1. A Bayesian Approach to GRAPPA Parallel FMRI Image Reconstruction Increases SNR and Power of Task Detection
- Author
-
Sakitis, Chase J and Rowe, Daniel B
- Subjects
Statistics - Applications - Abstract
In fMRI, capturing brain activation during a task is dependent on how quickly k-space arrays are obtained. Acquiring full k-space arrays, which are reconstructed into images using the inverse Fourier transform (IFT), that make up volume images can take a considerable amount of scan time. Under-sampling k-space reduces the acquisition time, but results in aliased, or "folded," images. GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) is a parallel imaging technique that yields full images from subsampled arrays of k-space. GRAPPA uses localized interpolation weights, which are estimated per-scan and fixed over time, to fill in the missing spatial frequencies of the subsampled k-space. Hence, we propose a Bayesian approach to GRAPPA (BGRAPPA) where space measurement uncertainty are assessed from the a priori calibration k-space arrays. The prior information is utilized to estimate the missing spatial frequency values from the posterior distribution and reconstruct into full field-of-view images. Our BGRAPPA technique successfully reconstructed both a simulated and experimental single slice image with less artifacts, reduced noise leading to an increased signal-to-noise ratio (SNR), and stronger power of task detection., Comment: 19 pages, 15 figures (23 pages and 19 figures including the supplementary material)
- Published
- 2024