1. Anomaly detection for a vibrating structure: A subspace identification/tracking approach.
- Author
-
Candy JV, Franco SN, Ruggiero EL, Emmons MC, Lopez IM, and Stoops LM
- Abstract
Mechanical devices operating in noisy environments lead to low signal-to-noise ratios creating a challenging signal processing problem to monitor the vibrational signature of the device in real-time. To detect/classify a particular type of device from noisy vibration data, it is necessary to identify signatures that make it unique. Resonant (modal) frequencies emitted offer a signature characterizing its operation. The monitoring of structural modes to determine the condition of a device under investigation is essential, especially if it is a critical entity of an operational system. The development of a model-based scheme capable of the on-line tracking of structural modal frequencies by applying both system identification methods to extract a modal model and state estimation methods to track their evolution is discussed along with the development of an on-line monitor capable of detecting anomalies in real-time. An application of this approach to an unknown structural device is discussed illustrating the approach and evaluating its performance.
- Published
- 2017
- Full Text
- View/download PDF