1. Physical Unclonable Functions with Hyperspectral Imaging System for Ultrafast Storage and Authentication Enabled by Random Structural Color Domains
- Author
-
Xiaofeng Lin, Quhai Li, Yuqi Tang, Zhaohan Chen, Ruilian Chen, Yingjuan Sun, Wenjing Lin, Guobin Yi, and Quan Li
- Subjects
cellulose nanocrystal ,encrypted storage ,hyperspectral imaging ,physical unclonable function ,structural color domain ,Science - Abstract
Abstract Physical unclonable function (PUF) is attractive in modern encryption technologies. Addressing the disadvantage of slow data storage/authentication in optical PUF is paramount for practical applications but remains an on‐going challenge. Here, a highly efficient PUF strategy based on random structural color domains (SCDs) of cellulose nanocrystal (CNC) is proposed for the first time, combing with hyperspectral imaging system (HIS) for ultrafast storage and authentication. By controlling the growth and fusion behavior of the tactoids of CNC, the SCDs display an irregular and random distribution of colors, shapes, sizes, and reflectance spectra, which grant unique and inherent fingerprint‐like characteristics that are non‐duplicated. Based on images and spectra, these fingerprint features are used to develop two sets of PUF key generation methods, which can be respectively authenticated at the user‐end and the manufacturer‐front‐end that achieving a high coding capacity of at least 22304. Notably, the use of HIS greatly shortens the time of key reading and generation (≈5 s for recording, 0.5–0.7 s for authentication). This new optical PUF labels can not only solve slow data storage and complicated authentication in optical PUF, but also impulse the development of CNC in industrial applications by reducing color uniformity requirement.
- Published
- 2024
- Full Text
- View/download PDF