1. Role of surfactants on droplet formation in piezoacoustic inkjet printing across microsecond-to-second timescales
- Author
-
Rump, Maaike, Diddens, Christian, Sen, Uddalok, Versluis, Michel, Lohse, Detlef, and Segers, Tim
- Subjects
Physics - Fluid Dynamics ,Condensed Matter - Soft Condensed Matter - Abstract
In piezo acoustic drop-on-demand inkjet printing a single droplet is produced for each piezo driving pulse. This droplet is typically multicomponent, including surfactants to control the spreading and drying of the droplet on the substrate. However, the role of these surfactants on the droplet formation process remains rather elusive. Surfactant concentration gradients may manifest across microsecond-to-second timescales, spanning both the rapid ejection of ink from the nozzle exit and the comparatively slower idling timescale governing the firing of successive droplets. In the present work, we study the influence of surfactants on droplet formation across 6 orders of magnitude in time. To this end, we visualize the microsecond droplet formation process using stroboscopic laser-induced fluorescence microscopy while we vary the nozzle idle time. Our results show that increasing the idle time up to O(1) s affects only the break-up dynamics of the inkjet but not its velocity. By contrast, for idle times $>$ O(1) s, both the break-up dynamics are altered and the velocity of the inkjet increases. We show that the increased velocity results from a decreased surface tension of the ejected droplet, which we extracted from the observed shape oscillations of the jetted droplets in flight. The measured decrease in surface tension is surprising as the $\mu$s timescale of droplet formation is much faster than the typical ms-to-s timescale of surfactant adsorption. By varying the bulk surfactant concentration, we show that the fast decrease in surface tension results from a local surfactant concentration increase to more than 200 times the CMC. Our results suggest that a local high concentration of surfactant allows for surfactant adsorption to the interface of an inkjet at the $\mu$s-to-ms timescale, which is much faster than the typical ms-to-s timescale of surfactant adsorption., Comment: 13 pages, 8 figures
- Published
- 2024