39 results on '"Royer, Clement"'
Search Results
2. Riemannian trust-region methods for strict saddle functions with complexity guarantees
- Author
-
Goyens, Florentin and Royer, Clément W.
- Subjects
Mathematics - Optimization and Control - Abstract
The difficulty of minimizing a nonconvex function is in part explained by the presence of saddle points. This slows down optimization algorithms and impacts worst-case complexity guarantees. However, many nonconvex problems of interest possess a favorable structure for optimization, in the sense that saddle points can be escaped efficiently by appropriate algorithms. This strict saddle property has been extensively used in data science to derive good properties for first-order algorithms, such as convergence to second-order critical points. However, the analysis and the design of second-order algorithms in the strict saddle setting have received significantly less attention. In this paper, we consider second-order trust-region methods for a class of strict saddle functions defined on Riemannian manifolds. These functions exhibit (geodesic) strong convexity around minimizers and negative curvature at saddle points. We show that the standard trust-region method with exact subproblem minimization finds an approximate local minimizer in a number of iterations that depends logarithmically on the accuracy parameter, which significantly improves known results for general nonconvex optimization. We also propose an inexact variant of the algorithm that explicitly leverages the strict saddle property to compute the most appropriate step at every iteration. Our bounds for the inexact variant also improve over the general nonconvex case, and illustrate the benefit of using strict saddle properties within optimization algorithms. Keywords: Riemannian optimization, strict saddle function, second-order method, complexity guarantees.
- Published
- 2024
3. Full-Low Evaluation Methods For Bound and Linearly Constrained Derivative-Free Optimization
- Author
-
Royer, Clément W., Sohab, Oumaima, and Vicente, Luis Nunes
- Subjects
Mathematics - Optimization and Control - Abstract
Derivative-free optimization (DFO) consists in finding the best value of an objective function without relying on derivatives. To tackle such problems, one may build approximate derivatives, using for instance finite-difference estimates. One may also design algorithmic strategies that perform space exploration and seek improvement over the current point. The first type of strategy often provides good performance on smooth problems but at the expense of more function evaluations. The second type is cheaper and typically handles non-smoothness or noise in the objective better. Recently, full-low evaluation methods have been proposed as a hybrid class of DFO algorithms that combine both strategies, respectively denoted as Full-Eval and Low-Eval. In the unconstrained case, these methods showed promising numerical performance. In this paper, we extend the full-low evaluation framework to bound and linearly constrained derivative-free optimization. We derive convergence results for an instance of this framework, that combines finite-difference quasi-Newton steps with probabilistic direct-search steps. The former are projected onto the feasible set, while the latter are defined within tangent cones identified by nearby active constraints. We illustrate the practical performance of our instance on standard linearly constrained problems, that we adapt to introduce noisy evaluations as well as non-smoothness. In all cases, our method performs favorably compared to algorithms that rely solely on Full-eval or Low-eval iterations., Comment: 33 pages, 10 figures (20 subfigures), revised version
- Published
- 2023
4. Complexity analysis of regularization methods for implicitly constrained least squares
- Author
-
Onwunta, Akwum and Royer, Clément W.
- Subjects
Mathematics - Optimization and Control - Abstract
Optimization problems constrained by partial differential equations (PDEs) naturally arise in scientific computing, as those constraints often model physical systems or the simulation thereof. In an implicitly constrained approach, the constraints are incorporated into the objective through a reduced formulation. To this end, a numerical procedure is typically applied to solve the constraint system, and efficient numerical routines with quantifiable cost have long been developed for that purpose. Meanwhile, the field of complexity in optimization, that estimates the cost of an optimization algorithm, has received significant attention in the literature, with most of the focus being on unconstrained or explicitly constrained problems. In this paper, we analyze an algorithmic framework based on quadratic regularization for implicitly constrained nonlinear least squares. By leveraging adjoint formulations, we can quantify the worst-case cost of our method to reach an approximate stationary point of the optimization problem. Our definition of such points exploits the least-squares structure of the objective, and provides new complexity insights even in the unconstrained setting. Numerical experiments conducted on PDE-constrained optimization problems demonstrate the efficiency of the proposed framework., Comment: 23 pages, second revision
- Published
- 2023
5. Expected decrease for derivative-free algorithms using random subspaces
- Author
-
Hare, Warren, Roberts, Lindon, and Royer, Clément W.
- Subjects
Mathematics - Optimization and Control - Abstract
Derivative-free algorithms seek the minimum of a given function based only on function values queried at appropriate points. Although these methods are widely used in practice, their performance is known to worsen as the problem dimension increases. Recent advances in developing randomized derivative-free techniques have tackled this issue by working in low-dimensional subspaces that are drawn at random in an iterative fashion. The connection between the dimension of these random subspaces and the algorithmic guarantees has yet to be fully understood. In this paper, we develop an analysis for derivative-free algorithms (both direct-search and model-based approaches) employing random subspaces. Our results leverage linear local approximations of smooth functions to obtain understanding of the expected decrease achieved per function evaluation. Although the quantities of interest involve multidimensional integrals with no closed-form expression, a relative comparison for different subspace dimensions suggest that low dimension is preferable. Numerical computation of the quantities of interest confirm the benefit of operating in low-dimensional subspaces.
- Published
- 2023
6. Using orthogonally structured positive bases for constructing positive $k$-spanning sets with cosine measure guarantees
- Author
-
Hare, Warren, Jarry-Bolduc, Gabriel, Kerleau, Sébastien, and Royer, Clément W.
- Subjects
Mathematics - Numerical Analysis ,Mathematics - Optimization and Control ,15A03, 15A21, 15B30, 15B99, 90C56 - Abstract
Positive spanning sets span a given vector space by nonnegative linear combinations of their elements. These have attracted significant attention in recent years, owing to their extensive use in derivative-free optimization. In this setting, the quality of a positive spanning set is assessed through its cosine measure, a geometric quantity that expresses how well such a set covers the space of interest. In this paper, we investigate the construction of positive $k$-spanning sets with geometrical guarantees. Our results build on recently identified positive spanning sets, called orthogonally structured positive bases. We first describe how to identify such sets and compute their cosine measures efficiently. We then focus our study on positive $k$-spanning sets, for which we provide a complete description, as well as a new notion of cosine measure that accounts for the resilient nature of such sets. By combining our results, we are able to use orthogonally structured positive bases to create positive $k$-spanning sets with guarantees on the value of their cosine measures., Comment: V4 fixes a typo in the arXiv abstract
- Published
- 2023
7. Properties of the Nili Fossae Olivine-clay-carbonate lithology: orbital and in situ at S\'e\'itah
- Author
-
Brown, Adrian J., Kah, Linda, Mandon, Lucia, Wiens, Roger, Pinet, Patrick, Clavé, Elise, Mouélic, Stéphane Le, Udry, Arya, Gasda, Patrick J., Royer, Clément, Hickman-Lewis11, Keyron, Cousin, Agnes, Simon, Justin I., Comellas14, Jade, Cloutis, Edward, Fouchet, Thierry, Fairén, Alberto G., Connell, Stephanie, Flannery, David, Horgan, Briony, Mayhew, Lisa, Treiman, Allan, Núñez, Jorge I., Wogsland, Brittan, Benzerara, Karim, Amundsen, Hans E. F., Quantin-Nataf, Cathy, Hand, Kevin P., Debaille, Vinciane, Essunfeld, Ari, Beck, Pierre, Tosca, Nicholas J., Madariaga, Juan M., and Ravanis, Eleni
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Physics - Geophysics - Abstract
We examine the observed properties of the Nili Fossae olivine-clay-carbonate lithology from orbital data and in situ by the Mars 2020 rover at the S\'e\'itah unit in Jezero crater, including: 1) composition (Liu, 2022) 2) grain size (Tice, 2022) 3) inferred viscosity (calculated based on geochemistry collected by SuperCam (Wiens, 2022)). Based on the low viscosity and distribution of the unit we postulate a flood lava origin for the olivine-clay-carbonate at S\'e\'itah. We include a new CRISM map of the clay 2.38 {\mu}m band and use in situ data to show that the clay in the olivine cumulate in the S\'e\'itah formation is consistent with talc or serpentine from Mars 2020 SuperCam LIBS and VISIR and MastCam-Z observations. We discuss two intertwining aspects of the history of the lithology: 1) the emplacement and properties of the cumulate layer within a lava lake, based on terrestrial analogs in the Pilbara, Western Australia, and using previously published models of flood lavas and lava lakes, and 2) the limited extent of post emplacement alteration, including clay and carbonate alteration (Clave, 2022; Mandon, 2022)., Comment: 34 pages, 15 figures
- Published
- 2022
8. Detecting negative eigenvalues of exact and approximate Hessian matrices in optimization
- Author
-
Hare, Warren and Royer, Clément W.
- Subjects
Mathematics - Optimization and Control ,90C56 - Abstract
Nonconvex minimization algorithms often benefit from the use of second-order information as represented by the Hessian matrix. When the Hessian at a critical point possesses negative eigenvalues, the corresponding eigenvectors can be used to search for further improvement in the objective function value. Computing such eigenpairs can be computationally challenging, particularly if the Hessian matrix itself cannot be built directly but must rather be sampled or approximated. In blackbox optimization, such derivative approximations are built at a significant cost in terms of function values. In this paper, we investigate practical approaches to detect negative eigenvalues in Hessian matrices without access to the full matrix. We propose a general framework that begins with the diagonal and gradually builds submatrices to detect negative curvature. Crucially,our approach works both when exact Hessian coordinate values are available and when Hessian coordinate values are approximated. We compare several instances of our framework on a test set of Hessian matrices from a popular optimization library, and finite-differences approximations thereof. Our experiments highlight the importance of the variable order in the problem description, and show that forming submatrices is often an efficient approach to detect negative curvature.
- Published
- 2022
9. Direct search based on probabilistic descent in reduced spaces
- Author
-
Roberts, Lindon and Royer, Clément W.
- Subjects
Mathematics - Optimization and Control ,90C56, 90C60, 68W20 - Abstract
In this paper, we study a generic direct-search algorithm in which the polling directions are defined using random subspaces. Complexity guarantees for such an approach are derived thanks to probabilistic properties related to both the subspaces and the directions used within these subspaces. Our analysis crucially extends previous deterministic and probabilistic arguments by relaxing the need for directions to be deterministically bounded in norm. As a result, our approach encompasses a wide range of new optimal polling strategies that can be characterized using our subspace and direction properties. By leveraging results on random subspace embeddings and sketching matrices, we show that better complexity bounds are obtained for randomized instances of our framework. A numerical investigation confirms the benefit of randomization, particularly when done in subspaces, when solving problems of moderately large dimension.
- Published
- 2022
10. A nonlinear conjugate gradient method with complexity guarantees and its application to nonconvex regression
- Author
-
Chan--Renous-Legoubin, Rémi and Royer, Clément W.
- Subjects
Mathematics - Optimization and Control ,90C60, 65K05, 49M05 - Abstract
Nonlinear conjugate gradients are among the most popular techniques for solving continuous optimization problems. Although these schemes have long been studied from a global convergence standpoint, their worst-case complexity properties have yet to be fully understood, especially in the nonconvex setting. In particular, it is unclear whether nonlinear conjugate gradient methods possess better guarantees than first-order methods such as gradient descent. Meanwhile, recent experiments have shown impressive performance of standard nonlinear conjugate gradient techniques on certain nonconvex problems, even when compared with methods endowed with the best known complexity guarantees. In this paper, we propose a nonlinear conjugate gradient scheme based on a simple line-search paradigm and a modified restart condition. These two ingredients allow for monitoring the properties of the search directions, which is instrumental in obtaining complexity guarantees. Our complexity results illustrate the possible discrepancy between nonlinear conjugate gradient methods and classical gradient descent. A numerical investigation on nonconvex robust regression problems as well as a standard benchmark illustrate that the restarting condition can track the behavior of a standard implementation.
- Published
- 2022
11. The SuperCam Infrared Spectrometer for the Perseverance Rover of the Mars2020 mission
- Author
-
Fouchet, Thierry, Reess, Jean-Michel, Montmessin, Franck, Hassen-Khodja, Rafik, Nguyen-Tuong, Napoléon, Humeau, Olivier, Jacquinod, Sophie, Lapauw, Laurent, Parisot, Jérôme, Bonafous, Marion, Bernardi, Pernelle, Chapron, Frédéric, Jeanneau, Alexandre, Collin, Claude, Zeganadin, Didier, Nibert, Patricia, Abbaki, Sadok, Montaron, Christophe, Blanchard, Cyrille, Arslanyan, Vartan, Achelhi, Ourdya, Colon, Claudine, Royer, Clément, Hamm, Vincent, Bouzit, Mehdi, Poulet, François, Pilorget, Cédric, Mandon, Lucia, Forni, Olivier, Cousin, Agnès, Gasnault, Olivier, Pilleri, Paolo, Dubois, Bruno, Quantin, Cathy, Beck, Pierre, Beyssac, Olivier, Mouélic, Stéphane Le, Johnsson, Jeffrey R., McConnochie, Timothy H., Maurice, Sylvestre, and Wiens, Roger C.
- Subjects
Astrophysics - Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present the Infrared spectrometer of SuperCam Instrument Suite that enables the Mars 2020 Perseverance Rover to study remotely the Martian mineralogy within the Jezero crater. The SuperCam IR spectrometer is designed to acquire spectra in the 1.3-2.6 $\mu$m domain at a spectral resolution ranging from 5 to 20~nm. The field-of-view of 1.15 mrad, is coaligned with the boresights of the other remote-sensing techniques provided by SuperCam: laser-induced breakdown spectroscopy, remote time-resolved Raman and luminescence spectroscopies, and visible reflectance spectroscopy, and micro-imaging. The IR spectra can be acquired from the robotic-arm workspace to long-distances, in order to explore the mineralogical diversity of the Jezero crater, guide the Perseverance Rover in its sampling task, and to document the samples' environment. We present the design, the performance, the radiometric calibration, and the anticipated operations at the surface of Mars., Comment: Accepted for publication in Icarus
- Published
- 2021
- Full Text
- View/download PDF
12. Using orthogonally structured positive bases for constructing positive k-spanning sets with cosine measure guarantees
- Author
-
Hare, Warren, Jarry-Bolduc, Gabriel, Kerleau, Sébastien, and Royer, Clément W.
- Published
- 2024
- Full Text
- View/download PDF
13. On averaging the best samples in evolutionary computation
- Author
-
Meunier, Laurent, Chevaleyre, Yann, Rapin, Jeremy, Royer, Clément W., and Teytaud, Olivier
- Subjects
Computer Science - Neural and Evolutionary Computing ,Computer Science - Machine Learning ,Statistics - Machine Learning - Abstract
Choosing the right selection rate is a long standing issue in evolutionary computation. In the continuous unconstrained case, we prove mathematically that a single parent $\mu=1$ leads to a sub-optimal simple regret in the case of the sphere function. We provide a theoretically-based selection rate $\mu/\lambda$ that leads to better progress rates. With our choice of selection rate, we get a provable regret of order $O(\lambda^{-1})$ which has to be compared with $O(\lambda^{-2/d})$ in the case where $\mu=1$. We complete our study with experiments to confirm our theoretical claims.
- Published
- 2020
14. Trust-Region Newton-CG with Strong Second-Order Complexity Guarantees for Nonconvex Optimization
- Author
-
Curtis, Frank E., Robinson, Daniel P., Royer, Clément, and Wright, Stephen J.
- Subjects
Mathematics - Optimization and Control - Abstract
Worst-case complexity guarantees for nonconvex optimization algorithms have been a topic of growing interest. Multiple frameworks that achieve the best known complexity bounds among a broad class of first- and second-order strategies have been proposed. These methods have often been designed primarily with complexity guarantees in mind and, as a result, represent a departure from the algorithms that have proved to be the most effective in practice. In this paper, we consider trust-region Newton methods, one of the most popular classes of algorithms for solving nonconvex optimization problems. By introducing slight modifications to the original scheme, we obtain two methods -- one based on exact subproblem solves and one exploiting inexact subproblem solves as in the popular "trust-region Newton-Conjugate-Gradient" (trust-region Newton-CG) method -- with iteration and operation complexity bounds that match the best known bounds for the aforementioned class of first- and second-order methods. The resulting trust-region Newton-CG method also retains the attractive practical behavior of classical trust-region Newton-CG, which we demonstrate with numerical comparisons on a standard benchmark test set.
- Published
- 2019
15. A Subsampling Line-Search Method with Second-Order Results
- Author
-
Bergou, El-houcine, Diouane, Youssef, Kunc, Vladimir, Kungurtsev, Vyacheslav, and Royer, Clément W.
- Subjects
Mathematics - Optimization and Control - Abstract
In many contemporary optimization problems such as those arising in machine learning, it can be computationally challenging or even infeasible to evaluate an entire function or its derivatives. This motivates the use of stochastic algorithms that sample problem data, which can jeopardize the guarantees obtained through classical globalization techniques in optimization such as a trust region or a line search. Using subsampled function values is particularly challenging for the latter strategy, which relies upon multiple evaluations. On top of that all, there has been an increasing interest for nonconvex formulations of data-related problems, such as training deep learning models. For such instances, one aims at developing methods that converge to second-order stationary points quickly, i.e., escape saddle points efficiently. This is particularly delicate to ensure when one only accesses subsampled approximations of the objective and its derivatives. In this paper, we describe a stochastic algorithm based on negative curvature and Newton-type directions that are computed for a subsampling model of the objective. A line-search technique is used to enforce suitable decrease for this model, and for a sufficiently large sample, a similar amount of reduction holds for the true objective. By using probabilistic reasoning, we can then obtain worst-case complexity guarantees for our framework, leading us to discuss appropriate notions of stationarity in a subsampling context. Our analysis encompasses the deterministic regime, and allows us to identify sampling requirements for second-order line-search paradigms. As we illustrate through real data experiments, these worst-case estimates need not be satisfied for our method to be competitive with first-order strategies in practice.
- Published
- 2018
16. A Newton-CG Algorithm with Complexity Guarantees for Smooth Unconstrained Optimization
- Author
-
Royer, Clément W., O'Neill, Michael, and Wright, Stephen J.
- Subjects
Mathematics - Optimization and Control ,49M05, 49M15, 65F10, 65F15, 90C06, 90C60 - Abstract
We consider minimization of a smooth nonconvex objective function using an iterative algorithm based on Newton's method and the linear conjugate gradient algorithm, with explicit detection and use of negative curvature directions for the Hessian of the objective function. The algorithm tracks Newton-conjugate gradient procedures developed in the 1980s closely, but includes enhancements that allow worst-case complexity results to be proved for convergence to points that satisfy approximate first-order and second-order optimality conditions. The complexity results match the best known results in the literature for second-order methods.
- Published
- 2018
17. Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization
- Author
-
Royer, Clément W. and Wright, Stephen J.
- Subjects
Mathematics - Optimization and Control ,49M05, 49M15, 90C06, 90C60 - Abstract
There has been much recent interest in finding unconstrained local minima of smooth functions, due in part of the prevalence of such problems in machine learning and robust statistics. A particular focus is algorithms with good complexity guarantees. Second-order Newton-type methods that make use of regularization and trust regions have been analyzed from such a perspective. More recent proposals, based chiefly on first-order methodology, have also been shown to enjoy optimal iteration complexity rates, while providing additional guarantees on computational cost. In this paper, we present an algorithm with favorable complexity properties that differs in two significant ways from other recently proposed methods. First, it is based on line searches only: Each step involves computation of a search direction, followed by a backtracking line search along that direction. Second, its analysis is rather straightforward, relying for the most part on the standard technique for demonstrating sufficient decrease in the objective from backtracking. In the latter part of the paper, we consider inexact computation of the search directions, using iterative methods in linear algebra: the conjugate gradient and Lanczos methods. We derive modified convergence and complexity results for these more practical methods.
- Published
- 2017
18. Quantification of Crystal Chemistry of Fe‐Mg Carbonates by Raman Microspectroscopy and Near‐Infrared Remote Sensing.
- Author
-
Beck, Pierre, Beyssac, Olivier, Schmitt, Bernard, Royer, Clement, Mandon, Lucia, Boulard, Eglantine, Rividi, Nicolas, and Cloutis, Edward A.
- Subjects
CARBONATE minerals ,RAMAN spectroscopy ,REMOTE sensing ,CARBONATES ,MARS (Planet) - Abstract
On Earth, carbonate minerals are widely used as recorders of the geological environments in which they formed. Here, we present a method designed to retrieve the crystal chemistry of Fe‐Mg carbonate minerals using infrared remote sensing or Raman spectroscopy. We analyzed a suite of well‐characterized Fe‐Mg carbonate minerals for which Raman spectra were obtained in two different laboratories, and IR spectra were measured in reflectance and transmission from the visible range to 25‐μm. We built calibration lines for the dependence of fundamental and harmonic vibrational modes position to the Mg# (defined as Mg# = 100 × Mg/(Mg + Fe + Ca + Mn)). These calibrations should enable retrieval of Mg# based on spectroscopic observations with a typical accuracy of 10. We discuss the framework of applicability of these calibrations and apply them to a typical CRISM spectrum of carbonates from the Nilli Fossae region of Mars. Key Points: Fundamental FeMg carbonate mode position have a linear dependence to Mg# for Fe‐Mg carbonate mineralHarmonic bands at 2.3 and 2.5 also have a linear dependence of their position with Mg# for Fe‐Mg carbonate mineralsWe present calibration curves of Mg# versus fundamental and harmonic vibration position than can be used to retrieve crystal chemistry [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
19. The SuperCam infrared spectrometer for the perseverance rover of the Mars2020 mission
- Author
-
Fouchet, Thierry, Reess, Jean-Michel, Montmessin, Franck, Hassen-Khodja, Rafik, Nguyen-Tuong, Napoléon, Humeau, Olivier, Jacquinod, Sophie, Lapauw, Laurent, Parisot, Jérôme, Bonafous, Marion, Bernardi, Pernelle, Chapron, Frédéric, Jeanneau, Alexandre, Collin, Claude, Zeganadin, Didier, Nibert, Patricia, Abbaki, Sadok, Montaron, Christophe, Blanchard, Cyrille, Arslanyan, Vartan, Achelhi, Ourdya, Colon, Claudine, Royer, Clément, Hamm, Vincent, Beuzit, Mehdi, Poulet, François, Pilorget, Cédric, Mandon, Lucia, Forni, Olivier, Cousin, Agnès, Gasnault, Olivier, Pilleri, Paolo, Dubois, Bruno, Quantin, Cathy, Beck, Pierre, Beyssac, Olivier, Le Mouélic, Stéphane, Johnsson, Jeffrey R., McConnochie, Timothy H., Maurice, Sylvestre, and Wiens, Roger C.
- Published
- 2022
- Full Text
- View/download PDF
20. A nonlinear conjugate gradient method with complexity guarantees and its application to nonconvex regression
- Author
-
Chan–Renous-Legoubin, Rémi and Royer, Clément W.
- Published
- 2022
- Full Text
- View/download PDF
21. Radiation-induced alteration of apatite on the surface of Mars:first in situ observations with SuperCam Raman onboard Perseverance
- Author
-
Clavé, E., Beyssac, O., Bernard, S., Royer, C., Lopez-Reyes, G., Schröder, S., Rammelkamp, K., Forni, O., Fau, A., Cousin, A., Manrique, J. A., Ollila, A., Madariaga, J. M., Aramendia, J., Sharma, S. K., Fornaro, T., Maurice, S., Wiens, R. C., Acosta-Maeda, Tayro, Agard, Christophe, Alberquilla, Fernando, Alvarez Llamas, Cesar, Anderson, Ryan, Applin, Daniel, Aramendia, Julene, Arana, Gorka, Beal, Roberta, Beck, Pierre, Bedford, Candice, Benzerara, Karim, Bernard, Sylvain, Bernardi, Pernelle, Bertrand, Tanguy, Beyssac, Olivier, Bloch, Thierry, Bonnet, Jean-Yves, Bousquet, Bruno, Boustelitane, Abderrahmane, Bouyssou Mann, Magali, Brand, Matthew, Cais, Philippe, Caravaca, Gwenael, De Pinedo, Kepa Castro Ortiz, Cazalla, Charlene, Charpentier, Antoine, Chide, Baptiste, Clavé, Elise, Clegg, Samuel, Cloutis, Ed, Coloma, Leire, Comellas, Jade, Connell, Stephanie, Cousin, Agnes, DeFlores, Lauren, Dehouck, Erwin, Delapp, Dot, Perez, Tomas Delgado, Deron, Robin, Donny, Christophe, Doressoundiram, Alain, Dromart, Gilles, Essunfeld, Ari, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Follic, Hugo, Forni, Olivier, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gabriel, Travis, Gallegos, Zachary, García-Florentino, Cristina, Gasda, Patrick, Gasnault, Olivier, Gibbons, Erin, Gillier, Martin, Gomez, Laura, Gonzalez, Sofia, Grotzinger, John, Huidobro, Jennifer, Jacob, Xavier, Johnson, Jeffrey, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lacombe, Gaetan, Lamarque, Florentin, Lanza, Nina, Larmat, Carene, Laserna, Javier, Lasue, Jeremie, Le Deit, Laetitia, Le Mouelic, Stephane, Legett, Chip, Leveille, Richard, Lewin, Eric, Little, Cynthia, Loche, Mattéo, Lopez Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Madariaga, Juan Manuel, Madsen, Morten, Mandon, Lucia, Manelski, Henry, Mangold, Nicolas, Martinez, Jose Manrique, Martin, Noah, Martinez Frias, Jesus, Maurice, Sylvestre, Mcconnochie, Timothy, McLennan, Scott, Melikechi, Noureddine, Meslin, Pierre Yves, Meunier, Frederique, Mimoun, David, Montagnac, Gilles, Montmessin, Franck, Moros, Javier, Mousset, Valerie, Murdoch, Naomi, Nelson, Tony, Newell, Ray, Nicolas, Cécile, Newsom, Horton, O’Shea, Colleen, Ollila, Ann, Pantalacci, Philippe, Parmentier, Jonathan, Peret, Laurent, Perrachon, Pascal, Pilleri, Paolo, Pilorget, Cédric, Pinet, Patrick, Poblacion, Iratxe, Poulet, Francois, Quantin Nataf, Cathy, Rapin, William, Reyes, Ivan, Rigaud, Laurent, Robinson, Scott, Rochas, Ludovic, Root, Margaret, Ropert, Eloise, Rouverand, Léa, Royer, Clement, Perez, Fernando Rull, Said, David, Sans-Jofre, Pierre, Schroeder, Susanne, Seel, Fabian, Sharma, Shiv, Sheridan, Amanda, Sobron Sanchez, Pablo, Stcherbinine, Aurélien, Stott, Alex, Toplis, Michael, Turenne, Nathalie, Veneranda, Marco, Venhaus, Dawn, Wiens, Roger, Wolf, Uriah, Zastrow, Allison, Clavé, E., Beyssac, O., Bernard, S., Royer, C., Lopez-Reyes, G., Schröder, S., Rammelkamp, K., Forni, O., Fau, A., Cousin, A., Manrique, J. A., Ollila, A., Madariaga, J. M., Aramendia, J., Sharma, S. K., Fornaro, T., Maurice, S., Wiens, R. C., Acosta-Maeda, Tayro, Agard, Christophe, Alberquilla, Fernando, Alvarez Llamas, Cesar, Anderson, Ryan, Applin, Daniel, Aramendia, Julene, Arana, Gorka, Beal, Roberta, Beck, Pierre, Bedford, Candice, Benzerara, Karim, Bernard, Sylvain, Bernardi, Pernelle, Bertrand, Tanguy, Beyssac, Olivier, Bloch, Thierry, Bonnet, Jean-Yves, Bousquet, Bruno, Boustelitane, Abderrahmane, Bouyssou Mann, Magali, Brand, Matthew, Cais, Philippe, Caravaca, Gwenael, De Pinedo, Kepa Castro Ortiz, Cazalla, Charlene, Charpentier, Antoine, Chide, Baptiste, Clavé, Elise, Clegg, Samuel, Cloutis, Ed, Coloma, Leire, Comellas, Jade, Connell, Stephanie, Cousin, Agnes, DeFlores, Lauren, Dehouck, Erwin, Delapp, Dot, Perez, Tomas Delgado, Deron, Robin, Donny, Christophe, Doressoundiram, Alain, Dromart, Gilles, Essunfeld, Ari, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Follic, Hugo, Forni, Olivier, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gabriel, Travis, Gallegos, Zachary, García-Florentino, Cristina, Gasda, Patrick, Gasnault, Olivier, Gibbons, Erin, Gillier, Martin, Gomez, Laura, Gonzalez, Sofia, Grotzinger, John, Huidobro, Jennifer, Jacob, Xavier, Johnson, Jeffrey, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lacombe, Gaetan, Lamarque, Florentin, Lanza, Nina, Larmat, Carene, Laserna, Javier, Lasue, Jeremie, Le Deit, Laetitia, Le Mouelic, Stephane, Legett, Chip, Leveille, Richard, Lewin, Eric, Little, Cynthia, Loche, Mattéo, Lopez Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Madariaga, Juan Manuel, Madsen, Morten, Mandon, Lucia, Manelski, Henry, Mangold, Nicolas, Martinez, Jose Manrique, Martin, Noah, Martinez Frias, Jesus, Maurice, Sylvestre, Mcconnochie, Timothy, McLennan, Scott, Melikechi, Noureddine, Meslin, Pierre Yves, Meunier, Frederique, Mimoun, David, Montagnac, Gilles, Montmessin, Franck, Moros, Javier, Mousset, Valerie, Murdoch, Naomi, Nelson, Tony, Newell, Ray, Nicolas, Cécile, Newsom, Horton, O’Shea, Colleen, Ollila, Ann, Pantalacci, Philippe, Parmentier, Jonathan, Peret, Laurent, Perrachon, Pascal, Pilleri, Paolo, Pilorget, Cédric, Pinet, Patrick, Poblacion, Iratxe, Poulet, Francois, Quantin Nataf, Cathy, Rapin, William, Reyes, Ivan, Rigaud, Laurent, Robinson, Scott, Rochas, Ludovic, Root, Margaret, Ropert, Eloise, Rouverand, Léa, Royer, Clement, Perez, Fernando Rull, Said, David, Sans-Jofre, Pierre, Schroeder, Susanne, Seel, Fabian, Sharma, Shiv, Sheridan, Amanda, Sobron Sanchez, Pablo, Stcherbinine, Aurélien, Stott, Alex, Toplis, Michael, Turenne, Nathalie, Veneranda, Marco, Venhaus, Dawn, Wiens, Roger, Wolf, Uriah, and Zastrow, Allison
- Abstract
Planetary exploration relies considerably on mineral characterization to advance our understanding of the solar system, the planets and their evolution. Thus, we must understand past and present processes that can alter materials exposed on the surface, affecting space mission data. Here, we analyze the first dataset monitoring the evolution of a known mineral target in situ on the Martian surface, brought there as a SuperCam calibration target onboard the Perseverance rover. We used Raman spectroscopy to monitor the crystalline state of a synthetic apatite sample over the first 950 Martian days (sols) of the Mars2020 mission. We note significant variations in the Raman spectra acquired on this target, specifically a decrease in the relative contribution of the Raman signal to the total signal. These observations are consistent with the results of a UV-irradiation test performed in the laboratory under conditions mimicking ambient Martian conditions. We conclude that the observed evolution reflects an alteration of the material, specifically the creation of electronic defects, due to its exposure to the Martian environment and, in particular, UV irradiation. This ongoing process of alteration of the Martian surface needs to be taken into account for mineralogical space mission data analysis.
- Published
- 2024
22. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests
- Author
-
Wiens, Roger C., Maurice, Sylvestre, Robinson, Scott H., Nelson, Anthony E., Cais, Philippe, Bernardi, Pernelle, Newell, Raymond T., Clegg, Sam, Sharma, Shiv K., Storms, Steven, Deming, Jonathan, Beckman, Darrel, Ollila, Ann M., Gasnault, Olivier, Anderson, Ryan B., André, Yves, Michael Angel, S., Arana, Gorka, Auden, Elizabeth, Beck, Pierre, Becker, Joseph, Benzerara, Karim, Bernard, Sylvain, Beyssac, Olivier, Borges, Louis, Bousquet, Bruno, Boyd, Kerry, Caffrey, Michael, Carlson, Jeffrey, Castro, Kepa, Celis, Jorden, Chide, Baptiste, Clark, Kevin, Cloutis, Edward, Cordoba, Elizabeth C., Cousin, Agnes, Dale, Magdalena, Deflores, Lauren, Delapp, Dorothea, Deleuze, Muriel, Dirmyer, Matthew, Donny, Christophe, Dromart, Gilles, George Duran, M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivier, Fouchet, Thierry, Fresquez, Reuben, Frydenvang, Jens, Gasway, Denine, Gontijo, Ivair, Grotzinger, John, Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Klisiewicz, Roberta A., Lake, James, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Legett, IV, Carey, Leveille, Richard, Lewin, Eric, Lopez-Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Love, Steven P., Lucero, Briana, Madariaga, Juan Manuel, Madsen, Morten, Madsen, Soren, Mangold, Nicolas, Manrique, Jose Antonio, Martinez, J. P., Martinez-Frias, Jesus, McCabe, Kevin P., McConnochie, Timothy H., McGlown, Justin M., McLennan, Scott M., Melikechi, Noureddine, Meslin, Pierre-Yves, Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montmessin, Franck, Mousset, Valerie, Murdoch, Naomi, Newsom, Horton, Ott, Logan A., Ousnamer, Zachary R., Pares, Laurent, Parot, Yann, Pawluczyk, Rafal, Glen Peterson, C., Pilleri, Paolo, Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Provost, Cheryl, Quertier, Benjamin, Quinn, Heather, Rapin, William, Reess, Jean-Michel, Regan, Amy H., Reyes-Newell, Adriana L., Romano, Philip J., Royer, Clement, Rull, Fernando, Sandoval, Benigno, Sarrao, Joseph H., Sautter, Violaine, Schoppers, Marcel J., Schröder, Susanne, Seitz, Daniel, Shepherd, Terra, Sobron, Pablo, Dubois, Bruno, Sridhar, Vishnu, Toplis, Michael J., Torre-Fdez, Imanol, Trettel, Ian A., Underwood, Mark, Valdez, Andres, Valdez, Jacob, Venhaus, Dawn, and Willis, Peter
- Published
- 2021
- Full Text
- View/download PDF
23. Properties of the Nili Fossae Olivine-phyllosilicate-carbonate lithology: orbital and in situ at Séítah
- Author
-
Brown, Adrian Jon, primary, Kah, Linda C, additional, Mandon, Lucia, additional, Wiens, Roger C., additional, Pinet, Patrick C., additional, Clavé, Elise, additional, Mouelic, Stephane Le, additional, Udry, Arya, additional, Gasda, Patrick J, additional, Royer, Clement, additional, Hickman-Lewis, Keyron, additional, Cousin, Agnès, additional, Simon, Justin I., additional, Cloutis, Edward, additional, Fouchet, Thierry, additional, Fairen, Alberto, additional, Connell, Stephanie, additional, Flannery, David Timothy, additional, Horgan, Briony Heather Noelle, additional, Mayhew, Lisa, additional, Treiman, Allan H., additional, Núñez, Jorge I., additional, Wogsland, Brittan Valhalla, additional, Amundsen, Hans E. F., additional, Quantin-Nataf, Cathy, additional, Hand, Kevin Peter, additional, Debaille, Vinciane, additional, Essunfeld, Ari, additional, Beck, Pierre, additional, Tosca, Nicholas, additional, Madariaga, Juan Manuel, additional, Ravanis, Eleni Maria, additional, Benzerara, Karim, additional, Comellas, Jade, additional, and Forni, Olivier, additional
- Published
- 2023
- Full Text
- View/download PDF
24. On the injectivity and nonfocal domains of the ellipsoid of revolution
- Author
-
Caillau, Jean-Baptiste, Royer, Clément W., Stefani, Gianna, editor, Boscain, Ugo, editor, Gauthier, Jean-Paul, editor, Sarychev, Andrey, editor, and Sigalotti, Mario, editor
- Published
- 2014
- Full Text
- View/download PDF
25. Reflectance of Jezero crater floor: 1. Data processing and calibration of the Infrared Spectrometer (IRS) on SuperCam
- Author
-
Royer, Clement, primary, Fouchet, Thierry, additional, Mandon, Lucia, additional, Montmessin, Franck, additional, Poulet, Francois, additional, Forni, Olivier, additional, Johnson, Jeffrey R., additional, Legett, Carey, additional, Le Mouelic, Stephane, additional, Gasnault, Olivier, additional, Beck, Pierre, additional, Quantin-Nataf, Cathy, additional, Dehouck, Erwin, additional, Ollila, Ann M., additional, Pilorget, Cédric, additional, Bernardi, Pernelle, additional, Reess, Jean-Michel, additional, Pilleri, Paolo, additional, Brown, Adrian Jon, additional, Newell, Raymond T, additional, Cloutis, Edward, additional, Maurice, Sylvestre, additional, and Wiens, Roger C., additional
- Published
- 2022
- Full Text
- View/download PDF
26. Properties of the Nili Fossae Olivine-clay-carbonate lithology: orbital and in situ at Séítah
- Author
-
Brown, Adrian Jon, primary, Kah, Linda C, additional, Mandon, Lucia, additional, Wiens, Roger C., additional, Pinet, Patrick C., additional, Clavé, Elise, additional, Le Mouelic, Stephane, additional, Udry, Arya, additional, Gasda, Patrick J, additional, Royer, Clement, additional, Hickman-Lewis, Keyron, additional, Cousin, Agnès, additional, Simon, Justin I, additional, Cloutis, Edward, additional, Fouchet, Thierry, additional, Fairen, Alberto, additional, Connell, Stephanie, additional, Flannery, David Timothy, additional, Horgan, Briony Heather Noelle, additional, Mayhew, Lisa, additional, Treiman, Allan H., additional, Núñez, Jorge I., additional, Wogsland, Brittan Valhalla, additional, Amundsen, Hans E. F., additional, Quantin-Nataf, Cathy, additional, Hand, Kevin Peter, additional, Debaille, Vinciane, additional, Essunfeld, Ari, additional, Beck, Pierre, additional, Tosca, Nicholas, additional, Madariaga, Juan Manuel, additional, Ravanis, Eleni Maria, additional, Benzerara, Karim, additional, Comellas, Jade, additional, and Forni, Olivier, additional
- Published
- 2022
- Full Text
- View/download PDF
27. Compositionally and density stratified igneous terrain in Jezero crater, Mars
- Author
-
Wiens, Roger C., Udry, Arya, Beyssac, Olivier, Quantin-Nataf, Cathy, Mangold, Nicolas, Cousin, Agnès, Mandon, Lucia, Bosak, Tanja, Forni, Olivier, McLennan, Scott M., Sautter, Violaine, Brown, Adrian, Benzerara, Karim, Johnson, Jeffrey R., Mayhew, Lisa, Maurice, Sylvestre, Anderson, Ryan B., Clegg, Samuel M., Crumpler, Larry, Gabriel, Travis S. J., Gasda, Patrick, Hall, James, Horgan, Briony H. N., Kah, Linda, Legett, Carey, Madariaga, Juan Manuel, Meslin, Pierre-Yves, Ollila, Ann M., Poulet, Francois, Royer, Clement, Sharma, Shiv K., Siljeström, Sandra, Simon, Justin I., Acosta-Maeda, Tayro E., Alvarez-Llamas, Cesar, Angel, S. Michael, Arana, Gorka, Beck, Pierre, Bernard, Sylvain, Bertrand, Tanguy, Bousquet, Bruno, Castro, Kepa, Chide, Baptiste, Clavé, Elise, Cloutis, Ed, Connell, Stephanie, Dehouck, Erwin, Dromart, Gilles, Fischer, Woodward, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gasnault, Olivier, Gibbons, Erin, Gupta, Sanjeev, Hausrath, Elisabeth M., Jacob, Xavier, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Leveille, Richard, Lopez-Reyes, Guillermo, Lorenz, Ralph, Manrique, Jose Antonio, Martinez-Frias, Jesus, McConnochie, Tim, Melikechi, Noureddine, Mimoun, David, Montmessin, Franck, Moros, Javier, Murdoch, Naomi, Pilleri, Paolo, Pilorget, Cedric, Pinet, Patrick, Rapin, William, Rull, Fernando, Schröder, Susanne, Shuster, David L., Smith, Rebecca J., Stott, Alexander E., Tarnas, Jesse, Turenne, Nathalie, Veneranda, Marco, Vogt, David S., Weiss, Benjamin P., Willis, Peter, Stack, Kathryn M., Williford, Kenneth H., Farley, Kenneth A., Wiens, Roger C., Udry, Arya, Beyssac, Olivier, Quantin-Nataf, Cathy, Mangold, Nicolas, Cousin, Agnès, Mandon, Lucia, Bosak, Tanja, Forni, Olivier, McLennan, Scott M., Sautter, Violaine, Brown, Adrian, Benzerara, Karim, Johnson, Jeffrey R., Mayhew, Lisa, Maurice, Sylvestre, Anderson, Ryan B., Clegg, Samuel M., Crumpler, Larry, Gabriel, Travis S. J., Gasda, Patrick, Hall, James, Horgan, Briony H. N., Kah, Linda, Legett, Carey, Madariaga, Juan Manuel, Meslin, Pierre-Yves, Ollila, Ann M., Poulet, Francois, Royer, Clement, Sharma, Shiv K., Siljeström, Sandra, Simon, Justin I., Acosta-Maeda, Tayro E., Alvarez-Llamas, Cesar, Angel, S. Michael, Arana, Gorka, Beck, Pierre, Bernard, Sylvain, Bertrand, Tanguy, Bousquet, Bruno, Castro, Kepa, Chide, Baptiste, Clavé, Elise, Cloutis, Ed, Connell, Stephanie, Dehouck, Erwin, Dromart, Gilles, Fischer, Woodward, Fouchet, Thierry, Francis, Raymond, Frydenvang, Jens, Gasnault, Olivier, Gibbons, Erin, Gupta, Sanjeev, Hausrath, Elisabeth M., Jacob, Xavier, Kalucha, Hemani, Kelly, Evan, Knutsen, Elise, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Leveille, Richard, Lopez-Reyes, Guillermo, Lorenz, Ralph, Manrique, Jose Antonio, Martinez-Frias, Jesus, McConnochie, Tim, Melikechi, Noureddine, Mimoun, David, Montmessin, Franck, Moros, Javier, Murdoch, Naomi, Pilleri, Paolo, Pilorget, Cedric, Pinet, Patrick, Rapin, William, Rull, Fernando, Schröder, Susanne, Shuster, David L., Smith, Rebecca J., Stott, Alexander E., Tarnas, Jesse, Turenne, Nathalie, Veneranda, Marco, Vogt, David S., Weiss, Benjamin P., Willis, Peter, Stack, Kathryn M., Williford, Kenneth H., and Farley, Kenneth A.
- Abstract
Before Perseverance, Jezero crater's floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification. The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic.
- Published
- 2022
28. Infrared Reflectance of Jezero geological units from Supercam/Mars2020 Observations
- Author
-
Quantin-Nataf, Cathy, primary, Mandon, Lucia, additional, Royer, Clement, additional, Beck, Pierre, additional, Montmessin, Frank, additional, Forni, Olivier, additional, Le Mouelic, Stephane, additional, Poulet, François, additional, Johnson, Jeffrey, additional, Fouchet, Thierry, additional, Dehouck, Erwin, additional, Brown, Adrian, additional, Tarnas, Jesse, additional, Pilleri, Paolo, additional, Gasnault, Olivier, additional, Mangold, Nicolas, additional, Maurice, Sylvestre, additional, and Wiens, Roger, additional
- Published
- 2022
- Full Text
- View/download PDF
29. Spectral diversity of rocks and regolith at Jezero crater, Mars, as seen by the SuperCam VISIR spectrometer onboard Perseverance
- Author
-
Mandon, Lucia, Royer, Clement, Beck, Pierre, Quantin-Nataf, Cathy, Fouchet, Thierry, Poulet, Francois, Montmessin, Franck, Johnson, Jeffrey, Forni, Olivier, Le Mouelic, Stephane, Dehouck, Erwin, Pilleri, Paolo, Legett, Chip, Brown, Adrian, Cloutis, Edward, Gasnault, Olivier, Maurice, Sylvestre, Wiens, Roger, Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Los Alamos National Laboratory (LANL), Plancius Research LLC, and University of Winnipeg
- Subjects
[SDU]Sciences of the Universe [physics] - Abstract
International audience; The Perseverance rover (Mars 2020 mission, NASA) landed in the ancient lakebed of Jezero crater, Mars on February 2021. The payload includes the SuperCam instrument, which combines various remote-sensing techniques to investigate elemental and mineralogical composition. In particular, the near-infrared spectrometer of SuperCam is a novel instrument on the Martian surface. The spectra, together with data from additional visible spectrometers, cover the 0.390.85 m (VIS) and 1.32.6 m (IR) ranges, allowing the identification of a wide variety of minerals. Here, we present the spectral diversity in the VISIR of rocks and soils in the vicinity of the rovers traverse. As of sol 130, most of the rocks analyzed so far are dark-toned rocks in the crater floor (Cf-fr unit) with variable dust cover. Some variability in reflectance levels and absorption bands is observed within and among the rocks, but overall, they share similar spectral characteristics. In particular, most rocks exhibit an absorption near 1.9 m (indicating the presence of water). This band is usually observed weakly or is absent in local regolith but is detected with a depth up to ~20% in the rocks, indicating probably several wt.% of bound water. While mixing of different phases occurs in the few mm of the field of view of the spectrometer, the following candidates were identified: dust, an oxy-hydroxide (e.g., ferrihydrite), an iron-rich phyllosilicate (e.g., nontronite or hisingerite) and an AlOH-bearing phase. Contrary to what have been inferred from the orbit, no unequivocal mafic mineral signature has yet been identified in a rock target in the VISIR implying low mafic minerals content or small associated grain size. However, the soils exhibit a signature of olivine mixed with pyroxene (intermediate Ca content). Portions of sand ripples are strongly dominated by the olivine signature. The detection of widespread hydration features supports that some pervasive water-rock interactions occurred in the past near the Perseverance landing site. From CRISM orbital data, it is likely that the rover will be driving through areas exhibiting progressively increasing hydration throughout its traverse: future measurements on these potentially more hydrated and diverse rocks are expected to bring new insights into the past environment at Jezero crater.
- Published
- 2021
30. Long distance observations of Jezero craters geological units by the SuperCam instrument onboard Perseverance/Mars2020
- Author
-
Quantin Nataf, Cathy, Mandon, Lucia, Gasnault, Olivier, Royer, Clement, Beck, Pierre, Forni, Olivier, Montmessin, Franck, Le Mouelic, Stephane, Fouchet, Thierry, Dehouck, Erwin, Poulet, Francois, Johnson, Jeffrey, Brown, Adrian, Tarnas, Jesse, Pilleri, Paolo, Mangold, Nicolas, Maurice, Sylvestre, Wiens, Roger, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Plancius Research LLC, Wesleyan University, Laboratoire de Planétologie et Géosciences - Le Mans (LPG - Le Mans), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), and Los Alamos National Laboratory (LANL)
- Subjects
[SDU]Sciences of the Universe [physics] - Abstract
International audience; On February 18, 2021, NASAs Mars 2020 Perseverance rover landed successfully in Jezero crater. Several geological and compositional units have previously been identified from orbital data analysis [1,2]: a dark pyroxene-bearing floor unit; an olivine-bearing unit exposed in erosional windows partially altered into phyllosilicates and carbonates [3]; a deltaic complex with possible remnants and marginal carbonate-bearing unit [1]. The SuperCam instrument contains a suite of techniques including passive spectroscopy in the 0.40-0.85 (VIS) and 1.3-2.6 microns (IR) wavelength ranges, and a camera (RMI- Remote Micro-Imager) providing high resolution context images [4]. Since the landing, SuperCam has acquired tens of observations on distant targets (from 10s of m to 20 km) with VISIR and RMI techniques. The IFOV of the RMI images ranges from ~100 microns at 10m to ~20 cm at 20 km allowing to solve objects from ~0.5 mm at 10 m to ~1m at 20 km and the VISIR FOV range from 1 cm to 20 m. Distant observations have been acquired on the western delta front, several mesas and hills, on Jezero floor unit (the unit perseverance landed on and investigated in situ), on the olivine-bearing erosional window, and on more distant targets such as the crater rim or marginal carbonate-bearing unit. The observed spectral signatures form different clusters depending on the type of target, confirming the spectral diversity of Jezero geological units. The western delta front and a residual butte informally named Kodiak are clustered together with spectral signatures in agreement with a mixture of olivine, pyroxene and hydrated phases. The spectra of the erosional window into the olivine bearing unit display the strongest red slope between 1.3 and 1.8 microns, suggesting the presence of olivine in both the exposed rocks and the surrounding soils and in addition, the rocks display a strong signature of hydrated phases. The long distance observations of the crater floor unit are in agreement with the spectral signature identified in the vicinity of the rover [5], which confirms the relevance of long distance observations to assess the geological/mineralogical context of Perseverances future traverse. References : [1] Horgan et al., 2020 [2] Goudge et al., 2015 [3] Tarnas, et al., 2019. [4] Wiens, et al., 2021. [5] Mandon et al., this conference
- Published
- 2021
31. SuperCam on the Perseverance Rover for Exploration of Jezero Crater: Remote LIBS, VISIR, Raman, and Time-Resolved Luminescence Spectroscopies Plus Micro-Imaging and Acoustics
- Author
-
Wiens, Roger C., Maurice, Sylvestre, Gasnault, O., Anderson, Ryan B., Beyssac, Olivier, Bonal, L., Clegg, Samuel M., DeFlores, Lauren, Dromart, G, Fischer, W. W., Forni, Olivier, Grotzinger, J. P., Johnson, J. R., Martinez-Frias, J., Mangold, Nicolas, McLennan, S., Montmessin, Franck, Rull, Fernando, Sharma, Shiv K., Cousin, Agnès, Pilleri, Paolo, Sautter, V, Lewin, E, Cloutis, E., Poulet, F., Bernard, Sylvain, McConnochie, T., Lanza, N., Newsom, H., Ollila, A., Leveille, R., Le Mouelic, S., Lasue, J, Melikechi, N., Meslin, P-Y, Grasset, O, Angel, S. M., Fouchet, T., Beck, Pierre, Bousquet, Bruno, Fabre, C., Pinet, P., Benzerara, K., Montagnac, Gilles, Arana, Gorka, Castro, Kepa, Laserna, Javier, Madariaga, Juan Manuel, Manrique, Jose Antonio, Lopez, G., Lorenz, R., Mimoun, D., Acosta-Maeda, T., Alvarez, C., Dehouck, E., Delory, G., Doressoundiram, A., Francis, R., Frydenvang, J., Gabriel, T. S. J., Jacob, Xavier, Madsen, M. B., Moros, J., Murdoch, N, Newell, Raymond T., Porter, J. M., Quantin-Nataf, C., Rapin, William, Schröder, Susanne, Sobron, Pablo, Toplis, M., Brown, A.J., Veneranda, M., Chide, Baptiste, Legett, Carey, Royer, Clement, Stott, A., Vogt, David, Robinson, Scott H., DeLapp, D., Clave, E., Connell, S., Essunfeld, A., Gallegos, Z., Garcia-Florentino, C., Gibbons, E., Huidobro, J., Kelly, E., Kalucha, H., Ruiz, P., Torre-Fdez, Imanol, Shkolyar, Svetlana, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), United States Geological Survey (USGS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Instituto de Geociencias [Madrid] (IGEO), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), University of Hawai‘i [Mānoa] (UHM), Université Grenoble Alpes (UGA), University of Winnipeg, Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), NASA Goddard Space Flight Center (GSFC), The University of New Mexico [Albuquerque], McGill University = Université McGill [Montréal, Canada], University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), University of South Carolina [Columbia], Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Pôle Planétologie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine (UL), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Université de Lyon, University of Copenhagen = Københavns Universitet (UCPH), University of Hawai'i [Honolulu] (UH), Deutsches Zentrum für Luft- und Raumfahrt (DLR), Search for Extraterrestrial Intelligence Institute (SETI), Plancius Research LLC, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Cardon, Catherine, Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), University of Málaga, and University of Copenhagen = Københavns Universitet (KU)
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU]Sciences of the Universe [physics] ,Mars2020 SuperCam Perseverance Mars Planetenforschung Spektroskopie Kamera Laser ,ComputingMilieux_MISCELLANEOUS ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience
- Published
- 2021
32. The flight radiometric calibration of IRS/SuperCam onboard Perseverance: campaign follow up and performance assessment
- Author
-
Royer, Clement, primary, Fouchet, Thierry, additional, Montmessin, Franck, additional, Poulet, François, additional, Forni, Olivier, additional, Johnson, Jeffrey, additional, Gasnault, Olivier, additional, Quantin-Nataf, Cathy, additional, Beck, Pierre, additional, Ollila, Ann, additional, Mandon, Lucia, additional, Pilorget, Cedric, additional, Bernardi, Pernelle, additional, Reess, Jean-Michel, additional, Newell, Raymond, additional, Maurice, Sylvestre, additional, and Wiens, Roger, additional
- Published
- 2021
- Full Text
- View/download PDF
33. Comparison of Orbital and in situ NIR-spectra in Jezreo Crater: insight from the first Supercam Infrared Spectrometer data
- Author
-
Quantin-Nataf, Cathy, primary, Mandon, Lucia, additional, Royer, Clement, additional, Tarnas, Jesse, additional, Beck, Pierre, additional, Montmessin, Frank, additional, Forni, Olivier, additional, Le Mouelic, Stephane, additional, Fouchet, Thierry, additional, Gasnault, Olivier, additional, Dehouck, Erwin, additional, Poulet, Francois, additional, Johnson, Jeffey, additional, Brown, Adrian, additional, Pilleri, Paolo, additional, Horgan, Briony, additional, Ehlmann, Bethany, additional, Mangold, Nicolas, additional, Wiens, Roger, additional, and Maurice, Sylvestre, additional
- Published
- 2021
- Full Text
- View/download PDF
34. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
- Author
-
Química analítica, Kimika analitikoa, Maurice, Sylvestre, Wiens, Roger C., Bernardi, Pernelle, Cais, Philippe, Robinson, Scott H., Nelson, T., Gasnault, Olivier, Reess, Jean-Michel, Deleuze, Muriel, Rull, Fernando, Manrique, José Antonio, Abbaki, S., Anderson, Ryan B., Andre, Yves, Angel, S. M., Arana Momoitio, Gorka, Battault, T., Beck, Pierre, Benzerara, Karim, Bernard, Sylvain, Berthias, J. P., Beyssac, Olivier, Bonafous, M., Bousquet, Bruno, Boutillier, M., Cadu, A., Castro Ortiz de Pinedo, Kepa, Chapron, F., Chide, Baptiste, Clark, Kevin, Clavé, E., Clegg, Sam, Cloutis, Edward, Collin, C., Cordoba, Elizabeth C., Cousin, Agnes, Dameury, J. C., D'Anna, W., Daydou, Y., Debus, A., Deflores, Lauren, Dehouck, E., Delapp, Dorothea, De Los Santos, G., Donny, Christophe, Doressoundiram, A., Dromart, Gilles, Dubois, Bruno, Dufour, A., Dupieux, M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivie, Fouchet, Thierry, Frydenvang, Jens, Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, Ivair, González, R., Granena, D., Grotzinger, John, Hassen Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Kouach, D., Lacombe, G., Lanza, Nina, Lapauw, L., Laserna, Javier, Lasue, Jeremie, Le Deit, L., Le Comte, E., Lee, Q. M., Legett, Carey, Leveille, Richard, Lewin, Eric, Leyrat, C., López Reyes, Guillermo, Lorenz, Ralph, Lucero, Briana, Madariaga, J. M., Madsen, Soren, Madsen, Morten, Mangold, Nicolas, Manni, F., Mariscal, J. F., Martínez Frías, Jesús, Mathieu, K., Mathon, R., McCabe, Kevin P., McConnochie, Timothy H., McLennan, Scott M., Mekki, J., Melikechi, Noureddine, Meslin, Pierre-Yves, Micheau, Y., Michel, Y., Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montaron, C., Montmessin, Franck, Moros, J., Mousset, Valerie, Morizet, Y., Murdoch, Naomi, Newell, Raymond T., Newsom, Horton, Tuong, N. N., Ollila, Ann M., Orttner, G., Oudda, L., Pares, Laurent, Parisot, J., Parot, Yann, Pérez, R., Pheav, D., Picot, L., Pilleri, Paolo, Pilorget, C., Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Quantin-Nataf, C., Quertier, Benjamin, Rambaud, D., Rapin, William, Romano, Philip J., Roucayrol, L., Royer, Clement, Ruellan, M., Sandoval, Benigno, Sautter, Violaine, Schoppers, Marcel J., Schroder, S., Seran, H. C., Sharma, Shiv K., Sobrón, Pablo, Sodki, M., Sournac, A., Sridhar, Vishnu, Standarovsky, D., Storms, Steven, Striebig, N., Tatat, M., Toplis, Michael J., Torre Fernández, Imanol, Toulemont, N., Velasco, C., Veneranda, Marco, Venhaus, Dawn, Virmontois, C., Viso, M., Willis, Peter, Wong, K. W., Química analítica, Kimika analitikoa, Maurice, Sylvestre, Wiens, Roger C., Bernardi, Pernelle, Cais, Philippe, Robinson, Scott H., Nelson, T., Gasnault, Olivier, Reess, Jean-Michel, Deleuze, Muriel, Rull, Fernando, Manrique, José Antonio, Abbaki, S., Anderson, Ryan B., Andre, Yves, Angel, S. M., Arana Momoitio, Gorka, Battault, T., Beck, Pierre, Benzerara, Karim, Bernard, Sylvain, Berthias, J. P., Beyssac, Olivier, Bonafous, M., Bousquet, Bruno, Boutillier, M., Cadu, A., Castro Ortiz de Pinedo, Kepa, Chapron, F., Chide, Baptiste, Clark, Kevin, Clavé, E., Clegg, Sam, Cloutis, Edward, Collin, C., Cordoba, Elizabeth C., Cousin, Agnes, Dameury, J. C., D'Anna, W., Daydou, Y., Debus, A., Deflores, Lauren, Dehouck, E., Delapp, Dorothea, De Los Santos, G., Donny, Christophe, Doressoundiram, A., Dromart, Gilles, Dubois, Bruno, Dufour, A., Dupieux, M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivie, Fouchet, Thierry, Frydenvang, Jens, Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, Ivair, González, R., Granena, D., Grotzinger, John, Hassen Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Kouach, D., Lacombe, G., Lanza, Nina, Lapauw, L., Laserna, Javier, Lasue, Jeremie, Le Deit, L., Le Comte, E., Lee, Q. M., Legett, Carey, Leveille, Richard, Lewin, Eric, Leyrat, C., López Reyes, Guillermo, Lorenz, Ralph, Lucero, Briana, Madariaga, J. M., Madsen, Soren, Madsen, Morten, Mangold, Nicolas, Manni, F., Mariscal, J. F., Martínez Frías, Jesús, Mathieu, K., Mathon, R., McCabe, Kevin P., McConnochie, Timothy H., McLennan, Scott M., Mekki, J., Melikechi, Noureddine, Meslin, Pierre-Yves, Micheau, Y., Michel, Y., Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montaron, C., Montmessin, Franck, Moros, J., Mousset, Valerie, Morizet, Y., Murdoch, Naomi, Newell, Raymond T., Newsom, Horton, Tuong, N. N., Ollila, Ann M., Orttner, G., Oudda, L., Pares, Laurent, Parisot, J., Parot, Yann, Pérez, R., Pheav, D., Picot, L., Pilleri, Paolo, Pilorget, C., Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Quantin-Nataf, C., Quertier, Benjamin, Rambaud, D., Rapin, William, Romano, Philip J., Roucayrol, L., Royer, Clement, Ruellan, M., Sandoval, Benigno, Sautter, Violaine, Schoppers, Marcel J., Schroder, S., Seran, H. C., Sharma, Shiv K., Sobrón, Pablo, Sodki, M., Sournac, A., Sridhar, Vishnu, Standarovsky, D., Storms, Steven, Striebig, N., Tatat, M., Toplis, Michael J., Torre Fernández, Imanol, Toulemont, N., Velasco, C., Veneranda, Marco, Venhaus, Dawn, Virmontois, C., Viso, M., Willis, Peter, and Wong, K. W.
- Abstract
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
- Published
- 2021
35. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests
- Author
-
Química analítica, Kimika analitikoa, Wiens, Roger C., Maurice, Sylvestre, Robinson, Scott H., Nelson, Anthony E., Cais, Philippe, Bernardi, Pernelle, Newell, Raymond T., Clegg, Sam, Sharma, Shiv K., Storms, Steven, Deming, Jonathan, Beckman, Darrel, Ollila, Ann M., Gasnault, Olivier, Anderson, Ryan B., Andre, Yves, Michael Angel, S., Arana Momoitio, Gorka, Auden, Elizabeth, Beck, Pierre, Becker, Joseph, Benzerara, Karim, Bernard, Sylvain, Beyssac, Olivier, Borges, Louis, Bousquet, Bruno, Boyd, Kerry, Caffrey, Michael, Carlson, Jeffrey, Castro Ortiz de Pinedo, Kepa, Celis, Jorden, Chide, Baptiste, Clark, Kevin, Cloutis, Edward, Cordoba, Elizabeth C., Cousin, Agnes, Dale, Magdalena, Deflores, Lauren, Delapp, Dorothea, Deleuze, Muriel, Dirmyer, Matthew, Donny, Christophe, Dromart, Gilles, Duran, George M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivie, Fouchet, Thierry, Fresquez, Reuben, Frydenvang, Jens, Gasway, Denine, Gontijo, Ivair, Grotzinger, John, Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Klisiewicz, Roberta A., Lake, James, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouelic, Stephane, Legett, Carey, Leveille, Richard, Lewin, Eric, López Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Love, Steven P., Lucero, Briana, Madariaga Mota, Juan Manuel, Madsen, Morten, Madsen, Soren, Mangold, Nicolas, Manrique, José Antonio, Martínez, J. P., Martínez Frías, Jesús, McCabe, Kevin P., McConnochie, Timothy H., McGlown, Justin M., McLennan, Scott M., Melikechi, Noureddine, Meslin, Pierre-Yves, Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montmessin, Franck, Mousset, Valerie, Murdoch, Naomi, Newsom, Horton, Ott, Logan A., Ousnamer, Zachary R., Pares, Laurent, Parot, Yann, Pawluczyk, Rafal, Peterson, C. Glen, Pilleri, Paolo, Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Provost, Cheryl, Quertier, Benjamin, Quinn, Heather, Rapin, William, Reess, Jean-Michel, Regan, Amy H., Reyes Newell, Adriana L., Romano, Philip J., Royer, Clement, Rull, Fernando, Sandoval, Benigno, Sarrao, Joseph H., Sautter, Violaine, Schoppers, Marcel J., Schroeder, Susanne, Seitz, Daniel, Shepherd, Terra, Sobrón, Pablo, Dubois, Bruno, Sridhar, Vishnu, Toplis, Michael J., Torre Fernández, Imanol, Trettel, Ian A., Underwood, Mark, Valdez, Andrés, Valdez, Jacob, Venhaus, Dawn, Willis, Peter, Química analítica, Kimika analitikoa, Wiens, Roger C., Maurice, Sylvestre, Robinson, Scott H., Nelson, Anthony E., Cais, Philippe, Bernardi, Pernelle, Newell, Raymond T., Clegg, Sam, Sharma, Shiv K., Storms, Steven, Deming, Jonathan, Beckman, Darrel, Ollila, Ann M., Gasnault, Olivier, Anderson, Ryan B., Andre, Yves, Michael Angel, S., Arana Momoitio, Gorka, Auden, Elizabeth, Beck, Pierre, Becker, Joseph, Benzerara, Karim, Bernard, Sylvain, Beyssac, Olivier, Borges, Louis, Bousquet, Bruno, Boyd, Kerry, Caffrey, Michael, Carlson, Jeffrey, Castro Ortiz de Pinedo, Kepa, Celis, Jorden, Chide, Baptiste, Clark, Kevin, Cloutis, Edward, Cordoba, Elizabeth C., Cousin, Agnes, Dale, Magdalena, Deflores, Lauren, Delapp, Dorothea, Deleuze, Muriel, Dirmyer, Matthew, Donny, Christophe, Dromart, Gilles, Duran, George M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivie, Fouchet, Thierry, Fresquez, Reuben, Frydenvang, Jens, Gasway, Denine, Gontijo, Ivair, Grotzinger, John, Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Klisiewicz, Roberta A., Lake, James, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouelic, Stephane, Legett, Carey, Leveille, Richard, Lewin, Eric, López Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Love, Steven P., Lucero, Briana, Madariaga Mota, Juan Manuel, Madsen, Morten, Madsen, Soren, Mangold, Nicolas, Manrique, José Antonio, Martínez, J. P., Martínez Frías, Jesús, McCabe, Kevin P., McConnochie, Timothy H., McGlown, Justin M., McLennan, Scott M., Melikechi, Noureddine, Meslin, Pierre-Yves, Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montmessin, Franck, Mousset, Valerie, Murdoch, Naomi, Newsom, Horton, Ott, Logan A., Ousnamer, Zachary R., Pares, Laurent, Parot, Yann, Pawluczyk, Rafal, Peterson, C. Glen, Pilleri, Paolo, Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Provost, Cheryl, Quertier, Benjamin, Quinn, Heather, Rapin, William, Reess, Jean-Michel, Regan, Amy H., Reyes Newell, Adriana L., Romano, Philip J., Royer, Clement, Rull, Fernando, Sandoval, Benigno, Sarrao, Joseph H., Sautter, Violaine, Schoppers, Marcel J., Schroeder, Susanne, Seitz, Daniel, Shepherd, Terra, Sobrón, Pablo, Dubois, Bruno, Sridhar, Vishnu, Toplis, Michael J., Torre Fernández, Imanol, Trettel, Ian A., Underwood, Mark, Valdez, Andrés, Valdez, Jacob, Venhaus, Dawn, and Willis, Peter
- Abstract
The SuperCam instrument suite provides theMars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam's body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245-340 and 385-465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535-853 nm (105-7070 cm-1 Raman shift relative to the 532 nm green laser beam) with 12 cm-1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the
- Published
- 2021
36. The SuperCam Instrument Suite on the NASA Mars 2020 Rover:Body Unit and Combined System Tests
- Author
-
Wiens, Roger C., Maurice, Sylvestre, Robinson, Scott H., Nelson, Anthony E., Cais, Philippe, Bernardi, Pernelle, Newell, Raymond T., Clegg, Sam, Sharma, Shiv K., Storms, Steven, Deming, Jonathan, Beckman, Darrel, Ollila, Ann M., Gasnault, Olivier, Anderson, Ryan B., André, Yves, Michael Angel, S., Arana, Gorka, Auden, Elizabeth, Beck, Pierre, Becker, Joseph, Benzerara, Karim, Bernard, Sylvain, Beyssac, Olivier, Borges, Louis, Bousquet, Bruno, Boyd, Kerry, Caffrey, Michael, Carlson, Jeffrey, Castro, Kepa, Celis, Jorden, Chide, Baptiste, Clark, Kevin, Cloutis, Edward, Cordoba, Elizabeth C., Cousin, Agnes, Dale, Magdalena, Deflores, Lauren, Delapp, Dorothea, Deleuze, Muriel, Dirmyer, Matthew, Donny, Christophe, Dromart, Gilles, George Duran, M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivier, Fouchet, Thierry, Fresquez, Reuben, Frydenvang, Jens, Gasway, Denine, Gontijo, Ivair, Grotzinger, John, Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Klisiewicz, Roberta A., Lake, James, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Legett, Carey, Leveille, Richard, Lewin, Eric, Lopez-Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Love, Steven P., Lucero, Briana, Madariaga, Juan Manuel, Madsen, Morten, Madsen, Soren, Mangold, Nicolas, Manrique, Jose Antonio, Martinez, J. P., Martinez-Frias, Jesus, McCabe, Kevin P., McConnochie, Timothy H., McGlown, Justin M., McLennan, Scott M., Melikechi, Noureddine, Meslin, Pierre-Yves, Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montmessin, Franck, Mousset, Valerie, Murdoch, Naomi, Newsom, Horton, Ott, Logan A., Ousnamer, Zachary R., Pares, Laurent, Parot, Yann, Pawluczyk, Rafal, Glen Peterson, C., Pilleri, Paolo, Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Provost, Cheryl, Quertier, Benjamin, Quinn, Heather, Rapin, William, Reess, Jean Michel, Regan, Amy H., Reyes-Newell, Adriana L., Romano, Philip J., Royer, Clement, Rull, Fernando, Sandoval, Benigno, Sarrao, Joseph H., Sautter, Violaine, Schoppers, Marcel J., Schröder, Susanne, Seitz, Daniel, Shepherd, Terra, Sobron, Pablo, Dubois, Bruno, Sridhar, Vishnu, Toplis, Michael J., Torre-Fdez, Imanol, Trettel, Ian A., Underwood, Mark, Valdez, Andres, Valdez, Jacob, Venhaus, Dawn, Willis, Peter, Wiens, Roger C., Maurice, Sylvestre, Robinson, Scott H., Nelson, Anthony E., Cais, Philippe, Bernardi, Pernelle, Newell, Raymond T., Clegg, Sam, Sharma, Shiv K., Storms, Steven, Deming, Jonathan, Beckman, Darrel, Ollila, Ann M., Gasnault, Olivier, Anderson, Ryan B., André, Yves, Michael Angel, S., Arana, Gorka, Auden, Elizabeth, Beck, Pierre, Becker, Joseph, Benzerara, Karim, Bernard, Sylvain, Beyssac, Olivier, Borges, Louis, Bousquet, Bruno, Boyd, Kerry, Caffrey, Michael, Carlson, Jeffrey, Castro, Kepa, Celis, Jorden, Chide, Baptiste, Clark, Kevin, Cloutis, Edward, Cordoba, Elizabeth C., Cousin, Agnes, Dale, Magdalena, Deflores, Lauren, Delapp, Dorothea, Deleuze, Muriel, Dirmyer, Matthew, Donny, Christophe, Dromart, Gilles, George Duran, M., Egan, Miles, Ervin, Joan, Fabre, Cecile, Fau, Amaury, Fischer, Woodward, Forni, Olivier, Fouchet, Thierry, Fresquez, Reuben, Frydenvang, Jens, Gasway, Denine, Gontijo, Ivair, Grotzinger, John, Jacob, Xavier, Jacquinod, Sophie, Johnson, Jeffrey R., Klisiewicz, Roberta A., Lake, James, Lanza, Nina, Laserna, Javier, Lasue, Jeremie, Le Mouélic, Stéphane, Legett, Carey, Leveille, Richard, Lewin, Eric, Lopez-Reyes, Guillermo, Lorenz, Ralph, Lorigny, Eric, Love, Steven P., Lucero, Briana, Madariaga, Juan Manuel, Madsen, Morten, Madsen, Soren, Mangold, Nicolas, Manrique, Jose Antonio, Martinez, J. P., Martinez-Frias, Jesus, McCabe, Kevin P., McConnochie, Timothy H., McGlown, Justin M., McLennan, Scott M., Melikechi, Noureddine, Meslin, Pierre-Yves, Michel, John M., Mimoun, David, Misra, Anupam, Montagnac, Gilles, Montmessin, Franck, Mousset, Valerie, Murdoch, Naomi, Newsom, Horton, Ott, Logan A., Ousnamer, Zachary R., Pares, Laurent, Parot, Yann, Pawluczyk, Rafal, Glen Peterson, C., Pilleri, Paolo, Pinet, Patrick, Pont, Gabriel, Poulet, Francois, Provost, Cheryl, Quertier, Benjamin, Quinn, Heather, Rapin, William, Reess, Jean Michel, Regan, Amy H., Reyes-Newell, Adriana L., Romano, Philip J., Royer, Clement, Rull, Fernando, Sandoval, Benigno, Sarrao, Joseph H., Sautter, Violaine, Schoppers, Marcel J., Schröder, Susanne, Seitz, Daniel, Shepherd, Terra, Sobron, Pablo, Dubois, Bruno, Sridhar, Vishnu, Toplis, Michael J., Torre-Fdez, Imanol, Trettel, Ian A., Underwood, Mark, Valdez, Andres, Valdez, Jacob, Venhaus, Dawn, and Willis, Peter
- Abstract
The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam’s body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245–340 and 385–465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535–853 nm (105–7070cm−1 Raman shift relative to the 532 nm green laser beam) with 12cm−1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool t
- Published
- 2021
37. Initial SuperCam Visible/Near-Infrared Spectra from the Mars 2020 Perseverance Rover
- Author
-
Johnson, Jeffrey, primary, Fouchet, Thierry, additional, Forni, Olivier, additional, Reess, Jean-Michel, additional, Bernardi, Pernelle, additional, Newell, Raymond, additional, Ollila, Ann, additional, Legett, Chip, additional, Beck, Pierre, additional, Cousin, Agnes, additional, Royer, Clement, additional, Pilorget, Cedric, additional, Poulet, Francois, additional, Cloutis, Ed, additional, McConnochie, Tim, additional, Wiens, Roger C., additional, and Maurice, Sylvestre, additional
- Published
- 2021
- Full Text
- View/download PDF
38. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests
- Author
-
Wiens, Roger C., primary, Maurice, Sylvestre, additional, Robinson, Scott H., additional, Nelson, Anthony E., additional, Cais, Philippe, additional, Bernardi, Pernelle, additional, Newell, Raymond T., additional, Clegg, Sam, additional, Sharma, Shiv K., additional, Storms, Steven, additional, Deming, Jonathan, additional, Beckman, Darrel, additional, Ollila, Ann M., additional, Gasnault, Olivier, additional, Anderson, Ryan B., additional, André, Yves, additional, Michael Angel, S., additional, Arana, Gorka, additional, Auden, Elizabeth, additional, Beck, Pierre, additional, Becker, Joseph, additional, Benzerara, Karim, additional, Bernard, Sylvain, additional, Beyssac, Olivier, additional, Borges, Louis, additional, Bousquet, Bruno, additional, Boyd, Kerry, additional, Caffrey, Michael, additional, Carlson, Jeffrey, additional, Castro, Kepa, additional, Celis, Jorden, additional, Chide, Baptiste, additional, Clark, Kevin, additional, Cloutis, Edward, additional, Cordoba, Elizabeth C., additional, Cousin, Agnes, additional, Dale, Magdalena, additional, Deflores, Lauren, additional, Delapp, Dorothea, additional, Deleuze, Muriel, additional, Dirmyer, Matthew, additional, Donny, Christophe, additional, Dromart, Gilles, additional, George Duran, M., additional, Egan, Miles, additional, Ervin, Joan, additional, Fabre, Cecile, additional, Fau, Amaury, additional, Fischer, Woodward, additional, Forni, Olivier, additional, Fouchet, Thierry, additional, Fresquez, Reuben, additional, Frydenvang, Jens, additional, Gasway, Denine, additional, Gontijo, Ivair, additional, Grotzinger, John, additional, Jacob, Xavier, additional, Jacquinod, Sophie, additional, Johnson, Jeffrey R., additional, Klisiewicz, Roberta A., additional, Lake, James, additional, Lanza, Nina, additional, Laserna, Javier, additional, Lasue, Jeremie, additional, Le Mouélic, Stéphane, additional, Legett, Carey, additional, Leveille, Richard, additional, Lewin, Eric, additional, Lopez-Reyes, Guillermo, additional, Lorenz, Ralph, additional, Lorigny, Eric, additional, Love, Steven P., additional, Lucero, Briana, additional, Madariaga, Juan Manuel, additional, Madsen, Morten, additional, Madsen, Soren, additional, Mangold, Nicolas, additional, Manrique, Jose Antonio, additional, Martinez, J. P., additional, Martinez-Frias, Jesus, additional, McCabe, Kevin P., additional, McConnochie, Timothy H., additional, McGlown, Justin M., additional, McLennan, Scott M., additional, Melikechi, Noureddine, additional, Meslin, Pierre-Yves, additional, Michel, John M., additional, Mimoun, David, additional, Misra, Anupam, additional, Montagnac, Gilles, additional, Montmessin, Franck, additional, Mousset, Valerie, additional, Murdoch, Naomi, additional, Newsom, Horton, additional, Ott, Logan A., additional, Ousnamer, Zachary R., additional, Pares, Laurent, additional, Parot, Yann, additional, Pawluczyk, Rafal, additional, Glen Peterson, C., additional, Pilleri, Paolo, additional, Pinet, Patrick, additional, Pont, Gabriel, additional, Poulet, Francois, additional, Provost, Cheryl, additional, Quertier, Benjamin, additional, Quinn, Heather, additional, Rapin, William, additional, Reess, Jean-Michel, additional, Regan, Amy H., additional, Reyes-Newell, Adriana L., additional, Romano, Philip J., additional, Royer, Clement, additional, Rull, Fernando, additional, Sandoval, Benigno, additional, Sarrao, Joseph H., additional, Sautter, Violaine, additional, Schoppers, Marcel J., additional, Schröder, Susanne, additional, Seitz, Daniel, additional, Shepherd, Terra, additional, Sobron, Pablo, additional, Dubois, Bruno, additional, Sridhar, Vishnu, additional, Toplis, Michael J., additional, Torre-Fdez, Imanol, additional, Trettel, Ian A., additional, Underwood, Mark, additional, Valdez, Andres, additional, Valdez, Jacob, additional, Venhaus, Dawn, additional, and Willis, Peter, additional
- Published
- 2020
- Full Text
- View/download PDF
39. Compositionally and density stratified igneous terrain in Jezero crater, Mars.
- Author
-
Wiens RC, Udry A, Beyssac O, Quantin-Nataf C, Mangold N, Cousin A, Mandon L, Bosak T, Forni O, McLennan SM, Sautter V, Brown A, Benzerara K, Johnson JR, Mayhew L, Maurice S, Anderson RB, Clegg SM, Crumpler L, Gabriel TSJ, Gasda P, Hall J, Horgan BHN, Kah L, Legett C 4th, Madariaga JM, Meslin PY, Ollila AM, Poulet F, Royer C, Sharma SK, Siljeström S, Simon JI, Acosta-Maeda TE, Alvarez-Llamas C, Angel SM, Arana G, Beck P, Bernard S, Bertrand T, Bousquet B, Castro K, Chide B, Clavé E, Cloutis E, Connell S, Dehouck E, Dromart G, Fischer W, Fouchet T, Francis R, Frydenvang J, Gasnault O, Gibbons E, Gupta S, Hausrath EM, Jacob X, Kalucha H, Kelly E, Knutsen E, Lanza N, Laserna J, Lasue J, Le Mouélic S, Leveille R, Lopez Reyes G, Lorenz R, Manrique JA, Martinez-Frias J, McConnochie T, Melikechi N, Mimoun D, Montmessin F, Moros J, Murdoch N, Pilleri P, Pilorget C, Pinet P, Rapin W, Rull F, Schröder S, Shuster DL, Smith RJ, Stott AE, Tarnas J, Turenne N, Veneranda M, Vogt DS, Weiss BP, Willis P, Stack KM, Williford KH, and Farley KA
- Abstract
Before Perseverance, Jezero crater's floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification. The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.