized polarizabilities (GPs) alpha_E(Q^2) and beta_M(Q^2) at values of the four-momentum transfer squared Q^2= 0.92 and 1.76 GeV^2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q^2-range, and point to their non-trivial behavior., Comment: version 2: modified according to PRC Editor's and Referee's recommendations. Archival paper for the E93-050 experiment at JLab Hall A. 28 pages, 23 figures, 5 cross-section tables. To be submitted to Phys.Rev.C
- Published
- 2012
- Full Text
- View/download PDF
7. The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles
- Author
-
G0 Collaboration, Androic, D., Armstrong, D. S., Arvieux, J., Asaturyan, R., Averett, T. D., Bailey, S. L., Batigne, G., Beck, D. H., Beise, E. J., Benesch, J., Benmokhtar, F., Bimbot, L., Birchall, J., Biselli, A., Bosted, P., Breuer, H., Brindza, P., Capuano, C. L., Carlini, R. D., Carr, R., Chant, N., Chao, Y. -C., Clark, R., Coppens, A., Covrig, S. D., Cowley, A., Dale, D., Davis, C. A., Ellis, C., Falk, W. R., Fenker, H., Finn, J. M., Forest, T., Franklin, G., Frascaria, R., Furget, C., Gaskell, D., Gericke, M. T. W., Grames, J., Griffioen, K. A., Grimm, K., Guillard, G., Guillon, B., Guler, H., Gustafsson, K., Hannelius, L., Hansknecht, J., Hasty, R. D., Allen, A. M. Hawthorne, Horn, T., Ito, T. M., Johnston, K., Jones, M., Kammel, P., Kazimi, R., King, P. M., Kolarkar, A., Korkmaz, E., Korsch, W., Kox, S., Kuhn, J., Lachniet, J., Laszewski, R., Lee, L., Lenoble, J., Liatard, E., Liu, J., Lung, A., MacLachlan, G. A., Mammei, J., Marchand, D., Martin, J. W., Mack, D. J., McFarlane, K. W., McKee, D. W., McKeown, R. D., Merchez, F., Mihovilovic, M., Micherdzinska, A., Mkrtchyan, H., Moffit, B., Morlet, M., Muether, M., Musson, J., Nakahara, K., Neveling, R., Niccolai, S., Nilsson, D., Ong, S., Page, S. A., Papavassiliou, V., Pate, S. F., Phillips, S. K., Pillot, P., Pitt, M. L., Poelker, M., Porcelli, T. A., Quemener, G., Quinn, B. P., Ramsay, W. D., Rauf, A. W., Real, J. -S., Ries, T., Roos, J. Roche P., Rutledge, G. A., Schaub, J., Secrest, J., Seva, T., Simicevic, N., Smith, G. R., Spayde, D. T., Stepanyan, S., Stutzman, M., Suleiman, R., Tadevosyan, V., Tieulent, R., van de Wiele, J., van Oers, W. T. H., Versteegen, M., Voutier, E., Vulcan, W. F., Wells, S. P., Warren, G., Williamson, S. E., Woo, R. J., Wood, S. A., Yan, C., Yun, J., and Zeps, V.
- Subjects
Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed., Comment: Submitted to Nuclear Instruments and Methods
- Published
- 2011
- Full Text
- View/download PDF
8. Galactic Globular Cluster Metallicity Scale from the Calcium Triplet. II. Rankings, Comparisons and Puzzles
- Author
-
Rutledge, G. A., Hesser, J. E., and Stetson, P. B.
- Subjects
Astrophysics - Abstract
We compare our compilation of the W' calcium index for 71 Galactic globular clusters to the widely used Zinn and West (1984 ApJS, 55, 45) [Fe/H] scale and to Carretta and Gratton's (1997 A&A Supplement 121, 95) scale from high-dispersion spectra analyzed with Kurucz (1992, private communication) model atmospheres. We find our calcium ranking to be tightly correlated with each comparison set, in a non-linear and a linear fashion, respectively. By combining our calcium index information with the Zinn and West ranking, we are able to rank the globular clusters in our sample with a typical precision of +/- 0.05 dex for [Fe/H] < -0.5 on the Zinn and West scale; for clusters more metal rich than this, the ranking is less precise. The significant differences between these metallicity scales raise important questions about our understanding of Galactic formation and chemical enrichment processes. Furthermore, in spite of the apparent improvement in metallicity ranking for the Galactic globular clusters that results from our addition of information from the Ca II triplet lines to the potpourri of other metallicity indicators, caution -- perhaps considerable -- may be advisable when using W' as a surrogate for metallicity, especially for systems where ranges in age and metallicity are likely., Comment: To appear in the August 1997 issue of PASP Also available at http://www.hia.nrc.ca/eprints.html
- Published
- 1997
- Full Text
- View/download PDF
9. Galactic Globular Cluster Metallicity Scale from the Ca II Triplet. I. Catalog
- Author
-
Rutledge, G. A., Hesser, J. E., Stetson, P. B., Mateo, M., Simard, L., Bolte, M., Friel, E. D., and Copin, Y.
- Subjects
Astrophysics - Abstract
We have obtained 2640 CCD spectra with resolution ~4 Angstrom in the region 7250-9000 Angstroms for 976 stars lying near the red giant branches in color-magnitude diagrams of 52 Galactic globular clusters. Radial velocities of ~16 km/second accuracy per star determined from the spectra are combined with other criteria to assess quantitative membership probabilities. Measurements of the equivalent widths of the infrared calcium triplet lines yield a relative metal-abundance ranking with a precision that compares favorably to other techniques. Regressions between our system and those of others are derived. Our reduction procedures are discussed in detail, and the resultant catalog of derived velocities and equivalent widths is presented. The metal abundances derived from these data will be the subject of a future paper., Comment: To appear in August 1997 PASP. Also available at http://www.hia.nrc.ca/eprints.html
- Published
- 1997
- Full Text
- View/download PDF
10. A self-assembling nanomaterial reduces acute brain injury and enhances functional recovery in a rat model of intracerebral hemorrhage
- Author
-
Sang, Lynn Yan-Hua, Liang, Yu-Xiang, Li, Yue, Wong, Wai-Man, Tay, David Kiong-Chiu, So, Kwok-Fai, Ellis-Behnke, Rutledge G., Wu, Wutian, and Cheung, Raymond Tak-Fai
- Published
- 2015
- Full Text
- View/download PDF
11. Factorial analysis of adaptable properties of self-assembling peptide matrix on cellular proliferation and neuronal differentiation of pluripotent embryonic carcinoma
- Author
-
Li, Qianqian, Cheung, Wai Hung, Chow, King L., Ellis-Behnke, Rutledge G., and Chau, Ying
- Published
- 2012
- Full Text
- View/download PDF
12. SAGE-718 in Parkinson's disease mild cognitive impairment: results from the phase 2 PARADIGM study
- Author
-
Koenig, A., Johannesen, J., Freitag, E., Li, S., Rutledge, G., Paumier, K., Petrillo, J., Wald, J., Quirk, M., and Doherty, J.
- Published
- 2022
- Full Text
- View/download PDF
13. Disclosure and sharing of sensitive information: a US securities regulatory perspective
- Author
-
Rutledge, G. Philip
- Published
- 2006
- Full Text
- View/download PDF
14. CNS regeneration after chronic injury using a self-assembled nanomaterial and MEMRI for real-time in vivo monitoring
- Author
-
Liang, Yu-Xiang, Cheung, Sunny W.H., Chan, Kevin C.W., Wu, Ed X., Tay, David K.C., and Ellis-Behnke, Rutledge G.
- Published
- 2011
- Full Text
- View/download PDF
15. Nano Neuro Knitting: Peptide Nanofiber Scaffold for Brain Repair and Axon Regeneration with Functional Return of Vision
- Author
-
Ellis-Behnke, Rutledge G., Liang, Yu-Xiang, You, Si-Wei, Tay, David K. C., Zhang, Shuguang, So, Kwok-Fai, and Schneider, Gerald E.
- Published
- 2006
- Full Text
- View/download PDF
16. Studies of High Performance Fibers by Atomic Force Microscopy and Molecular Simulation
- Author
-
Rutledge, G. C., Snétivy, D., Vancso, G. J., Cohen, Samuel H., editor, Bray, Mona T., editor, and Lightbody, Marcia L., editor
- Published
- 1994
- Full Text
- View/download PDF
17. The Internet and US Financial Markets
- Author
-
Rutledge, G. Philip
- Published
- 1998
- Full Text
- View/download PDF
18. USA: Corruption in the Financial Markets: Recent Developments
- Author
-
Rutledge, G. Philip
- Published
- 1997
- Full Text
- View/download PDF
19. NSMIA ... One Year Later: The States' Response
- Author
-
Rutledge, G. Philip
- Published
- 1998
20. Dietary strawberry improves cognition in a randomised, double-blind, placebo-controlled trial in older adults – ERRATUM
- Author
-
Miller, M. G., primary, Thangthaeng, N., additional, Rutledge, G. A., additional, Scott, T. M., additional, and Shukitt-Hale, B., additional
- Published
- 2021
- Full Text
- View/download PDF
21. The spider effect: morphological and orienting classification of microglia in response to stimuli in vivo.
- Author
-
Rahul A Jonas, Ti-Fei Yuan, Yu-Xiang Liang, Jost B Jonas, David K C Tay, and Rutledge G Ellis-Behnke
- Subjects
Medicine ,Science - Abstract
The different morphological stages of microglial activation have not yet been described in detail. We transected the olfactory bulb of rats and examined the activation of the microglial system histologically. Six stages of bidirectional microglial activation (A) and deactivation (R) were observed: from stage 1A to 6A, the cell body size increased, the cell process number decreased, and the cell processes retracted and thickened, orienting toward the direction of the injury site; until stage 6A, when all processes disappeared. In contrast, in deactivation stages 6R to 1R, the microglia returned to the original site exhibiting a stepwise retransformation to the original morphology. Thin highly branched processes re-formed in stage 1R, similar to those in stage 1A. This reverse transformation mirrored the forward transformation except in stages 6R to 1R: cells showed multiple nuclei which were slowly absorbed. Our findings support a morphologically defined stepwise activation and deactivation of microglia cells.
- Published
- 2012
- Full Text
- View/download PDF
22. Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold
- Author
-
Guo, Jiasong, Su, Huanxing, Zeng, Yuanshan, Liang, Yu-Xiang, Wong, Wai Man, Ellis-Behnke, Rutledge G., So, Kwok-Fai, and Wu, Wutian
- Published
- 2007
- Full Text
- View/download PDF
23. Using Self-Assembled Nanomaterials to Inhibit the Formation of Metastatic Cancer Stem Cell Colonies in Vitro
- Author
-
Patrick M. T. Ling, Sunny W. H. Cheung, David K. C. Tay, and Rutledge G. Ellis-Behnke Ph.D.
- Subjects
Medicine - Abstract
The isolation of cells with stem-like properties from prostate tumors suggests the presence of a cancer stem cell (CSC) population, which may account for the initiation, progression, and metastasis as well as drug resistance of the disease. We hypothesized that containing, or at least immobilizing, the CSCs in a nano-self-assembling material might help prevent prostate tumor progression or metastasis. CSCs were plated in three conditions: 1) placed in 1% concentration self-assembled peptide (SAP) preequilibrate with culture medium; 2) placed in 3% concentration SAP preequilibrate with culture medium; and 3) in nonadherent culture. All were grown for 14 days, after which the cells in both 1% and 3% concentrations were washed out of the SAP and grown for an additional 14 days. Here we report that CSCs from prostate cancer cell lines remained quiescent for more than 28 days when embedded in SAP. When the prostate CSCs were embedded in 1% and 3% SAP, most of the CSCs remained single cells 14 days after plating in a nonadherent plate; no prostaspheres could be detected 14 days after plating, suggesting that self-renewal was significantly suppressed. In the controls, prostate CSCs began to divide 1 day after plating in a nonadherent plate and prostaspheres were visible at day 10, indicating the active self-renewal property of the prostate CSCs. Our findings suggest that SAP can completely inhibit a prostate CSC from self-renewal while preserving its viability and CSC property. Therefore, SAP may be an effective nanomaterial for inhibiting cancer progression and metastasis to stop the progression during treatment and removal.
- Published
- 2011
- Full Text
- View/download PDF
24. Peptide Amphiphiles and Porous Biodegradable Scaffolds for Tissue Regeneration in the Brain and Spinal Cord
- Author
-
Ellis-Behnke, Rutledge G., primary and Schneider, Gerald E., additional
- Published
- 2011
- Full Text
- View/download PDF
25. USA: A ‘New Era’ of Preying on the Faithful?
- Author
-
Rutledge, G. Philip
- Published
- 1996
- Full Text
- View/download PDF
26. Nano hemostat solution: immediate hemostasis at the nanoscale
- Author
-
Ellis-Behnke, Rutledge G., Liang, Yu-Xiang, Tay, David K.C., Kau, Phillis W.F., Schneider, Gerald E., Zhang, Shuguang, Wu, Wutian, and So, Kwok-Fai
- Published
- 2006
- Full Text
- View/download PDF
27. LO81: The use of in situ simulation to improve emergency department staff comfort with the management of high acuity, low occurrence cases
- Author
-
Bilic, M., primary, Hassall, K., additional, Hastings, M., additional, Fraser, C., additional, Rutledge, G., additional, and Hanel, E., additional
- Published
- 2020
- Full Text
- View/download PDF
28. MP36: Reducing utilization of unnecessary coagulation tests by emergency providers
- Author
-
Gupta, R., primary, Mondoux, S., additional, and Rutledge, G., additional
- Published
- 2020
- Full Text
- View/download PDF
29. Clinical trial data analysis of the placebo effect in osteoarthritis
- Author
-
Maier, J., primary, Rutledge, G., additional, Zhang, R., additional, Kloss, N., additional, Schuster, L., additional, Hodos, R., additional, Betz, U.A., additional, and Ladel, C., additional
- Published
- 2020
- Full Text
- View/download PDF
30. Nonlinear Whipping Behavior of Electrified Fluid Jets
- Author
-
Fridrikh, S. V., primary, Yu, J. H., additional, Brenner, M. P., additional, and Rutledge, G. C., additional
- Published
- 2006
- Full Text
- View/download PDF
31. Differential induction of c-Jun and Fos-like proteins in rat hippocampus and dorsal striatum after training in two water maze tasks
- Author
-
Teather, Lisa A., Packard, Mark G., Smith, Diane E., Ellis-Behnke, Rutledge G., and Bazan, Nicolas G.
- Published
- 2005
- Full Text
- View/download PDF
32. Towards a multi-scale model of cartilagecoarse-graining glycosaminoglycans
- Author
-
BATHE, M, primary, RUTLEDGE, G, additional, GRODZINSKY, A, additional, and TIDOR, B, additional
- Published
- 2003
- Full Text
- View/download PDF
33. Bank secrecy laws: an American perspective.
- Author
-
Rutledge, G. Philip
- Subjects
Confidential communications -- Banking - Published
- 1996
34. Corporate governance and shareholder power.
- Author
-
Rutledge, G. Philip
- Subjects
Shareholder activism -- Laws, regulations and rules ,Corporate governance -- Standards ,Publicly held corporations -- Management ,Government regulation ,Company business management - Published
- 2004
35. Simulation and Evaluation of Polymorphism in the Solid State of a Rigid Rod Aramid
- Author
-
Rutledge, G. C., primary, Papaspyrides, C. D., additional, and Suter, U. W., additional
- Published
- 1990
- Full Text
- View/download PDF
36. Molecular Simulations of Tilted Chain Crystal - Amorphous Interfaces in Polymers
- Author
-
Gautam, S., Balijepallit, S., and Rutledge, G. C.
- Published
- 1999
- Full Text
- View/download PDF
37. Optimal linearized Poisson–Boltzmann theory applied to the simulation of flexible polyelectrolytes in solution.
- Author
-
Bathe, M., Grodzinsky, A. J., Tidor, B., and Rutledge, G. C.
- Subjects
POLYELECTROLYTES ,COLLOIDS ,THERMODYNAMICS ,AMORPHOUS substances ,ELECTROLYTES ,POLYMERS - Abstract
Optimal linearized Poisson–Boltzmann (OLPB) theory is applied to the simulation of flexible polyelectrolytes in solution. As previously demonstrated in the contexts of the cell model [H. H. von Grünberg, R. van Roij, and G. Klein, Europhys. Lett. 55, 580 (2001)] and a particle-based model [B. Beresfordsmith, D. Y. C. Chan, and D. J. Mitchell, J. Colloid Interface Sci. 105, 216 (1985)] of charged colloids, OLPB theory is applicable to thermodynamic states at which conventional, Debye–Hückel (DH) linearization of the Poisson–Boltzmann equation is rendered invalid by violation of the condition that the electrostatic coupling energy of a mobile ion be much smaller than its thermal energy throughout space, |ν
α eψ(r)|«kB T. As a demonstration of its applicability to flexible polyelectrolytes, OLPB theory is applied to a concentrated solution of freely jointed chains. The osmotic pressure is computed at various reservoir ionic strengths and compared with results from the conventional DH model for polyelectrolytes. Through comparison with the cylindrical cell model for polyelectrolytes, it is demonstrated that the OLPB model yields the correct osmotic pressure behavior with respect to nonlinear theory where conventional DH theory fails, namely at large ratios of mean counterion density to reservoir salt density, when the Donnan potential is large. © 2004 American Institute of Physics. [ABSTRACT FROM AUTHOR]- Published
- 2004
- Full Text
- View/download PDF
38. Molecular simulation of crystal growth in n-eicosane.
- Author
-
Waheed, N., Lavine, M. S., and Rutledge, G. C.
- Subjects
CRYSTAL growth ,MOLECULAR dynamics ,SIMULATION methods & models - Abstract
Molecular dynamics is used to obtain crystal growth rates for a model n-alkane. A united atom model of bulk n-eicosane exhibits an observable phase change from an amorphous phase to a close-packed hexagonal phase, in the presence of a crystal surface. Rates are calculated from the translation of the order–disorder transition in the simulation cell as a function of time. The temperature dependence of crystallization is analyzed in terms of Ziabicki’s rate model, and behavior is considered in light of more coarse-grained models. © 2002 American Institute of Physics. [ABSTRACT FROM AUTHOR]
- Published
- 2002
- Full Text
- View/download PDF
39. TORONTO
- Author
-
Rutledge, G. G.
- Published
- 1934
40. Is macular pigment spatial profile a clinical biomarker in children of AMD parents?
- Author
-
Richer, S., primary, Huntjens, B., additional, Pratt, S., additional, Rutledge, G., additional, Perry, B., additional, Novil, S., additional, and Pratt, G., additional
- Published
- 2017
- Full Text
- View/download PDF
41. Abstract P5-16-16: Role of tumor microenvironment, as assessed by breast MRI background parenchymal enhancement (BPE), in modulating response to neoadjuvant chemotherapy in young women with localized breast cancer
- Author
-
Spring, L, primary, Rutledge, G, additional, Yala, A, additional, Haddad, S, additional, Specht, M, additional, Moy, B, additional, Barzilay, R, additional, Lehman, C, additional, and Bardia, A, additional
- Published
- 2017
- Full Text
- View/download PDF
42. Virtual Compton scattering and the generalized polarizabilities of the proton at Q²=0.92 and 1.76 GeV²
- Author
-
Fonvieille, H, Laveissiere, G, Degrande, N, Jaminion, S, Jutier, C, Todor, L, Di Salvo, R, Van Hoorebeke, Luc, Alexa, LC, Anderson, BD, Aniol, KA, Arundell, K, Audit, G, Auerbach, L, Baker, FT, Baylac, M, Berthot, J, Bertin, PY, Bertozzi, W, Bimbot, L, Boeglin, WU, Brash, EJ, Breton, V, Breuer, H, Burtin, E, Calarco, JR, Cardman, LS, Cavata, C, Chang, CC, Chen, JP, Chudakov, E, Cisbani, E, Dale, DS, de Jager, CW, De Leo, R, Deur, A, d'Hose, N, Dodge, GE, Domingo, JJ, Elouadrhiri, L, Epstein, MB, Ewell, LA, Finn, JM, Fissum, KG, Fournier, G, Frois, B, Frullani, S, Furget, C, Gao, H, Gao, J, Garibaldi, F, Gasparian, A, Gilad, S, Gilman, R, Glamazdin, A, Glashausser, C, Gomez, J, Gorbenko, V, Grenier, P, Guichon, PAM, Hansen, JO, Holmes, R, Holtrop, M, Howell, C, Huber, GM, Hyde, CE, Incerti, S, Iodice, M, Jardillier, J, Jones, MK, Kahl, W, Kato, S, Katramatou, AT, Kelly, JJ, Kerhoas, S, Ketikyan, A, Khayat, M, Kino, K, Kox, S, Kramer, LH, Kumar, KS, Kumbartzki, G, Kuss, M, Leone, A, LeRose, JJ, Liang, M, Lindgren, RA, Liyanage, N, Lolos, GJ, Lourie, RW, Madey, R, Maeda, K, Malov, S, Manley, DM, Marchand, C, Marchand, D, Margaziotis, DJ, Markowitz, P, Marroncle, J, Martino, J, McCormick, K, McIntyre, J, Mehrabyan, S, Merchez, F, Meziani, ZE, Michaels, R, Miller, GW, Mougey, JY, Nanda, SK, Neyret, D, Offermann, EAJM, Papandreou, Z, Pasquini, B, Perdrisat, CF, Perrino, R, Petratos, GG, Platchkov, S, Pomatsalyuk, R, Prout, DL, Punjabi, VA, Pussieux, T, Quemener, G, Ransome, RD, Ravel, O, Real, JS, Renard, F, Roblin, Y, Rowntree, D, Rutledge, G, Rutt, PM, Saha, A, Saito, T, Sarty, AJ, Serdarevic, A, Smith, T, Smirnov, G, Soldi, K, Sorokin, P, Souder, PA, Suleiman, R, Templon, JA, Terasawa, T, Tieulent, R, Tomasi-Gustaffson, E, Tsubota, H, Ueno, H, Ulmer, PE, Urciuoli, GM, Vanderhaeghen, M, Van der Meer, RLJ, Van de Vyver, R, Vernin, P, Vlahovic, B, Voskanyan, H, Voutier, E, Watson, JW, Weinstein, LB, Wijesooriya, K, Wilson, R, Wojtsekhowski, BB, Zainea, DG, Zhang, WM, Zhao, J, and Zhou, ZL
- Subjects
Physics and Astronomy ,LINEAR SIGMA-MODEL ,NUCLEON POLARIZABILITIES ,AMPLITUDE ,ELECTROPRODUCTION ,LOW-ENERGY ,Nuclear Experiment ,CHIRAL PERTURBATION-THEORY ,REAL ,THRESHOLD - Abstract
Virtual Compton scattering (VCS) on the proton has been studied at the Jefferson Laboratory using the exclusive photon electroproduction reaction ep -> ep gamma. This paper gives a detailed account of the analysis which has led to the determination of the structure functions P-LL - P-TT/epsilon and P-LT and the electric and magnetic generalized polarizabilities (GPs) alpha(E) (Q(2)) and beta(M) (Q(2)) at values of the four-momentum transfer squared Q(2) = 0.92 and 1.76 GeV2. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q(2) range and point to their nontrivial behavior.
- Published
- 2012
43. LETTERS.
- Author
-
RUTLEDGE, G. M. and CARTER, AMON G.
- Subjects
LYNCHING ,HORSE race betting - Published
- 1933
44. Peptide amphiphiles and porous biodegradable scaffolds for tissue regeneration in the brain and spinal cord
- Author
-
Rutledge G, Ellis-Behnke and Gerald E, Schneider
- Subjects
Behavior, Animal ,Tissue Scaffolds ,Guided Tissue Regeneration ,Nanofibers ,Brain ,Optic Nerve ,Axons ,Nerve Regeneration ,Rats ,Animals, Genetically Modified ,Rats, Sprague-Dawley ,Neural Stem Cells ,Spinal Cord ,Cricetinae ,Absorbable Implants ,Animals ,Female ,Schwann Cells ,Peptides ,Porosity - Abstract
Many promising strategies have been developed for controlling the release of drugs from scaffolds, yet there are still challenges that need to be addressed in order for these scaffolds to serve as successful treatments. The RADA4 self-assembling peptide spontaneously forms nanofibers, creating a scaffold-like tissue-bridging structure that provides a three-dimensional environment for the migration of living cells. We have found that RADA4: (1) facilitates the regeneration of axons in the brain of young and adult hamsters, leading to functional return of behavior and (2) demonstrates robust migration of host cells and growth of blood vessels and axons, leading to the repair of injured spinal cords in rats.
- Published
- 2011
45. Proton elastic form factor ratios to $Q^2$=3.5 GeV$^2$ by polarization transfer
- Author
-
Punjabi, V., Perdrisat, C.F., Aniol, K.A., Baker, F.T., Berthot, J., Bertin, P.Y., Bertozzi, W., Besson, A., Bimbot, L., Boeglin, W.U., Brash, E.J., Brown, D., Calarco, J.R., Cardman, L.S., Chai, Z., Chang, C.-C., Chen, J.-P., Chudakov, E., Churchwell, S., Cisbani, E., Dale, D.S., De Leo, R., Deur, A., Diederich, B., Domingo, J.J., Epstein, M.B., Ewell, L.A., G. Fissum, K., Fleck, A., Fonvieille, H., Frullani, S., Gao, J., Garibaldi, F., Gasparian, A., Gerstner, G., Gilad, S., Gilman, R., Glamazdin, A., Glashausser, C., Gomez, J., Gorbenko, V., Green, A., Hansen, J.-O., Howell, C.R., Huber, G.M., Iodice, M., De Jager, C.W., Jaminion, S., Jiang, X., Jones, M.K., Kahl, W., Kelly, J.J., Khayat, M., Kramer, L.H., Kumbartzki, G., Kuss, M., Lakuriki, E., Laveissière, G., LeRose, J.J., Liang, M., Lindgren, R.A., Liyanage, N., Lolos, G.J., Macri, R., Madey, R., Malov, S., Margaziotis, D.J., Markowitz, P., McCormick, K., McIntyre, J.I., Van Der Meer, R.L.J., Michaels, R., Milbrath, B.D., Mougey, J.Y., Nanda, S.K., Offermann, E.A.J.M., Papandreou, Z., Pentchev, L., Petratos, G.G., Piskunov, N.M., Pomatsalyuk, R.I., Prout, D.L., Quéméner, G., Ransome, R.D., Raue, B.A., Roblin, Y., Roche, R., Rutledge, G., Rutt, P.M., Saha, A., Saito, T., Sarty, A.J., Smith, T.P., Sorokin, P., Strauch, S., Suleiman, R., Takahashi, K., Templon, J.A., Todor, L., Ulmer, P.E., Urciuoli, G.M., Vernin, P., Vlahovic, B., Voskanyan, H., Wijesooriya, K., Wojtsekhowski, B.B., Woo, R.J., Xiong, F., Zainea, G.D., Zhou, Z.-L., Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), HALL A, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
electron-proton scattering ,protons ,polarisation in elementary particle interactions ,electromagnetic form factors ,FOS: Physical sciences ,25.30.Bf, 13.40.Gp, 24.85.+p ,Nuclear Experiment (nucl-ex) ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Nuclear Experiment - Abstract
The ratio of the proton elastic electromagnetic form factors, $G_{Ep}/G_{Mp}$, was obtained by measuring $P_{t}$ and $P_{\ell}$, the transverse and longitudinal recoil proton polarization components, respectively, for the elastic $\vec e p \to e\vec p$ ~reaction in the four-momentum transfer squared range of 0.5 to 3.5 GeV$^2$. In the single-photon exchange approximation, the ratio $G_{Ep}/G_{Mp}$ is directly proportional to the ratio $P_t/P_{\ell}$. The simultaneous measurement of $P_{t}$ and $P_{\ell}$ in a polarimeter reduces systematic uncertainties. The results for the ratio $G_{Ep}/G_{Mp}$ show a systematic decrease with increasing $Q^2$, indicating for the first time a definite difference in the distribution of charge and magnetization in the proton. The data have been re-analyzed and systematic uncertainties have become significantly smaller than previously published results., Comment: 31 pages, 29 gfigures, submitted to Phys. Rev. C
- Published
- 2005
46. Virtual compton scattering in the resonance region up to the deep inelastic region at backward angles and momentum transfer squared of $Q^2$ = 1.0 $GeV^2$
- Author
-
Laveissiere, G., Degrande, N., Jaminion, S., Jutier, C., Todor, L., Di Salvo, R., Van Hoorebeke, L., Alexa, L.C., Anderson, B.D., Aniol, K.A., Arundell, K., Audit, G., Auerbach, L., Baker, F.T., Baylac, M., Berthot, J., Bertin, P.Y., Bertozzi, W., Bimbot, L., Boeglin, W.U., Brash, E.J., BRETON, Vincent, Breuer, H., Burtin, E., Calarco, J.R., Cardman, L.S., Cavata, C., Chang, C.C., Chen, J.P., Chudakov, E., Cisbani, E., Dale, D.S., De Jager, C.W., De Leo, R., Deur, A., D'Hose, N., Dodge, G.E., Domingo, J.J., Elouadrhiri, L., Epstein, M.B., Ewell, L.A., Finn, J.M., Fissum, K.G., Fonvieille, H., Fournier, G., Frois, B., Frullani, S., Furget, C., Gao, H., Gao, J., Garibaldi, F., Gasparian, A., Gilad, S., Gilman, R., Glamazdin, A., Glashausser, C., Gomez, J., Gorbenko, V., Grenier, P., Guichon, P.A.M., Hansen, J.O., Holmes, R., Holtrop, M., Howell, C., Huber, G.M., Hyde-Wright, C.E., Incerti, S., Iodice, M., Jardillier, J., Jones, M.K., Kahl, W., Kamalov, S., Kato, S., Katramatou, A.T., Kelly, J.J., Kerhoas, S., Ketikyan, A., Khayat, M., Kino, K., Kox, S., Kramer, L.H., Kumar, K.S., Kumbartzki, G., Kuss, M., Leone, A., LeRose, J.J., Liang, M., Lindgren, R.A., Liyanage, N., Lolos, G.J., Lourie, R.W., Madey, R., Maeda, K., Malov, S., Manley, D.M., Marchand, C., Marchand, D., Margaziotis, D.J., Markowitz, P., Marroncle, J., Martino, J., Martoff, C.J., McCormick, K., McIntyre, J., Mehrabyan, S., Merchez, F., Meziani, Z.E., Michaels, R., Miller, G.W., Mougey, J.Y., Nanda, S.K., Neyret, D., Offermann, E.A.J.M., Papandreou, Z., Perdrisat, C.F., Perrino, R., Petratos, G.G., Platchkov, S., Pomatsalyuk, R., Prout, D.L., Punjabi, V.A., Pussieux, T., Quéméner, G., Ransome, R.D., Ravel, O., Real, J.S., Renard, F., Roblin, Y., Rowntree, D., Rutledge, G., Rutt, P.M., Saha, A., Saito, T., Sarty, A.J., Serdarevic, A., Smith, T., Smirnov, George, Soldi, K., Sorokin, P., Souder, P.A., Suleiman, R., Templon, J.A., Terasawa, T., Tiator, L., Tieulent, R., Tomasi-Gustaffson, E., Tsubota, H., Ueno, H., Ulmer, P.E., Urciuoli, G.M., Van De Vyver, R., Van Der Meer, R.L.J., Vernin, P., Vlahovic, B., Voskanyan, H., Voutier, E., Watson, J.W., Weinstein, L.B., Wijesooriya, K., Wilson, R., Wojtsekhowski, B.B., Zainea, D.G., Zhang, W.M., Zhao, J., Zhou, Z.L., Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire SUBATECH Nantes (SUBATECH), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), HALL A, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes)
- Subjects
High Energy Physics - Experiment (hep-ex) ,13.60.-r, 13.60.Fz ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,FOS: Physical sciences ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,High Energy Physics - Experiment - Abstract
We have made the first measurements of the virtual Compton scattering process via the e p -> e p gamma exclusive reaction at Q**2 = 1 GeV**2 in the nucleon resonance region. The cross section is obtained at center of mass (CM) backward angle, theta_gamma_gamma*, in a range of total (gamma* p) CM energy W from the proton mass up to W = 1.91 GeV. The data show resonant structures in the first and second resonance regions, and are well reproduced at higher W by the Bethe-Heitler+Born cross section, including t-channel pi0-exchange. At high W, our data, together with existing real photon data, show a striking Q**2 independence. Our measurement of the ratio of H(e,e'p)gamma to H(e,e'p)pi0 cross sections is presented and compared to model predictions., 6 pages, 5 figures, Bibtex format, to be submitted to Physical Review Letters includes cross section tables
- Published
- 2004
47. Measurement of the generalized polarizabilities of the proton in virtual compton scattering at $Q^2$ = 0.92 and 1.76 Gev$^2$
- Author
-
Laveissiere, G., Todor, L., Degrande, N., Jaminion, S., Jutier, C., Di Salvo, R., Van Hoorebeke, L., Alexa, L.C., Anderson, B.D., Aniol, K.A., Arundell, K., Audit, G., Auerbach, L., Baker, F.T., Baylac, M., Berthot, J., Bertin, P.Y., Bertozzi, W., Bimbot, L., Boeglin, W.U., Brash, E.J., BRETON, Vincent, Breuer, H., Burtin, E., Calarco, J.R., Cardman, L.S., Cavata, C., Chang, C.C., Chen, J.P., Chudakov, E., Cisbani, E., Dale, D.S., De Jager, C.W., De Leo, R., Deur, A., D'Hose, N., Dodge, G.E., Domingo, J.J., Elouadrhiri, L., Epstein, M.B., Ewell, L.A., Finn, J.M., Fissum, K.G., Fonvieille, H., Fournier, G., Frois, B., Frullani, S., Furget, C., Gao, H., Gao, J., Garibaldi, F., Gasparian, A., Gilad, S., Gilman, R., Glamazdin, A., Glashausser, C., Gomez, J., Gorbenko, V., Grenier, P., Guichon, P.A.M., Hansen, J.O., Holmes, R., Holtrop, M., Howell, C., Huber, G.M., Hyde-Wright, C.E., Incerti, S., Iodice, M., Jardillier, J., Jones, M.K., Kahl, W., Kato, S., Katramatou, A.T., Kelly, J.J., Kerhoas, S., Ketikyan, A., Khayat, M., Kino, K., Kox, S., Kramer, L.H., Kumar, K.S., Kumbartzki, G., Kuss, M., Leone, A., LeRose, J.J., Liang, M., Lindgren, R.A., Liyanage, N., Lolos, G.J., Lourie, R.W., Madey, R., Maeda, K., Malov, S., Manley, D.M., Marchand, C., Marchand, D., Margaziotis, D.J., Markowitz, P., Marroncle, J., Martino, J., Martoff, C.J., McCormick, K., McIntyre, J., Mehrabyan, S., Merchez, F., Meziani, Z.E., Michaels, R., Miller, G.W., Mougey, J.Y., Nanda, S.K., Neyret, D., Offermann, E.A.J.M., Papandreou, Z., Perdrisat, C.F., Perrino, R., Petratos, G.G., Platchkov, S., Pomatsalyuk, R., Prout, D.L., Punjabi, V.A., Pussieux, T., Quéméner, G., Ransome, R.D., Ravel, O., Real, J.S., Renard, F., Roblin, Y., Rowntree, D., Rutledge, G., Rutt, P.M., Saha, A., Saito, T., Sarty, A.J., Serdarevic, A., Smith, T., Smirnov, George, Soldi, K., Sorokin, P., Souder, P.A., Suleiman, R., Templon, J.A., Terasawa, T., Tieulent, R., Tomasi-Gustaffson, E., Tsubota, H., Ueno, H., Ulmer, P.E., Urciuoli, G.M., Van De Vyver, R., Van Der Meer, R.L.J., Vernin, P., Vlahovic, B., Voskanyan, H., Voutier, E., Watson, J.W., Weinstein, L.B., Wijesooriya, K., Wilson, R., Wojtsekhowski, B.B., Zainea, D.G., Zhang, W.M., Zhao, J., Zhou, Z.L., Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Laboratoire SUBATECH Nantes (SUBATECH), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), HALL A, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes)
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,13.60.Fz ,Elastic and Compton scattering ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,FOS: Physical sciences ,Physics::Accelerator Physics - Abstract
We report a Virtual Compton Scattering study of the proton at low CM energies. We have determined the structure functions $P_{LL}-P_{TT}/\epsilon$ and $P_{LT}$, and the electric and magnetic Generalized Polarizabilities (GPs) $\alpha_E(Q2)$ and $\beta_M(Q2)$ at momentum transfer Q2= 0.92 and 1.76 GeV2. The electric GP shows a strong fall-off with Q2, and its global behavior does not follow a simple dipole form. The magnetic GP shows a rise and then a fall-off; this can be interpreted as the dominance of a long-distance diamagnetic pion cloud at low Q2, compensated at higher Q2 by a paramagnetic contribution from $\pi N$ intermediate states., Comment: 4 pages, 2 Figs. Version for PRL after PRL cancelled their request for reducing length of paper
- Published
- 2004
48. Backward electroproduction of $\pi^0$ mesons on protons in the region of nucleon resonances at four momentum transfer squared $Q^2 = 1.0 GeV^2$
- Author
-
Laveissiere, G., Degrande, N., Jaminion, S., Jutier, C., Todor, L., Di Salvo, R., Van Hoorebeke, L., Alexa Stony, L.C., Anderson, B.D., Aniol, K.A., Arundell, K., Audit, G., Auerbach, L., Baker, F.T., Baylac, M., Berthot, J., Bertin, P.Y., Bertozzi, W., Bimbot, L., Boeglin, W.U., Brash, E.J., BRETON, Vincent, Breuer, H., Burtin, E., Calarco, J.R., Cardman, L.S., Cavata, C., Chang, C.C., Chen, J.P., Chudakov, E., Cisbani, E., Dale, D.S., De Jager, C.W., De Leo, R., Deur, A., D'Hose, N., Dodge, G.E., Domingo, J.J., Elouadrhiri, L., Epstein, M.B., Ewell, L.A., Finn, J.M., Fissum, K.G., Fonvieille, H., Fournier, G., Frois, B., Frullani, S., Furget, C., Gao, H., Gao, J., Garibaldi, F., Gasparian, A., Gilad, S., Gilman, R., Glamazdin, A., Glashausser, C., Gomez, J., Gorbenko, V., Grenier, P., Guichon, P.A.M., Hansen, J.O., Holmes, R., Holtrop, M., Howell, C., Huber, G.M., Hyde-Wright, C.E., Incerti, S., Iodice, M., Jardillier, J., Jones, M.K., Kahl, W., Kamalov, S., Kato, S., Katramatou, A.T., Kelly, J.J., Kerhoas, S., Ketikyan, A., Khayat, M., Kino, K., Kox, S., Kramer, L.H., Kumar, K.S., Kumbartzki, G., Kuss, M., Leone, A., LeRose, J.J., Liang, M., Lindgren, R.A., Liyanage, N., Lolos, G.J., Lourie, R.W., Madey, R., Maeda, K., Malov, S., Manley, D.M., Marchand, C., Marchand, D., Margaziotis, D.J., Markowitz, P., Marroncle, J., Martino, J., Martoff, C.J., McCormick, K., McIntyre, J., Mehrabyan, S., Merchez, F., Meziani, Z.E., Michaels, R., Miller, G.W., Mougey, J.Y., Nanda, S.K., Neyret, D., Offermann, E.A.J.M., Papandreou, Z., Perdrisat, C.F., Perrino, R., Petratos, G.G., Platchkov, S., Pomatsalyuk, R., Prout, D.L., Punjabi, V.A., Pussieux, T., Quéméner, G., Ransome, R.D., Ravel, O., Real, J.S., Renard, F., Roblin, Y., Rowntree, D., Rutledge, G., Rutt, P.M., Saha, A., Saito, T., Sarty, A.J., Serdarevic, A., Smith, T., Smirnov, George, Soldi, K., Sorokin, P., Souder, P.A., Suleiman, R., Templon, J.A., Terasawa, T., Tiator, L., Tieulent, R., Tomasi-Gustaffson, E., Tsubota, H., Ueno, H., Ulmer, P.E., Urciuoli, G.M., Van De Vyver, R., Van Der Meer, R.L.J., Vernin, P., Vlahovic, B., Voskanyan, H., Voutier, E., Watson, J.W., Weinstein, L.B., Wijesooriya, K., Wilson, R., Wojtsekhowski, B.B., Zainea, D.G., Zhang, W.M., Zhao, J., Zhou, Z.L., Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), Laboratoire SUBATECH Nantes (SUBATECH), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), HALL A, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes)
- Subjects
electron-proton interactions ,13.60.Le, 14.20.Gk ,Nuclear Theory ,pion production ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,High Energy Physics::Experiment ,hadron electroproduction ,Nuclear Experiment - Abstract
PHASE; International audience; Exclusive electroproduction of pi0 mesons on protons in the backward hemisphere has been studied at Q2=1.0 GeV2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma*p) center-of-mass energy W from the pion production threshold to W=2.0 GeV. The differential cross sections sigmaT+epsilonsigmaL, sigmaTL, and sigmaTT were separated from the azimuthal distribution and are presented together with the MAID and SAID parametrizations.
- Published
- 2004
49. The dynamics of the quasielastic $^{16}O$(e,e'p) reaction at $Q^2$ $\approx$ 0.8 (GeV/c)$^2$
- Author
-
G. Fissum, K., Liang, M., D. Anderson, B., A. Aniol, K., Auerbach, L., T. Baker, F., Berthot, J., Bertozzi, W., Bertin, P.Y., Bimbot, L., U. Boeglin, W., J. Brash, E., BRETON, Vincent, Breuer, H., Burtin, E., R. Calarco, J., S. Cardman, L., D. Cates, G., Cavata, C., C. Chang, C., Chen, J.-P., Cisbani, E., S. Dale, D., W. De Jager, C., De Leo, R., Deur, A., Diederich, B., Djawotho, P., Domingo, J., Ducret, J.-E., B. Epstein, M., Ewell, L.A., M. Finn, J., Fonvieille, H., Frois, B., Frullani, S., Gao, J., Garibaldi, F., Gasparian, A., Gilad, S., Gilman, R., Glamazdin, A., Glashausser, C., Gomez, J., Gorbenko, V., Gorringe, T., W. Hersman, F., Holmes, R., Holtrop, M., D'Hose, N., Howell, C., M. Huber, G., E. Hyde-Wright, C., Iodice, M., Jaminion, S., K. Jones, M., Joo, K., Jutier, C., Kahl, W., Kato, S., Kelly, J.J., Kerhoas, S., Khandaker, M., Khayat, M., Kino, K., Korsch, W., Kramer, L., S. Kumar, K., Kumbartzki, G., Laveissière, G., Leone, A., LeRose, J.J., Levchuk, L., A. Lindgren, R., Liyanage, N., J. Lolos, G., W. Lourie, R., Madey, R., Maeda, K., Malov, S., M. Manley, D., J. Margaziotis, D., Markowitz, P., Martino, J., S. Mccarthy, J., McCormick, K., McIntyre, J., L. J. Van Der Meer, R., Meziani, Z.-E., Michaels, R., Mougey, J., Nanda, S., Neyret, D., A. J. M. Offermann, E., Papandreou, Z., F. Perdrisat, C., Perrino, R., G. Petratos, G., Platchkov, S., Pomatsalyuk, R., L. Prout, D., A. Punjabi, V., Pussieux, T., Quéméner, G., D. Ransome, R., Ravel, O., Roblin, Y., Roche, R., Rowntree, D., A. Rutledge, G., M. Rutt, P., Saha, A., Saito, T., J. Sarty, A., Serdarevic-Offermann, A., P. Smith, T., Soldi, A., Sorokin, P., Souder, P., Suleiman, R., A. Templon, J., Terasawa, T., Todor, L., Tsubota, H., Ueno, H., E. Ulmer, P., M. Urciuoli, G., Vernin, P., Van Verst, S., Vlahovic, B., Voskanyan, H., W. Watson, J., B. Weinstein, L., Wijesooriya, K., Wojtsekhowski, B., G. Zainea, D., Zeps, V., Zhao, J., Zhou, Z.-L., Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire SUBATECH Nantes (SUBATECH), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS), HALL A, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear Theory ,25.30.Fj, 24.70.+s, 27.20.+n ,FOS: Physical sciences ,Nuclear Experiment (nucl-ex) ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Nuclear Experiment - Abstract
The physics program in Hall A at Jefferson Lab commenced in the summer of 1997 with a detailed investigation of the 16O(e,e'p) reaction in quasielastic, constant (q,w) kinematics at Q^2 ~ 0.8 (GeV/c)^2, q ~ 1 GeV/c, and w ~ 445 MeV. Use of a self-calibrating, self-normalizing, thin-film waterfall target enabled a systematically rigorous measurement. Differential cross-section data for proton knockout were obtained for 0 < Emiss < 120 MeV and 0 < pmiss < 350 MeV/c. These results have been used to extract the ALT asymmetry and the RL, RT, RLT, and RL+TT effective response functions. Detailed comparisons of the data with Relativistic Distorted-Wave Impulse Approximation, Relativistic Optical-Model Eikonal Approximation, and Relativistic Multiple-Scattering Glauber Approximation calculations are made. The kinematic consistency of the 1p-shell normalization factors extracted from these data with respect to all available 16O(e,e'p) data is examined. The Q2-dependence of the normalization factors is also discussed., 43 pages, 25 figures, all known typos now corrected
- Published
- 2004
50. Measurement of the generalized polarizabilities of the proton in virtual compton scattering at $Q^2=0.92 and 1.76 GeV^2$: II. Dispersion relation analysis
- Author
-
Laveissiere, G., Todor, L., Degrande, N., Jaminion, S., Jutier, C., Di Salvo, R., Van Hoorebeke, L., Alexa, L.C., Anderson, B.D., Aniol, K.A., Arundell, K., Audit, G., Auerbach, L., Baker, F.T., Baylac, M., Berthot, J., Bertin, P.Y., Bertozzi, W., Bimbot, L., Boeglin, W.U., Brash, E.J., BRETON, Vincent, Breuer, H., Burtin, E., Calarco, J.R., Cardman, L.S., Cavata, C., Chang, C.C., Chen, J.P., Chudakov, E., Cisbani, E., Dale, D.S., De Jager, C.W., De Leo, R., Deur, A., D'Hose, N., Dodge, G.E., Domingo, J.J., Elouadrhiri, L., Epstein, M.B., Ewell, L.A., Finn, J.M., Fissum, K.G., Fonvieille, H., Fournier, G., Frois, B., Frullani, S., Furget, C., Gao, H., Gao, J., Garibaldi, F., Gasparian, A., Gilad, S., Gilman, R., Glamazdin, A., Glashausser, C., Gomez, J., Gorbenko, V., Grenier, P., Guichon, P.A.M., Hansen, J.O., Holmes, R., Holtrop, M., Howell, C., Huber, G.M., Hyde-Wright, C.E., Incerti, S., Iodice, M., Jardillier, J., Jones, M.K., Kahl, W., Kato, S., Katramatou, A.T., Kelly, J.J., Kerhoas, S., Ketikyan, A., Khayat, M., Kino, K., Kox, S., Kramer, L.H., Kumar, K.S., Kumbartzki, G., Kuss, M., Leone, A., LeRose, J.J., Liang, M., Lindgren, R.A., Liyanage, N., Lolos, G.J., Lourie, R.W., Madey, R., Maeda, K., Malov, S., Manley, D.M., Marchand, C., Marchand, D., Margaziotis, D.J., Markowitz, P., Marroncle, J., Martino, J., Martoff, C.J., McCormick, K., McIntyre, J., Mehrabyan, S., Merchez, F., Meziani, Z.E., Michaels, R., Miller, G.W., Mougey, J.Y., Nanda, S.K., Neyret, D., Offermann, E.A.J.M., Papandreou, Z., Pasquini, B., Perdrisat, C.F., Perrino, R., Petratos, G.G., Platchkov, S., Pomatsalyuk, R., Prout, D.L., Punjabi, V.A., Pussieux, T., Quéméner, G., Ransome, R.D., Ravel, O., Real, J.S., Renard, F., Roblin, Y., Rowntree, D., Rutledge, G., Rutt, P.M., Saha, A., Saito, T., Sarty, A.J., Serdarevic, A., Smith, T., Smirnov, George, Soldi, K., Sorokin, P., Souder, P.A., Suleiman, R., Templon, J.A., Terasawa, T., Tieulent, R., Tomasi-Gustaffson, E., Tsubota, H., Ueno, H., Ulmer, P.E., Urciuoli, G.M., Vanderhaeghen, M., Van De Vyver, R., Van Der Meer, R.L.J., Vernin, P., Vlahovic, B., Voskanyan, H., Voutier, E., Watson, J.W., Weinstein, L.B., Wijesooriya, K., Wilson, R., Wojtsekhowski, B.B., Zainea, D.G., Zhang, W.M., Zhao, J., Zhou, Z.L., Laboratoire de Physique Corpusculaire - Clermont-Ferrand (LPC), Université Blaise Pascal - Clermont-Ferrand 2 (UBP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire SUBATECH Nantes (SUBATECH), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), HALL A, Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), and Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Nantes (UN)-Mines Nantes (Mines Nantes)
- Subjects
[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] - Abstract
PHASE
- Published
- 2004
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.