20 results on '"Roubinet B"'
Search Results
2. Gal f -Specific Neolectins: Towards Promising Diagnostic Tools.
- Author
-
Seničar M, Roubinet B, Lafite P, Legentil L, Ferrières V, Landemarre L, and Daniellou R
- Subjects
- Animals, Aspergillus metabolism, Aspergillus genetics, Glycoproteins chemistry, Glycoproteins metabolism, Lectins metabolism, Lectins chemistry, Mannans chemistry, Serum Albumin, Bovine chemistry, Galactose analogs & derivatives, Galactose metabolism, Galactose chemistry
- Abstract
In the absence of naturally available galactofuranose-specific lectin, we report herein the bioengineering of Gal f NeoLect, from the first cloned wild-type galactofuranosidase ( Streptomyces sp. strain JHA19), which recognises and binds a single monosaccharide that is only related to nonmammalian species, usually pathogenic microorganisms. We kinetically characterised the Gal f NeoLect to confirm attenuation of hydrolytic activity and used competitive inhibition assay, with close structural analogues of Gal f , to show that it conserved interaction with its original substrate. We synthetised the bovine serum albumin-based neoglycoprotein (Gal f NGP), carrying the multivalent Gal f units, as a suitable ligand and high-avidity system for the recognition of Gal f NeoLect which we successfully tested directly with the galactomannan spores of Aspergillus brasiliensis (ATCC 16404). Altogether, our results indicate that Gal f NeoLect has the necessary versatility and plasticity to be used in both research and diagnostic lectin-based applications.
- Published
- 2024
- Full Text
- View/download PDF
3. Melanoma tumour-derived glycans hijack dendritic cell subsets through C-type lectin receptor binding.
- Author
-
Niveau C, Sosa Cuevas E, Roubinet B, Pezet M, Thépaut M, Mouret S, Charles J, Fieschi F, Landemarre L, Chaperot L, Saas P, and Aspord C
- Subjects
- Male, Humans, Dendritic Cells, Glycoproteins, Toll-Like Receptors metabolism, Polysaccharides metabolism, Lectins, C-Type, Melanoma
- Abstract
Dendritic cell (DC) subsets play a crucial role in shaping anti-tumour immunity. Cancer escapes from the control immune system by hijacking DC functions. Yet, bases for such subversion are only partially understood. Tumour cells display aberrant glycan motifs on surface glycoproteins and glycolipids. Such carbohydrate patterns can be sensed by DCs through C-type lectin receptors (CLRs) that are critical to shape and orientate immune responses. We recently demonstrated that melanoma tumour cells harboured an aberrant 'glyco-code,' and that circulating and tumour-infiltrating DCs from melanoma patients displayed major perturbations in their CLR profiles. To decipher whether melanoma, through aberrant glycan patterns, may exploit CLR pathways to mislead DCs and evade immune control, we explored the impact of glycan motifs aberrantly found in melanoma (neoglycoproteins [NeoGP] functionalised with Gal, Man, GalNAc, s-Tn, fucose [Fuc] and GlcNAc residues) on features of human DC subsets (cDC2s, cDC1s and pDCs). We examined the ability of glycans to bind to purified DCs, and assessed their impact on DC basal properties and functional features using flow cytometry, confocal microscopy and multiplex secreted protein analysis. DC subsets differentially bound and internalised NeoGP depending on the nature of the glycan. Strikingly, Fuc directly remodelled the expression of activation markers and immune checkpoints, as well as the cytokine/chemokine secretion profile of DC subsets. NeoGP interfered with Toll like receptor (TLR)-signalling and pre-conditioned DCs to exhibit an altered response to subsequent TLR stimulation, dampening antitumor mediators while triggering pro-tumoral factors. We further demonstrated that DC subsets can bind NeoGP through CLRs, and identified GalNAc/MGL and s-Tn/ C-type lectin-like receptor 2 (CLEC2) as potential candidates. Moreover, DC dysfunction induced by tumour-associated carbohydrate molecules may be reversed by interfering with the glycan/CLR axis. These findings revealed the glycan/CLR axis as a promising checkpoint to exploit in order to reshape potent antitumor immunity while impeding immunosuppressive pathways triggered by aberrant tumour glycosylation patterns. This may rescue DCs from tumour hijacking and improve clinical success in cancer patients., (© 2023 John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
4. ROMP-based Glycopolymers with High Affinity for Mannose-Binding Lectins.
- Author
-
Gonnot C, Scalabrini M, Roubinet B, Ziane C, Boeda F, Deniaud D, Landemarre L, Gouin SG, Fontaine L, and Montembault V
- Subjects
- Polymerization, Concanavalin A metabolism, Polyethylene Glycols, Mannose-Binding Lectins, Polymers pharmacology, Polymers metabolism
- Abstract
Well-defined, highly reactive poly(norbornenyl azlactone)s of controlled length (number-average degree of polymerization D P n ¯ = 10 to 1,000) were made by ring-opening metathesis polymerization (ROMP) of pure exo -norbornenyl azlactone. These were converted into glycopolymers using a facile postpolymerization modification (PPM) strategy based on click aminolysis of azlactone side groups by amino-functionalized glycosides. Pegylated mannoside, heptyl-mannoside, and pegylated glucoside were used in the PPM. Binding inhibition of the resulting glycopolymers was evaluated against a lectin panel (Bc2L-A, FimH, langerin, DC-SIGN, ConA). Inhibition profiles depended on the sugars and the degrees of polymerization. Glycopolymers from pegylated-mannoside-functionalized polynorbornene, with D P n ¯ = 100, showed strong binding inhibition, with subnanomolar range inhibitory concentrations (IC
50 s). Polymers surpassed the inhibitory potential of their monovalent analogues by four to five orders of magnitude thanks to a multivalent (synergistic) effect. Sugar-functionalized poly(norbornenyl azlactone)s are therefore promising tools to study multivalent carbohydrate-lectin interactions and for applications against lectin-promoted bacterial/viral binding to host cells.- Published
- 2023
- Full Text
- View/download PDF
5. Glycofullerene-AuNPs as multivalent ligands of DC-SIGN and bacterial lectin FimH: tuning nanoparticle size and ligand density.
- Author
-
Wang T, Jimmidi R, Roubinet B, Landemarre L, and Vincent SP
- Subjects
- Ligands, Escherichia coli metabolism, Lectins, C-Type, Carbohydrates, Gold metabolism, Metal Nanoparticles
- Abstract
Glycoclusters have been extensively investigated for their inhibition of multivalent carbohydrate-protein interactions, which is often the first step for bacterial and viral pathogens to selectively bind their host cells. Glycoclusters may thus prevent infections by blocking the microbe attachment onto the host cell surface. The potency of multivalent carbohydrate-protein interactions is largely derived from the spatial arrangement of the ligand and the nature and flexibility of the linker. The size of the glycocluster may also have a dramatic impact on the multivalent effect. The main objective of this study is to provide a systematic comparison of gold nanoparticles of three representative sizes and ligand densities at their surface. Therefore, AuNPs with diameters of 20, 60, and 100 nm were coupled either to a monomeric D-mannoside or a decameric glycofullerene. Lectin DC-SIGN and lectin FimH were selected as representative models of viral and bacterial infections, respectively. We also report the synthesis of a hetero-cluster built from 20 nm AuNPs and a mannose-derived glycofullerene and monomeric fucosides. All final glycoAuNPs were evaluated as ligands of DC-SIGN- and FimH using the GlycoDiag LectProfile technology. This investigation revealed that the 20 nm AuNPs bearing glycofullerenes with short linker are the most potent binders of both DC-SIGN and FimH. Moreover, the hetero-glycoAuNPs showed an enhanced selectivity and inhibitory ability towards DC-SIGN. Hemagglutination inhibition assays using uropathogenic E. coli corroborated the in vitro assays. Overall, these results showed smaller glycofullerene-AuNPs (20 nm) exhibited the best potential as anti-adhesive materials for a variety of bacterial and viral pathogens.
- Published
- 2023
- Full Text
- View/download PDF
6. Structural insights into a cooperative switch between one and two FimH bacterial adhesins binding pauci- and high-mannose type N-glycan receptors.
- Author
-
Krammer EM, Bridot C, Serna S, Echeverria B, Semwal S, Roubinet B, van Noort K, Wilbers RHP, Bourenkov G, de Ruyck J, Landemarre L, Reichardt N, and Bouckaert J
- Subjects
- Humans, Bacterial Adhesion, Escherichia coli metabolism, Glycoproteins metabolism, Mannose metabolism, Polysaccharides metabolism, Protein Binding, Protein Structure, Quaternary, Molecular Docking Simulation, Adhesins, Escherichia coli chemistry, Adhesins, Escherichia coli metabolism, Mannose Receptor chemistry, Mannose Receptor metabolism, Models, Molecular
- Abstract
The FimH type-1 fimbrial adhesin allows pathogenic Escherichia coli to adhere to glycoproteins in the epithelial linings of human bladder and intestinal tract, by using multiple fimbriae simultaneously. Pauci- and high-mannose type N-glycans are natural FimH receptors on those glycoproteins. Oligomannose-3 and oligomannose-5 bind with the highest affinity to FimH by using the same Manα1,3Man branch. Oligomannose-6 is generated from oligomannose-5 in the next step of the biogenesis of high-mannose N-glycans, by the transfer of a mannose in α1,2-linkage onto this branch. Using serial crystallography and by measuring the kinetics of binding, we demonstrate that shielding the high-affinity epitope drives the binding of multiple FimH molecules. First, we profiled FimH glycan binding on a microarray containing paucimannosidic N-glycans and in a FimH LEctPROFILE assay. To make the transition to oligomannose-6, we measured the kinetics of FimH binding using paucimannosidic N-glycans, glycoproteins and all four α-dimannosides conjugated to bovine serum albumin. Equimolar mixed interfaces of the dimannosides present in oligomannose-6 and molecular dynamics simulations suggest a positive cooperativity in the bivalent binding of Manα1,3Manα1 and Manα1,6Manα1 dimannosides. The binding of core α1,6-fucosylated oligomannose-3 in cocrystals of FimH is monovalent but interestingly the GlcNAc1-Fuc moiety retains highly flexibility. In cocrystals with oligomannose-6, two FimH bacterial adhesins bind the Manα1,3Manα1 and Manα1,6Manα1 endings of the second trimannose core (A-4'-B). This cooperative switch towards bivalent binding appears sustainable beyond a molar excess of oligomannose-6. Our findings provide important novel structural insights for the design of multivalent FimH antagonists that bind with positive cooperativity., Competing Interests: Conflict of interest N.-C. R. is CEO and shareholder of Asparia Glycomics S.L., a company commercializing glycoscience products and services., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
7. The melanoma tumor glyco-code impacts human dendritic cells' functionality and dictates clinical outcomes.
- Author
-
Sosa Cuevas E, Roubinet B, Mouret S, Thépaut M, de Fraipont F, Charles J, Fieschi F, Landemarre L, Chaperot L, and Aspord C
- Subjects
- Male, Humans, Lectins, Glycosylation, Polysaccharides, Dendritic Cells, Melanoma pathology
- Abstract
Subversion of immunity is a hallmark of cancer development. Dendritic cells (DCs) are strategic immune cells triggering anti-tumor immune responses, but tumor cells exploit their versatility to subvert their functions. Tumor cells harbor unusual glycosylation patterns, which can be sensed through glycan-binding receptors (lectins) expressed by immune cells that are crucial for DCs to shape and orientate antitumor immunity. Yet, the global tumor glyco-code and its impact on immunity has not been explored in melanoma. To decrypt the potential link between aberrant glycosylation patterns and immune evasion in melanoma, we investigated the melanoma tumor glyco-code through the GLYcoPROFILE™ methodology (lectin arrays), and depicted its impact on patients' clinical outcome and DC subsets' functionality. Specific glycan patterns correlated with clinical outcome of melanoma patients, GlcNAc, NeuAc, TF-Ag and Fuc motifs being associated with poor outcome, whereas Man and Glc residues elicited better survival. Strikingly, tumor cells differentially impacting cytokine production by DCs harbored distinct glyco-profiles. GlcNAc exhibited a negative influence on cDC2s, whereas Fuc and Gal displayed inhibitory impacts on cDC1s and pDCs. We further identified potential booster glycans for cDC1s and pDCs. Targeting specific glycans on melanoma tumor cells restored DCs' functionality. The tumor glyco-code was also linked to the nature of the immune infiltrate. This study unveils the impact of melanoma glycan patterns on immunity, and paves the way for innovative therapeutic options. Glycans/lectins interactions arise as promising immune checkpoints to rescue DCs from tumor' hijacking to reshape antitumor immunity and inhibit immunosuppressive circuits triggered by aberrant tumor glycosylation., Competing Interests: Authors BR and LL were employed by company GLYcoDiag. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Sosa Cuevas, Roubinet, Mouret, Thépaut, de Fraipont, Charles, Fieschi, Landemarre, Chaperot and Aspord.)
- Published
- 2023
- Full Text
- View/download PDF
8. Insightful Improvement in the Design of Potent Uropathogenic E. coli FimH Antagonists.
- Author
-
Mousavifar L, Sarshar M, Bridot C, Scribano D, Ambrosi C, Palamara AT, Vergoten G, Roubinet B, Landemarre L, Bouckaert J, and Roy R
- Abstract
Selective antiadhesion antagonists of Uropathogenic Escherichia coli (UPEC) type-1 Fimbrial adhesin (FimH) are attractive alternatives for antibiotic therapies and prophylaxes against acute or recurrent urinary tract infections (UTIs) caused by UPECs. A rational small library of FimH antagonists based on previously described C -linked allyl α-D-mannopyranoside was synthesized using Heck cross-coupling reaction using a series of iodoaryl derivatives. This work reports two new members of FimH antagonist amongst the above family with sub nanomolar affinity. The resulting hydrophobic aglycones, including constrained alkene and aryl groups, were designed to provide additional favorable binding interactions with the so-called FimH "tyrosine gate". The newly synthesized C -linked glycomimetic antagonists, having a hydrolytically stable anomeric linkage, exhibited improved binding when compared to previously published analogs, as demonstrated by affinity measurement through interactions by FimH lectin. The crystal structure of FimH co-crystallized with one of the nanomolar antagonists revealed the binding mode of this inhibitor into the active site of the tyrosine gate. In addition, selected mannopyranoside constructs neither affected bacterial growth or cell viability nor interfered with antibiotic activity. C -linked mannoside antagonists were effective in decreasing bacterial adhesion to human bladder epithelial cells (HTB-9). Therefore, these molecules constituted additional therapeutic candidates' worth further development in the search for potent anti-adhesive drugs against infections caused by UPEC.
- Published
- 2023
- Full Text
- View/download PDF
9. Lectin Analysis of SARS-CoV-2-Positive Nasopharyngeal Samples Using GLYcoPROFILE ® Technology Platform.
- Author
-
Seničar M, Roubinet B, Daniellou R, Prazuck T, and Landemarre L
- Abstract
Nasopharyngeal samples are currently accepted as the standard diagnostic samples for nucleic acid amplification testing and antigenic testing for the SARS-CoV-2 virus. In addition to the diagnostic capacity of SARS-CoV-2-positive crude nasopharyngeal samples, their qualitative potential for direct glycan-specific analysis, in order to uncover unique glycol profiles, was assessed. In this study we provide glycan characterization of SARS-CoV-2-positive and -negative nasopharyngeal samples directly from lectin interactions. Although with limited throughput, this study evaluated the clinical sensitivity and specificity of the GLYcoPROFILE® technology platformon45crude nasopharyngeal samples collected between November 2020 and April 2022. Each GLYcoPROFILE® of 39 SARS-CoV-2-positive samples was compared toglycoprofiling on a panel of 10 selected lectins and the results were paralleled with SARS-CoV-2-negative samples’ results. The GLYcoPROFILE® showed a clear distinction between positive and negative samples with WFA, GSL-II, PHA-L (GlcNAc-specific) and BPA (GalNAc-specific) highlighted as relevant lectins in SARS-CoV-2-positive samples. In addition, a significant, positive statistical correlation was found for these lectins (p < 0.01).
- Published
- 2022
- Full Text
- View/download PDF
10. Unique CLR expression patterns on circulating and tumor-infiltrating DC subsets correlated with clinical outcome in melanoma patients.
- Author
-
Sosa Cuevas E, Valladeau-Guilemond J, Mouret S, Roubinet B, de Fraipont F, Landemarre L, Charles J, Bendriss-Vermare N, Chaperot L, and Aspord C
- Subjects
- Male, Humans, Lectins, C-Type metabolism, Membrane Glycoproteins metabolism, Polysaccharides, Dendritic Cells, Melanoma metabolism
- Abstract
Subversion of immunity by tumors is a crucial step for their development. Dendritic cells (DCs) are strategic immune cells that orchestrate anti-tumor immune responses but display altered functions in cancer. The bases for such DCs' hijacking are not fully understood. Tumor cells harbor unusual glycosylation patterns of surface glycoproteins and glycolipids. DCs express glycan-binding receptors, named C-type lectin receptors (CLR), allowing them to sense changes in glycan signature of their environment, and subsequently trigger a response. Recognition of tumor glycans by CLRs is crucial for DCs to shape antitumor immunity, and decisive in the orientation of the response. Yet the status of the CLR machinery on DCs in cancer, especially melanoma, remained largely unknown. We explored CLR expression patterns on circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs of melanoma patients, assessed their clinical relevance, and further depicted the correlations between CLR expression profiles and DCs' features. For the first time, we highlighted that the CLR repertoire of circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs was strongly perturbed in melanoma patients, with modulation of DCIR, CLEC-12α and NKp44 on circulating DCs, and perturbation of Dectin-1, CD206, DEC205, DC-SIGN and CLEC-9α on tumor-infiltrating DCs. Furthermore, melanoma tumor cells directly altered CLR expression profiles of healthy DC subsets, and this was associated with specific glycan patterns (Man, Fuc, GlcNAc) that may interact with DCs through CLR molecules. Notably, specific CLR expression profiles on DC subsets correlated with unique DCs' activation status and functionality and were associated with clinical outcome of melanoma patients. Higher proportions of DCIR-, DEC205-, CLEC-12α-expressing cDCs were linked with a better survival, whereas elevated proportions of CD206-, Dectin1-expressing cDCs and NKp44-expressing pDCs were associated with a poor outcome. Thus, melanoma tumor may shape DCs' features by exploiting the plasticity of the CLR machinery. Our study revealed that melanoma manipulates CLR pathways to hijack DC subsets and escape from immune control. It further paved the way to exploit glycan-lectin interactions for the design of innovative therapeutic strategies, which exploit DCs' potentialities while avoiding hijacking by tumor, to properly reshape anti-tumor immunity by manipulating the CLR machinery., Competing Interests: Authors BR and LL were employed by company GLYcoDiag. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Sosa Cuevas, Valladeau-Guilemond, Mouret, Roubinet, de Fraipont, Landemarre, Charles, Bendriss-Vermare, Chaperot and Aspord.)
- Published
- 2022
- Full Text
- View/download PDF
11. The myrosinase-glucosinolate system to generate neoglycoproteins: A case study targeting mannose binding lectins.
- Author
-
Cutolo G, Didak B, Tomas J, Roubinet B, Lafite P, Nehmé R, Schuler M, Landemarre L, and Tatibouët A
- Subjects
- Glucosinolates, Glycoproteins metabolism, Glycoside Hydrolases, Humans, Lectins chemistry, Serum Albumin, Bovine metabolism, Mannose metabolism, Mannose-Binding Lectins
- Abstract
A convenient strategy for a 'one-pot' synthesis of neoglycoproteins (NGP) was developed using the myrosinase-glucosinolate couple, a natural enzyme-substrate system. This enzymatic reaction allowed us to generate an isothiocyanate in situ which then reacted with the lysine residues of bovine serum albumin protein (BSA) to produce multivalent neoglycoproteins. Using two models, glucomoringin which is a natural glucosinolate bearing a l-rhamnose unit, and an artificial glucosinolate specifically designed for mannose type lectins, an average of up to 17.8 and 28.7 carbohydrate residues could be respectively grafted onto the BSA protein. This process is comparable to commercial approaches using BSA-Man
C without the disadvantage of handling harmful chemical reagents. Lectin binding screening (GLYcoPROFILE®) showed that among all NGPs synthesized, BSA-Man 16 gave similar and in some cases better affinities in comparison with commercial BSA-Manc towards various mannose-specific lectins., (Copyright © 2022 Elsevier Ltd. All rights reserved.)- Published
- 2022
- Full Text
- View/download PDF
12. Homo- and Heterovalent Neoglycoproteins as Ligands for Bacterial Lectins.
- Author
-
Goyard D, Roubinet B, Vena F, Landemarre L, and Renaudet O
- Abstract
Click chemistry gives access to unlimited set of multivalent glycoconjugates to explore carbohydrate-protein interactions and discover high affinity ligands. In this study, we have created supramolecular systems based on a carrier protein that was grafted by Cu(I)-catalyzed azide-alkyne cycloaddition with tetravalent glycodendrons presenting αGal, βGal and/or αFuc. Binding studies of the homo- (4 a-c) and heterovalent (5) neoglycoproteins (neoGPs) with the LecA and LecB lectins from P. aeruginosa has first confirmed the interest of the multivalent presentation of glycodendrons by the carrier protein (IC
50 up to 2.8 nM). Moreover, these studies have shown that the heterovalent display of glycans (5) allows the interaction with both lectins (IC50 of 10 nM) despite the presence of unspecific moieties, and even with similar efficiency for LecB. These results demonstrate the potential of multivalent and multispecific neoGPs as a promising strategy to fight against resistant pathogens., (© 2021 Wiley-VCH GmbH.)- Published
- 2021
- Full Text
- View/download PDF
13. Polyvalent Transition-State Analogues of Sialyl Substrates Strongly Inhibit Bacterial Sialidases*.
- Author
-
Assailly C, Bridot C, Saumonneau A, Lottin P, Roubinet B, Krammer EM, François F, Vena F, Landemarre L, Alvarez Dorta D, Deniaud D, Grandjean C, Tellier C, Pascual S, Montembault V, Fontaine L, Daligault F, Bouckaert J, and Gouin SG
- Subjects
- Catalytic Domain drug effects, Neuraminidase metabolism, Streptococcus pneumoniae cytology, Streptococcus pneumoniae drug effects, Neuraminidase antagonists & inhibitors, Streptococcus pneumoniae enzymology
- Abstract
Bacterial sialidases (SA) are validated drug targets expressed by common human pathogens such as Streptococcus pneumoniae, Vibrio cholerae, or Clostridium perfringens. Noncovalent inhibitors of bacterial SA capable of reaching the submicromolar level are rarely reported. In this work, multi- and polyvalent compounds are developed, based on the transition-state analogue 2-deoxy-2,3-didehydro-N-acetylneuraminic (DANA). Poly-DANA inhibits the catalytic activity of SA from S. pneumoniae (NanA) and the symbiotic microorganism B. thetaiotaomicron (BtSA) at the picomolar and low nanomolar levels (expressed in moles of molecules and of DANA, respectively). Each DANA grafted to the polymer surpasses the inhibitory potential of the monovalent analogue by more than four orders of magnitude, which represents the highest multivalent effect reported so far for an enzyme inhibition. The synergistic interaction is shown to operate exclusively in the catalytic domain, and not in the flanked carbohydrate-binding module (CBM). These results offer interesting perspectives for the multivalent inhibition of other SA families lacking a CBM, such as viral, parasitic, or human SA., (© 2020 Wiley-VCH GmbH.)
- Published
- 2021
- Full Text
- View/download PDF
14. Human galectin-1 and galectin-3 promote Tropheryma whipplei infection.
- Author
-
Ayona D, Zarza SM, Landemarre L, Roubinet B, Decloquement P, Raoult D, Fournier PE, and Desnues B
- Subjects
- Bacterial Proteins metabolism, Galactose metabolism, Galectin 1 blood, Galectins blood, Glycoproteins metabolism, Glycosylation, Humans, Macrophages metabolism, Macrophages microbiology, Polysaccharides, Bacterial metabolism, Tropheryma metabolism, Virulence, Whipple Disease microbiology, Blood Proteins metabolism, Galectin 1 metabolism, Galectins metabolism, Tropheryma pathogenicity, Whipple Disease metabolism
- Abstract
Tropheryma whipplei , is an actinobacterium that causes different infections in humans, including Whipple's disease. The bacterium infects and replicates in macrophages, leading to a Th2-biased immune response. Previous studies have shown that T. whipplei harbors complex surface glycoproteins with evidence of sialylation. However, the exact contribution of these glycoproteins for infection and survival remains obscure. To address this, we characterized the bacterial glycoprofile and evaluated the involvement of human β-galactoside-binding lectins, Galectin-1 (Gal-1) and Galectin-3 (Gal-3) which are highly expressed by macrophages as receptors for bacterial glycans. Tropheryma whipplei glycoproteins harbor different sugars including glucose, mannose, fucose, β-galactose and sialic acid. Mass spectrometry identification revealed that these glycoproteins were membrane- and virulence-associated glycoproteins. Most of these glycoproteins are highly sialylated and N-glycosylated while some of them are rich in poly-N-acetyllactosamine (Poly-LAcNAc) and bind Gal-1 and Gal-3. In vitro, T. whipplei modulates the expression and cellular distribution of Gal-1 and Gal-3. Although both galectins promote T. whipplei infection by enhancing bacterial cell entry, only Gal-3 is required for optimal bacterial uptake. Finally, we found that serum levels of Gal-1 and Gal-3 were altered in patients with T. whipplei infections as compared to healthy individuals, suggesting that galectins are also involved in vivo . Among T. whipplei membrane-associated proteins, poly-LacNAc rich-glycoproteins promote infection through interaction with galectins. T. whipplei modulates the expression of Gal-1 and Gal-3 both in vitro and in vivo . Drugs interfering with galectin-glycan interactions may provide new avenues for the treatment and diagnosis of T. whipplei infections.
- Published
- 2021
- Full Text
- View/download PDF
15. Heptylmannose-functionalized cellulose for the binding and specific detection of pathogenic E. coli.
- Author
-
Cauwel M, Sivignon A, Bridot C, Nongbe MC, Deniaud D, Roubinet B, Landemarre L, Felpin FX, Bouckaert J, Barnich N, and Gouin SG
- Subjects
- Adhesins, Escherichia coli metabolism, Bacterial Adhesion drug effects, Bacterial Typing Techniques instrumentation, Bacterial Typing Techniques methods, Cell Line, Tumor, Cellulose metabolism, Escherichia coli K12 chemistry, Feces microbiology, Fimbriae Proteins metabolism, Gastrointestinal Microbiome drug effects, Humans, Mannans metabolism, Paper, Protein Binding, Cellulose chemistry, Escherichia coli K12 isolation & purification, Mannans chemistry, Nanofibers chemistry
- Abstract
We developed a chemical method to covalently functionalize cellulose nanofibers and cellulose paper with mannoside ligands displaying a strong affinity for the FimH adhesin from pathogenic E. coli strains. Mannose-grafted cellulose proved efficient to selectively bind FimH lectin and discriminate pathogenic E. coli strains from non-pathogenic ones. These modified papers are valuable tools for diagnosing infections promoted by E. coli, such as cystitis or inflammatory bowel diseases, and the concept may be applicable to other life-threatening pathogens.
- Published
- 2019
- Full Text
- View/download PDF
16. Multivalent Thiosialosides and Their Synergistic Interaction with Pathogenic Sialidases.
- Author
-
Brissonnet Y, Assailly C, Saumonneau A, Bouckaert J, Maillasson M, Petitot C, Roubinet B, Didak B, Landemarre L, Bridot C, Blossey R, Deniaud D, Yan X, Bernard J, Tellier C, Grandjean C, Daligault F, and Gouin SG
- Abstract
Sialidases (SAs) hydrolyze sialyl residues from glycoconjugates of the eukaryotic cell surface and are virulence factors expressed by pathogenic bacteria, viruses, and parasites. The catalytic domains of SAs are often flanked with carbohydrate-binding module(s) previously shown to bind sialosides and to enhance enzymatic catalytic efficiency. Herein, non-hydrolyzable multivalent thiosialosides were designed as probes and inhibitors of V. cholerae, T. cruzi, and S. pneumoniae (NanA) sialidases. NanA was truncated from the catalytic and lectinic domains (NanA-L and NanA-C) to probe their respective roles upon interacting with sialylated surfaces and the synthetically designed di- and polymeric thiosialosides. The NanA-L domain was shown to fully drive NanA binding, improving affinity for the thiosialylated surface and compounds by more than two orders of magnitude. Importantly, each thiosialoside grafted onto the polymer was also shown to reduce NanA and NanA-C catalytic activity with efficiency that was 3000-fold higher than that of the monovalent thiosialoside reference. These results extend the concept of multivalency for designing potent bacterial and parasitic sialidase inhibitors., (© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2019
- Full Text
- View/download PDF
17. Photoactivatable Rhodamine Spiroamides and Diazoketones Decorated with "Universal Hydrophilizer" or Hydroxyl Groups.
- Author
-
Roubinet B, Bischoff M, Nizamov S, Yan S, Geisler C, Stoldt S, Mitronova GY, Belov VN, Bossi ML, and Hell SW
- Abstract
Photoactivatable rhodamine spiroamides and spirocyclic diazoketones emerged recently as synthetic markers applicable in multicolor super-resolution microscopy. However, their applicability in single molecule localization microscopy (SMLM) is often limited by aggregation, unspecific adhesion, and low reactivity caused by insufficient solubility and precipitation from aqueous solutions. We report here two synthetic modifications increasing the polarity of compact polycyclic and hydrophobic labels decorated with a reactive group: attachment of 3-sulfo-l-alanyl-beta-alanine dipeptide (a "universal hydrophilizer") or allylic hydroxylation in photosensitive rhodamine diazoketones (and spiroamides). The super-resolution images of tubulin and keratin filaments in fixed and living cells exemplify the performance of "blinking" spiroamides derived from N, N, N', N'-tetramethyl rhodamine.
- Published
- 2018
- Full Text
- View/download PDF
18. Fluorescent Photoswitchable Diarylethenes for Biolabeling and Single-Molecule Localization Microscopies with Optical Superresolution.
- Author
-
Roubinet B, Weber M, Shojaei H, Bates M, Bossi ML, Belov VN, Irie M, and Hell SW
- Abstract
A modular assembly of water-soluble diarylethenes (DAEs), applicable as biomarkers for optical nanoscopy, is reported. Reversibly photoswitchable 1,2-bis(2-alkyl-6-phenyl-1-benzothiophene-1,1-dioxide-3-yl)perfluorocyclopentenes possessing a fluorescent "closed" form were decorated with one or two methoxy group(s) attached to the para-position(s) of phenyl ring(s) and two, four, or eight carboxylic acid groups. Antibody conjugates of these DAEs feature low aggregation, efficient photoswitching in aqueous buffers, specific staining of cellular structures, and photophysical properties (high emission efficiencies and low cycloreversion quantum yields) enabling their application in superresolution microscopy. Images of tubulin, vimentin, and nuclear pore complexes are presented. The superresolution images can also be acquired by using solely 488 nm light without additional photoactivation with UV light. These DAEs exhibit reversible photoswitching without requiring any additives to the imaging media and open new paths toward the modular design of fluorescent dyes for bioimaging with optical superresolution.
- Published
- 2017
- Full Text
- View/download PDF
19. Carboxylated Photoswitchable Diarylethenes for Biolabeling and Super-Resolution RESOLFT Microscopy.
- Author
-
Roubinet B, Bossi ML, Alt P, Leutenegger M, Shojaei H, Schnorrenberg S, Nizamov S, Irie M, Belov VN, and Hell SW
- Abstract
Reversibly photoswitchable 1,2-bis(2-ethyl-6-phenyl-1-benzothiophene-1,1-dioxide-3-yl)perfluorocyclopentenes (EBT) having fluorescent "closed" forms were decorated with four or eight carboxylic groups and attached to antibodies. Low aggregation, efficient photoswitching in aqueous buffers, specific staining of cellular structures, and good photophysical properties were demonstrated. Alternating light pulses of UV and blue light induce numerous reversible photochemical transformations between two stables states with distinct structures. Using relatively low light intensities, EBTs were applied in biology-related super-resolution microscopy based on the reversible saturable (switchable) optical linear fluorescence transitions (RESOLFT) and demonstrated optical resolution of 75 nm., (© 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.)
- Published
- 2016
- Full Text
- View/download PDF
20. New 3-(heteroaryl)-2-iminocoumarin-based borate complexes: synthesis, photophysical properties, and rational functionalization for biosensing/biolabeling applications.
- Author
-
Roubinet B, Massif C, Moreau M, Boschetti F, Ulrich G, Ziessel R, Renard PY, and Romieu A
- Subjects
- Borates chemistry, Ligands, Molecular Structure, Aminocoumarins chemical synthesis, Aminocoumarins chemistry, Borates chemical synthesis, Boron Compounds chemical synthesis, Boron Compounds chemistry, Coumarins chemical synthesis, Coumarins chemistry, Fluorescent Dyes chemistry, Macrocyclic Compounds chemistry, Serum Albumin, Bovine chemistry
- Abstract
Members of a series of boron difluoride complexes with 3-(heteroaryl)-2-iminocoumarin ligands bearing both a phenolic hydroxyl group (acting as a fluorogenic center) and an N-aryl substituent (acting as a stabilizing moiety) have been synthesized in good yields by applying a straightforward two-step method. These novel fluorogenic dyes belong to the family of "Boricos" (D. Frath et al., Chem. Commun.- 2013, 49, 4908-4910) and are the first examples of phenol-based fluorophores of which the photophysical properties in the green-yellow spectral range are dramatically improved by N,N-chelation of a boron atom. Modulation of their fluorescence properties through reversible chemical modification of their phenol moieties has been demonstrated by the preparation of the corresponding 2,4-dinitrophenyl (DNP) ethers, which led to a dramatic "OFF-ON" fluorescence response upon reaction with thiols. Additionally, to expand the scope of these "7-hydroxy-Borico" derivatives, particularly in biolabeling, amine or carboxylic acid functionalities amenable to (bio)conjugation have been introduced within their scaffold. Their utility has been demonstrated in the preparation of fluorescent bovine serum albumin (BSA) conjugates and "Borico"-DOTA-like scaffolds in an effort to design novel monomolecular multimodal fluorescence- radioisotope imaging agents., (© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.)
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.