187 results on '"Rouan, Lauriane"'
Search Results
2. Ideotype map research based on a crop model in the context of a climatic gradient
- Author
-
Sambakhé, Diariétou, Gozé, Eric, Bacro, Jean-Noël, Dingkuhn, Michael, Adam, Myriam, Ndiaye, Malick, Muller, Bertrand, and Rouan, Lauriane
- Published
- 2024
- Full Text
- View/download PDF
3. AraDiv: a dataset of functional traits and leaf hyperspectral reflectance of Arabidopsis thaliana
- Author
-
Przybylska, Maria Stefania, Violle, Cyrille, Vile, Denis, Scheepens, J. F., Lacombe, Benoit, Le Roux, Xavier, Perrier, Lisa, Sales-Mabily, Lou, Laumond, Mariette, Vinyeta, Mariona, Moulin, Pierre, Beurier, Gregory, Rouan, Lauriane, Cornet, Denis, and Vasseur, François
- Published
- 2023
- Full Text
- View/download PDF
4. Linking genetic markers and crop model parameters using neural networks to enhance genomic prediction of integrative traits
- Author
-
Larue, Florian, Rouan, Lauriane, Pot, David, Rami, Jean-François, Luquet, Delphine, Beurier, Grégory, Larue, Florian, Rouan, Lauriane, Pot, David, Rami, Jean-François, Luquet, Delphine, and Beurier, Grégory
- Abstract
Introduction: Predicting the performance (yield or other integrative traits) of cultivated plants is complex because it involves not only estimating the genetic value of the candidates to selection, the interactions between the genotype and the environment (GxE) but also the epistatic interactions between genomic regions for a given trait, and the interactions between the traits contributing to the integrative trait. Classical Genomic Prediction (GP) models mostly account for additive effects and are not suitable to estimate non-additive effects such as epistasis. Therefore, the use of machine learning and deep learning methods has been previously proposed to model those non-linear effects. Methods: In this study, we propose a type of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN) and compare it to two classical GP regression methods for their ability to predict an integrative trait of sorghum: aboveground fresh weight accumulation. We also suggest that the use of a crop growth model (CGM) can enhance predictions of integrative traits by decomposing them into more heritable intermediate traits. Results: The results show that CNN outperformed both LASSO and Bayes C methods in accuracy, suggesting that CNN are better suited to predict integrative traits. Furthermore, the predictive ability of the combined CGM-GP approach surpassed that of GP without the CGM integration, irrespective of the regression method used. Discussion: These results are consistent with recent works aiming to develop Genome-to-Phenotype models and advocate for the use of non-linear prediction methods, and the use of combined CGM-GP to enhance the prediction of crop performances.
- Published
- 2024
5. Convolutional neural network allows amylose content prediction in yam (Dioscorea alata L.) flour using near infrared spectroscopy
- Author
-
Houngbo, Mahugnon Ezekiel, Desfontaines, Lucienne, Diman, Jean-Louis, Arnau, Gemma, Mestres, Christian, Davrieux, Fabrice, Rouan, Lauriane, Beurier, Grégory, Marie-Magdeleine, Carine, Meghar, Karima, Alamu, Emmanuel Oladeji, Otegbayo, Bolanle Omolara, Cornet, Denis, Houngbo, Mahugnon Ezekiel, Desfontaines, Lucienne, Diman, Jean-Louis, Arnau, Gemma, Mestres, Christian, Davrieux, Fabrice, Rouan, Lauriane, Beurier, Grégory, Marie-Magdeleine, Carine, Meghar, Karima, Alamu, Emmanuel Oladeji, Otegbayo, Bolanle Omolara, and Cornet, Denis
- Abstract
Background: Yam (Dioscorea alata L.) is the staple food of many populations in the intertropical zone where it is grown. The lack of phenotyping methods for tuber quality hinders the adoption of new genotypes from the breeding programs. Recently, near infrared spectroscopy (NIRS) has been used as a reliable tool to characterize the chemical composition of the yam tuber. However, it failed to predict the amylose content, although this trait is strongly involved in the quality of the product. Results: This study used NIRS to predict the amylose content from 186 yam flour samples. Two calibration methods were developed and validated on an independent dataset: Partial Least Square (PLS) and Convolutional Neural Network (CNN). To evaluate final model performances, the coefficient of determination (R2), the root mean square error (RMSE), and the Ratio of Performance to Deviation (RPD) were calculated using predictions on an independent validation dataset. Tested models showed contrasting performances (i.e. R2 of 0.72 and 0.89, RMSE of 1.33 and 0.81, RPD of 2.13 and 3.49 respectively, for the PLS and the CNN model). Conclusion: According to the quality standard for NIRS model prediction used in food science, the PLS method proved unsuccessful (RPD<3 and R2<0.8) for predicting amylose content from yam flour, while the CNN proved reliable and efficient method. With the application of deep learning method, this study established the proof of concept that amylose content, a key driver of yam textural quality and acceptance, could be predicted accurately using NIRS as a high throughput phenotyping method.
- Published
- 2024
6. Combining modeling and experimental approaches for developing rice–oil palm agroforestry systems.
- Author
-
Perez, Raphaël P A, Vezy, Rémi, Bordon, Romain, Laisné, Thomas, Roques, Sandrine, Rebolledo, Maria-Camila, Rouan, Lauriane, Fabre, Denis, Gibert, Olivier, and Raissac, Marcel De
- Subjects
AGROFORESTRY ,OIL palm ,RICE ,RICE oil ,EXTREME weather ,WATER efficiency ,CLIMATE extremes ,PRODUCTION losses - Abstract
Monoculture systems in South East Asia are facing challenges due to climate change-induced extreme weather conditions, leading to significant annual production losses in rice and oil palm. To ensure the stability of these crops, innovative strategies like resilient agroforestry systems need to be explored. Converting oil palm (Elaeis guineensis) monocultures to rice (Oryza sativa)-based intercropping systems shows promise, but achieving optimal yields requires adjusting palm density and identifying rice varieties adapted to changes in light quantity and diurnal fluctuation. This paper proposes a methodology that combines a model of light interception with indoor experiments to assess the feasibility of rice–oil palm agroforestry systems. Using a functional–structural plant model of oil palm, the planting design was optimized to maximize transmitted light for rice. Simulation results estimated the potential impact on oil palm carbon assimilation and transpiration. In growth chambers, simulated light conditions were replicated with adjustments to intensity and daily fluctuation. Three light treatments independently evaluated the effects of light intensity and fluctuation on different rice accessions. The simulation study revealed intercropping designs that significantly increased light transmission for rice cultivation with minimal decrease in oil palm densities compared with conventional designs. The results estimated a loss in oil palm productivity of less than 10%, attributed to improved carbon assimilation and water use efficiency. Changes in rice plant architecture were primarily influenced by light quantity, while variations in yield components were attributed to light fluctuations. Different rice accessions exhibited diverse responses to light fluctuations, indicating the potential for selecting genotypes suitable for agroforestry systems. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. Combining modelling and experimental approaches to assess the feasibility of developing rice-oil palm agroforestry system
- Author
-
Perez, Raphaël P A, primary, Vezy, Rémi, additional, Bordon, Romain, additional, Laisné, Thomas, additional, Roques, Sandrine, additional, Rebolledo, Maria-Camila, additional, Rouan, Lauriane, additional, Fabre, Denis, additional, Gibert, Olivier, additional, and De Raissac, Marcel, additional
- Published
- 2024
- Full Text
- View/download PDF
8. Conditional optimization of a noisy function using a kriging metamodel
- Author
-
Sambakhé, Diariétou, Rouan, Lauriane, Bacro, Jean-Noël, and Gozé, Eric
- Published
- 2019
- Full Text
- View/download PDF
9. Convolutional neural network allows amylose content prediction in yam (Dioscorea alata L.) flour using near infrared spectroscopy
- Author
-
Houngbo, Mahugnon Ezékiel, primary, Desfontaines, Lucienne, additional, Diman, Jean‐Louis, additional, Arnau, Gemma, additional, Mestres, Christian, additional, Davrieux, Fabrice, additional, Rouan, Lauriane, additional, Beurier, Grégory, additional, Marie‐Magdeleine, Carine, additional, Meghar, Karima, additional, Alamu, Emmanuel Oladeji, additional, Otegbayo, Bolanle O, additional, and Cornet, Denis, additional
- Published
- 2023
- Full Text
- View/download PDF
10. Heuristic Exploration of Theoretical Margins for Improving Adaptation of Rice through Crop-Model Assisted Phenotyping
- Author
-
Luquet, Delphine, Rebolledo, Camila, Rouan, Lauriane, Soulie, Jean-Christophe, Dingkuhn, Michael, Yin, Xinyou, editor, and Struik, Paul C., editor
- Published
- 2016
- Full Text
- View/download PDF
11. Plant response to a late heat stress can be modified by an earlier one. A case study on sorghum grain production
- Author
-
Berger, Angélique, Roques, Sandrine, Aguilar, Grégory, Soutiras, Armel, Singer, Mathilde, Rouan, Lauriane, Cornet, Denis, Terrier, Nancy, Granier, Christine, Berger, Angélique, Roques, Sandrine, Aguilar, Grégory, Soutiras, Armel, Singer, Mathilde, Rouan, Lauriane, Cornet, Denis, Terrier, Nancy, and Granier, Christine
- Published
- 2023
12. AraDiv: A dataset of functional traits and leaf hyperspectral reflectance of Arabidopsis thaliana
- Author
-
Przybylska, Stefania, Violle, Cyrille, Vile, Denis, Scheepens, J.F., Lacombe, Benoit, Le Roux, Xavier, Perrier, Lisa, Sales-Mabily, Lou, Laumond, Mariette, Vinyeta, Mariona, Moulin, Pierre, Beurier, Grégory, Rouan, Lauriane, Cornet, Denis, Vasseur, François, Przybylska, Stefania, Violle, Cyrille, Vile, Denis, Scheepens, J.F., Lacombe, Benoit, Le Roux, Xavier, Perrier, Lisa, Sales-Mabily, Lou, Laumond, Mariette, Vinyeta, Mariona, Moulin, Pierre, Beurier, Grégory, Rouan, Lauriane, Cornet, Denis, and Vasseur, François
- Abstract
Data from functional trait databases have been increasingly used to address questions related to plant diversity and trait-environment relationships. However, such databases provide intraspecific data that combine individual records obtained from distinct populations at different sites and, hence, environmental conditions. This prevents distinguishing sources of variation (e.g., genetic-based variation vs. phenotypic plasticity), a necessary condition to test for adaptive processes and other determinants of plant phenotypic diversity. Consequently, individual traits measured under common growing conditions and encompassing within-species variation across the occupied geographic range have the potential to leverage trait databases with valuable data for functional and evolutionary ecology. Here, we recorded 16 functional traits and leaf hyperspectral reflectance (NIRS) data for 721 widely distributed Arabidopsis thaliana natural accessions grown in a common garden experiment. These data records, together with meteorological variables obtained during the experiment, were assembled to create the AraDiv dataset. AraDiv is a comprehensive dataset of A. thaliana's intraspecific variability that can be explored to address questions at the interface of genetics and ecology.
- Published
- 2023
13. Interactions between male oil palm inflorescences (E.guineensis Jacquin) and its pollinator E. kamerunicus Faust (Coleoptera: Curculionidae) Comparison between two planting materials in North Sumatra
- Author
-
Beaudoin-Ollivier, Laurence, Freyssinet, Emilie, Rahman Moeis, Raidi, Rouan, Lauriane, Rey, Hervé, Afandi, Dadang, Syahputra, Indra, Dumont, Yves, Ollivier, Laurence, Beaudoin-Ollivier, Laurence, Freyssinet, Emilie, Rahman Moeis, Raidi, Rouan, Lauriane, Rey, Hervé, Afandi, Dadang, Syahputra, Indra, Dumont, Yves, and Ollivier, Laurence
- Published
- 2023
14. Combining modelling and experimental approaches to assess the feasibility of developing rice-oil palm agroforestry system
- Author
-
Perez, Raphaël P.A, primary, Vezy, Rémi, additional, Bordon, Romain, additional, Laisné, Thomas, additional, Roques, Sandrine, additional, Rebolledo, Maria-Camila, additional, Rouan, Lauriane, additional, Fabre, Denis, additional, Gibert, Olivier, additional, and De Raissac, Marcel, additional
- Published
- 2022
- Full Text
- View/download PDF
15. Program E-Surge: A Software Application for Fitting Multievent Models
- Author
-
Choquet, Rémi, Rouan, Lauriane, Pradel, Roger, Patil, G. P., editor, Thomson, David L, editor, Cooch, Evan G., editor, and Conroy, Michael J., editor
- Published
- 2009
- Full Text
- View/download PDF
16. Predicting quality, texture and chemical content of yam (Dioscorea alataL.) tubers using near infrared spectroscopy
- Author
-
EHOUNOU, Adou, N’GUETTA, Assanvo, KOUAKOU, Amani, EHOUNOU, Adou Emmanuel, CORNET, Denis, DESFONTAINES, Lucienne, MARIE-MAGDELEINE, Carine, MALEDON, Erick, NUDOL, Elie, BEURIER, Gregory, ROUAN, Lauriane, BRAT, Pierre, LECHAUDEL, Mathieu, NOUS, Camille, N’GUETTA, Assanvo Simon Pierre, KOUAKOU, Amani Michel, ARNAU, Gemma, Univ Felix Houphou & Boigny, Centre National de la Recherche Agronomique - CNRA (IVORY COAST), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Agrosystèmes tropicaux (ASTRO), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Unité de Recherches Zootechniques (URZ), Qualisud - Pôle de La Réunion (Qualisud Réunion ), Avignon Université (AU)-Institut de Recherche pour le Développement (IRD)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM)-Université de La Réunion (UR)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Laboratoire Cogitamus, Bill & Melinda Gates Foundation OPP1178942, ERDF Cavalbio project - Region Guadeloupe, European Commission, Université Félix Houphouët-Boigny (UFHB), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro - Montpellier SupAgro, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Démarche intégrée pour l'obtention d'aliments de qualité (UMR QualiSud), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Institut Agro - Montpellier SupAgro, and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Institut Agro - Montpellier SupAgro
- Subjects
Starch ,convolutional neural network ,01 natural sciences ,chemistry.chemical_compound ,Food science ,Spectroscopy ,Mathematics ,media_common ,[PHYS]Physics [physics] ,biology ,Qualité des aliments ,Q01 - Sciences et technologies alimentaires - Considérations générales ,04 agricultural and veterinary sciences ,040401 food science ,Dioscorea alata ,quality ,Dioscorea ,Choix des variétés ,Qualité ,media_common.quotation_subject ,Spectroscopie infrarouge ,Infrared spectroscopy ,Texture (geology) ,near infrared spectrometry ,Tubercule ,0404 agricultural biotechnology ,[CHIM]Chemical Sciences ,Dry matter ,Quality (business) ,Q04 - Composition des produits alimentaires ,Yam (Dioscorea alata L.) ,Sugar ,Propriété physicochimique ,010401 analytical chemistry ,Near-infrared spectroscopy ,biology.organism_classification ,0104 chemical sciences ,chemistry ,texture ,Essai de variété - Abstract
Despite the importance of yam ( Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (4%) and high protein (>6%) contents, low hardness (0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R2
- Published
- 2021
- Full Text
- View/download PDF
17. A Perspective on plant phenomics: Coupling deep learning and near-infrared spectroscopy
- Author
-
Vasseur, François, Cornet, Denis, Beurier, Grégory, Messier, Julie, Rouan, Lauriane, Bresson, Justine, Ecarnot, Martin, Stahl, Mark, Heumos, Simon, Gérard, Marianne, Reijnen, Hans, Tillard, Pascal, Lacombe, Benoit, Emanuel, Amélie, Floret, Justine, Estarague, Aurélien, Przybylska, Stefania, Sartori, Kevin, Gillespie, Lauren M., Baron, Etienne, Kazakou, Elena, Vile, Denis, Violle, Cyrille, Vasseur, François, Cornet, Denis, Beurier, Grégory, Messier, Julie, Rouan, Lauriane, Bresson, Justine, Ecarnot, Martin, Stahl, Mark, Heumos, Simon, Gérard, Marianne, Reijnen, Hans, Tillard, Pascal, Lacombe, Benoit, Emanuel, Amélie, Floret, Justine, Estarague, Aurélien, Przybylska, Stefania, Sartori, Kevin, Gillespie, Lauren M., Baron, Etienne, Kazakou, Elena, Vile, Denis, and Violle, Cyrille
- Abstract
The trait-based approach in plant ecology aims at understanding and classifying the diversity of ecological strategies by comparing plant morphology and physiology across organisms. The major drawback of the approach is that the time and financial cost of measuring the traits on many individuals and environments can be prohibitive. We show that combining near-infrared spectroscopy (NIRS) with deep learning resolves this limitation by quickly, non-destructively, and accurately measuring a suite of traits, including plant morphology, chemistry, and metabolism. Such an approach also allows to position plants within the well-known CSR triangle that depicts the diversity of plant ecological strategies. The processing of NIRS through deep learning identifies the effect of growth conditions on trait values, an issue that plagues traditional statistical approaches. Together, the coupling of NIRS and deep learning is a promising high-throughput approach to capture a range of ecological information on plant diversity and functioning and can accelerate the creation of extensive trait databases.
- Published
- 2022
18. A Perspective on Plant Phenomics: Coupling Deep Learning and Near-Infrared Spectroscopy
- Author
-
Vasseur, François, primary, Cornet, Denis, additional, Beurier, Grégory, additional, Messier, Julie, additional, Rouan, Lauriane, additional, Bresson, Justine, additional, Ecarnot, Martin, additional, Stahl, Mark, additional, Heumos, Simon, additional, Gérard, Marianne, additional, Reijnen, Hans, additional, Tillard, Pascal, additional, Lacombe, Benoît, additional, Emanuel, Amélie, additional, Floret, Justine, additional, Estarague, Aurélien, additional, Przybylska, Stefania, additional, Sartori, Kevin, additional, Gillespie, Lauren M., additional, Baron, Etienne, additional, Kazakou, Elena, additional, Vile, Denis, additional, and Violle, Cyrille, additional
- Published
- 2022
- Full Text
- View/download PDF
19. Studying the reproductive skipping behavior in long-lived birds by adding nest inspection to individual-based data
- Author
-
Sanz-Aguilar, Ana, Tavecchia, Giacomo, Genovart, Meritxell, Igual, Jose Manuel, Oro, Daniel, Rouan, Lauriane, and Pradel, Roger
- Published
- 2011
20. Experience-dependent natal philopatry of breeding greater flamingos
- Author
-
Balkiz, Özge, Béchet, Arnaud, Rouan, Lauriane, Choquet, Rémi, Germain, Christophe, Amat, Juan A., Rendón-Martos, Manuel, Baccetti, Nicola, Nissardi, Sergio, Özesmi, Uygar, and Pradel, Roger
- Published
- 2010
21. Into the range: a latitudinal gradient or a center-margins differentiation of ecological strategies in Arabidopsis thaliana?
- Author
-
Estarague, Aurélien, primary, Vasseur, François, additional, Sartori, Kevin, additional, Bastias, Cristina C, additional, Cornet, Denis, additional, Rouan, Lauriane, additional, Beurier, Gregory, additional, Exposito-Alonso, Moises, additional, Herbette, Stéphane, additional, Bresson, Justine, additional, Vile, Denis, additional, and Violle, Cyrille, additional
- Published
- 2021
- Full Text
- View/download PDF
22. Phenomics of rice early vigour and drought response: Are sugar related and morphogenetic traits relevant?
- Author
-
Rebolledo, Maria-Camila, Dingkuhn, Michael, Clément-Vidal, Anne, Rouan, Lauriane, and Luquet, Delphine
- Published
- 2012
- Full Text
- View/download PDF
23. Why and how crop models should account for C source-sink relationships better to address future agro-climatic challenges [S1-O.07]
- Author
-
Luquet, Delphine, Larue, Florian, Fabre, Denis, Rebolledo Cid, Maria Camila, Clément-Vidal, Anne, Rouan, Lauriane, Beurier, Grégory, and Dingkuhn, Michael
- Abstract
The integrative capacity of crop models is of great value to identify in-silico optimal combinations of traits (ideotypes) and traits x cultu ral practices in targeted agro-environments. This approach becomes even more challenging when considering the multiple environ mental factors constituting future agro-climatic scenarios : increasing stress frequency and severity (e.g., heat, drought, wind, flooding); enhanced atmospheric C02 concentration (e-COzl, and also adoption of more sustainable and resilient cultural practices (agroecology) combining of productivity with ecosystem services. Several studies reported the weaknesses of crop models in predicting crop performance in response to climate change. While these limitations were until now mainly explained by poor simulation by crop models of physiological responses to heat and drought, crop model shortcomings of the representation of Carbon (C) source-sink relations and interactions, involving phenotypic plasticity of both source and sink, should explain this limitations and have received less attention (Chang and Zhu 2017). Recent studies reported a down-regulation of C source capacity (i.e. photosynthesis) in C3 crops under e-C02 by sink lim itation in the afternoon, involving low TPU levels (Triose Phosphate Utilization) (rice: (Fabre et al. 2019). (Fabre, in prep) indicated that high constitutive source-sink ratios increase photosynthesis under e-C02 • Finally, (Kikuchi et al. 2017) demonstrated in a FACE trial that rice plants with high adaptive plasticity of tillering and panicle size respond better to e-C02 • Although particularly relevant to C3 crops that respond strongly to e-C02 , this also applies to C4 crops when they are C-sink limited (Oszvald et al., 2018). Therefore, Carbon source-sink relationships and their physiological and morphological adaptability (feedbacks) are pivotai in predicting crop ideotypes in a climate change context. ln addition, the agro-ecological transition needs better crop models to design solutions for improving (1) crop energy and carbon use, (2) resilience under abiotic stresses, and (3) ecosystem services such as channeling assimilates into the roots/soil (4p1000 initiative: C sequestration and soil improvement). This implies to further model plantplant and/or plant-soil interactions and related impacts on C source-sink relationships and competitions for (light) resources. Crop models should indeed be able to predict trade-offs among several crop performance objectives such as multiple production purposes (e.g., grain and biomass), between potential productivity and adaptation, and between productivity and ecosystem services such as C sequestration into the soil. For this, we will provide examples of analytical and modeling concepts. More quantitative, extrapolatable evidence is needed to understand the importance of C source and sink traits, their adaptive plasticity as they interact during plant development, and their impact on crop performance under anticipated agro-climatic conditions. This requires a dialogue between experimental and modeling research for which we are presenting concepts here. Our laboratory focuses on rice (C3) and sorghum (C4) model cereals using crop models simulating sink- and source driven phenotypic plasticity, namely SAMARA (Kumar et al., 2016) and Ecomeristem (Larue et al., 2019). Sorne (experimental, modelling) preliminary resu lts will be shown but a broader dynamics is needed. Once further improved, the models will be used to (i) estimate in silico the prediction errors caused by ignoring source-sink feedbacks and plasticity; (ii) predict the potential of improved trait combinations and plasticity on the performance of future crops; and (iii) propose how existing, generic crop models should be improved and what type of data will be needed for that.
- Published
- 2020
24. Effect of source/sink ratios on yield components, growth dynamics and structural characteristics of oil palm (Elaeis guineensis) bunches
- Author
-
Pallas, Benoît, Mialet-Serra, Isabelle, Rouan, Lauriane, Clément-Vidal, Anne, Caliman, Jean-Pierre, and Dingkuhn, Michael
- Published
- 2013
- Full Text
- View/download PDF
25. Autoencoding Genetic Markers to Predict the Value of Ecophysiological Model Parameters - Proof of Concept Using a Sorghum Diversity Panel
- Author
-
Larue, Florian, primary, Beurier, Grégory, additional, Rouan, Lauriane, additional, Pot, David, additional, Rami, Jean-François, additional, and Luquet, Delphine, additional
- Published
- 2020
- Full Text
- View/download PDF
26. Into the range: a latitudinal gradient or a center-margins differentiation of ecological strategies in Arabidopsis thaliana?
- Author
-
Estarague, Aurélien, Vasseur, François, Sartori, Kevin, Bastias, Cristina C, Cornet, Denis, Rouan, Lauriane, Beurier, Gregory, Exposito-Alonso, Moises, Herbette, Stéphane, Bresson, Justine, Vile, Denis, and Violle, Cyrille
- Subjects
PHENOTYPIC plasticity ,COLONIZATION (Ecology) ,LEAF area ,PLANT adaptation ,ENVIRONMENTAL history - Abstract
Background and Aims Determining within-species large-scale variation in phenotypic traits is central to elucidate the drivers of species' ranges. Intraspecific comparisons offer the opportunity to understand how trade-offs and biogeographical history constrain adaptation to contrasted environmental conditions. Here we test whether functional traits, ecological strategies from the CSR scheme and phenotypic plasticity in response to abiotic stress vary along a latitudinal or a center- margins gradient within the native range of Arabidopsis thaliana. Methods We experimentally examined the phenotypic outcomes of plant adaptation at the center and margins of its geographic range using 30 accessions from southern, central and northern Europe. We characterized the variation of traits related to stress tolerance, resource use, colonization ability, CSR strategy scores, survival and fecundity in response to high temperature (34 °C) or frost (- 6 °C), combined with a water deficit treatment. Key Results We found evidence for both a latitudinal and a center-margins differentiation for the traits under scrutiny. Age at maturity, leaf dry matter content, specific leaf area and leaf nitrogen content varied along a latitudinal gradient. Northern accessions presented a greater survival to stress than central and southern accessions. Leaf area, C-scores, R-scores and fruit number followed a center-margins differentiation. Central accessions displayed a higher phenotypic plasticity than northern and southern accessions for most studied traits. Conclusions Traits related to an acquisitive/conservative resource-use trade-off followed a latitudinal gradient. Traits associated with a competition/colonization trade-off differentiated along the historic colonization of the distribution range and then followed a center-margins differentiation. Our findings pinpoint the need to consider the joint effect of evolutionary history and environmental factors when examining phenotypic variation across the distribution range of a species. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
27. Is triose phosphate utilization involved in the feedback inhibition of photosynthesis in rice under conditions of sink limitation?
- Author
-
Fabre, Denis, Yin, Xinyou, Dingkuhn, Michael, Clément-Vidal, Anne, Roques, Sandrine, Rouan, Lauriane, Soutiras, Armelle, Luquet, Delphine, Lawson, Tracy, Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University and Research [Wageningen] (WUR), and CIRAD, French Agricultural Research Centre for International Development
- Subjects
0106 biological sciences ,0301 basic medicine ,[SDV.SA]Life Sciences [q-bio]/Agricultural sciences ,CO2 enrichment ,Sucrose ,Crop Physiology ,Physiology ,P40 - Météorologie et climatologie ,F60 - Physiologie et biochimie végétale ,Oryza sativa ,Plant Science ,Photosynthesis ,01 natural sciences ,CO enrichment ,Sink (geography) ,03 medical and health sciences ,chemistry.chemical_compound ,Climate change ,triose phosphate utilization ,Cultivar ,sink feedback ,Photosynthèse ,Plant stem ,Panicle ,2. Zero hunger ,Changement climatique ,geography ,geography.geographical_feature_category ,photosynthesis ,Chemistry ,rice ,sucrose ,Phosphate ,PE&RC ,Relation source puits ,Horticulture ,030104 developmental biology ,source-sink ,Dioxyde de carbone ,010606 plant biology & botany - Abstract
International audience; This study aimed to understand the physiological basis of rice photosynthetic response to C source-sink imbalances, focusing on the dynamics of the photosynthetic parameter triose phosphate utilization (TPU). Here, rice (Oriza sativa L.) indica cultivar IR64 were grown in controlled environment chambers under current ambient CO2 concentration until heading, and thereafter two CO2 treatments (400 and 800 mu mol mol(-1)) were compared in the presence and absence of a panicle-pruning treatment modifying the C sink. At 2 weeks after heading, photosynthetic parameters derived from CO2 response curves, and non-structural carbohydrate content of flag leaf and internodes were measured three to four times of day. Spikelet number per panicle and flag leaf area on the main culm were recorded. Net C assimilation and TPU decreased progressively after midday in panicle-pruned plants, especially under 800 mu mol mol(-1) CO2. This TPU reduction was explained by sucrose accumulation in the flag leaf resulting from the sink limitation. Taking together, our findings suggest that TPU is involved in the regulation of photosynthesis in rice under elevated CO2 conditions, and that sink limitation effects should be considered in crop models.
- Published
- 2019
- Full Text
- View/download PDF
28. Genotypic covariations of traits underlying sorghum stem biomass production and quality and their regulations by water availability: Insight from studies at organ and tissue levels
- Author
-
Perrier, Lisa, Clement-Vidal, Anne, Jaffuel, Sylvie, Verdeil, Jean-Luc, Roques, Sandrine, Soutiras, Armelle, Baptiste, Christelle, Fabre, Denis, Bastianelli, Denis, Bonnal, Laurent, Sartre, Pascal, Rouan, Lauriane, Pot, David, and Luquet, Delphine
- Subjects
biomass sorghum ,cell wall components ,histology ,soluble sugar ,stem internode ,water deficit ,Vegetal Biology ,food and beverages ,Biologie végétale - Abstract
Sweet and biomass sorghum are expected to contribute increasingly to bioenergy production. Better understanding the impacts of the genotypic and environmental variabilities on biomass component traits and their properties is essential to optimize energy yields. This study aimed to evaluate whether traits contributing to stem biomass growth and biochemical composition at different biological scales (co)vary with the genotype and the water status in sorghum. Height genotypes were studied over two years in field conditions in southern France under two water treatments (well watered vs. 25 days' dry down during stem elongation). Main stem internode number, size, (non)structural carbohydrate, and lignin contents were measured at the end of the stress period and/or at final harvest, together with biochemical and histological analyses of the youngest expanded internode. The tallest genotypes showed the highest stem dry weights and lignin contents. Stem (structural) biomass density was positively correlated with lignin content, particularly in internode parenchyma. Stem soluble sugar and lignin contents were inversely proportional across genotypes and water conditions. Genotypes contrasted for drought sensitivity and recovery capacity of stem growth and biochemical composition. The length and cell wall deposition of internodes expanding under water deficit were reduced and did not recover, these responses being weakly correlated. Genotypic variability was pointed out in the growth recovery of internodes expanding under re-watered conditions. According to the observed genotypic variability and the absence of antagonistic correlations between the responses of the different traits to water availability, it is suggested that biomass sorghum varieties optimizing their responses to water availability in terms of growth and cell wall deposition can be developed for different bioenergy targets.
- Published
- 2019
29. Modelling tiller growth and mortality as a sink-driven process using Ecomeristem: Implications for biomass sorghum ideotyping
- Author
-
Larue, Florian, Fumey, Damien, Rouan, Lauriane, Soulie, Jean-Christophe, Roques, Sandrine, Beurier, Grégory, Luquet, Delphine, Larue, Florian, Fumey, Damien, Rouan, Lauriane, Soulie, Jean-Christophe, Roques, Sandrine, Beurier, Grégory, and Luquet, Delphine
- Abstract
Background and Aims: Plant modelling can efficiently support ideotype conception, particularly in multi-criteria selection contexts. This is the case for biomass sorghum, implying the need to consider traits related to biomass production and quality. This study evaluated three modelling approaches for their ability to predict tiller growth, mortality and their impact, together with other morphological and physiological traits, on biomass sorghum ideotype prediction. Methods: Three Ecomeristem model versions were compared to evaluate whether tillering cessation and mortality were source (access to light) or sink (age-based hierarchical access to C supply) driven. They were tested using a field data set considering two biomass sorghum genotypes at two planting densities. An additional data set comparing eight genotypes was used to validate the best approach for its ability to predict the genotypic and environmental control of biomass production. A sensitivity analysis was performed to explore the impact of key genotypic parameters and define optimal parameter combinations depending on planting density and targeted production (sugar and fibre). Key Results: The sink-driven control of tillering cessation and mortality was the most accurate, and represented the phenotypic variability of studied sorghum genotypes in terms of biomass production and partitioning between structural and non-structural carbohydrates. Model sensitivity analysis revealed that light conversion efficiency and stem diameter are key traits to target for improving sorghum biomass within existing genetic diversity. Tillering contribution to biomass production appeared highly genotype and environment dependent, making it a challenging trait for designing ideotypes. Conclusions: By modelling tiller growth and mortality as sink-driven processes, Ecomeristem could predict and explore the genotypic and environmental variability of biomass sorghum production. Its application to larger sorghum genetic divers
- Published
- 2019
30. Covariate and multinomial: Accounting for distance in movement in capture-recapture analyses
- Author
-
Guery, Loreleï, Rouan, Lauriane, Descamps, Sébastien, Bêty, Joël, Fernández-Chacón, Albert, Gilchrist, Grant, Pradel, Roger, Guery, Loreleï, Rouan, Lauriane, Descamps, Sébastien, Bêty, Joël, Fernández-Chacón, Albert, Gilchrist, Grant, and Pradel, Roger
- Abstract
Many biological quantities cannot be measured directly but rather need to be estimated from models. Estimates from models are statistical objects with variance and, when derived simultaneously, covariance. It is well known that their variance–covariance (VC) matrix must be considered in subsequent analyses. Although it is always preferable to carry out the proposed analyses on the raw data themselves, a two‐step approach cannot always be avoided. This situation arises when the parameters of a multinomial must be regressed against a covariate. The Delta method is an appropriate and frequently recommended way of deriving variance approximations of transformed and correlated variables. Implementing the Delta method is not trivial, and there is a lack of a detailed information on the procedure in the literature for complex situations such as those involved in constraining the parameters of a multinomial distribution. This paper proposes a how‐to guide for calculating the correct VC matrices of dependant estimates involved in multinomial distributions and how to use them for testing the effects of covariates in post hoc analyses when the integration of these analyses directly into a model is not possible. For illustrative purpose, we focus on variables calculated in capture–recapture models, but the same procedure can be applied to all analyses dealing with correlated estimates with multinomial distribution and their variances and covariances.
- Published
- 2019
31. Genotypic covariations of traits underlying sorghum stem biomass production and quality and their regulations by water availability: Insight from studies at organ and tissue levels
- Author
-
Luquet, Delphine, Perrier, Lisa, Clément-Vidal, Anne, Jaffuel, Sylvie, Verdeil, Jean-Luc, Roques, Sandrine, Soutiras, Armelle, Baptiste, Christelle, Fabre, Denis, Bastianelli, Denis, Bonnal, Laurent, Sartre, Pascal, Rouan, Lauriane, Pot, David, Luquet, Delphine, Perrier, Lisa, Clément-Vidal, Anne, Jaffuel, Sylvie, Verdeil, Jean-Luc, Roques, Sandrine, Soutiras, Armelle, Baptiste, Christelle, Fabre, Denis, Bastianelli, Denis, Bonnal, Laurent, Sartre, Pascal, Rouan, Lauriane, and Pot, David
- Abstract
Sweet and biomass sorghum are expected to contribute increasingly to bioenergy production. Better understanding the impacts of the genotypic and environmental variabilities on biomass component traits and their properties is essential to optimize energy yields. This study aimed to evaluate whether traits contributing to stem biomass growth and biochemical composition at different biological scales (co)vary with the genotype and the water status in sorghum. Height genotypes were studied over two years in field conditions in southern France under two water treatments (well watered vs. 25 days' dry down during stem elongation). Main stem internode number, size, (non)structural carbohydrate, and lignin contents were measured at the end of the stress period and/or at final harvest, together with biochemical and histological analyses of the youngest expanded internode. The tallest genotypes showed the highest stem dry weights and lignin contents. Stem (structural) biomass density was positively correlated with lignin content, particularly in internode parenchyma. Stem soluble sugar and lignin contents were inversely proportional across genotypes and water conditions. Genotypes contrasted for drought sensitivity and recovery capacity of stem growth and biochemical composition. The length and cell wall deposition of internodes expanding under water deficit were reduced and did not recover, these responses being weakly correlated. Genotypic variability was pointed out in the growth recovery of internodes expanding under re‐watered conditions. According to the observed genotypic variability and the absence of antagonistic correlations between the responses of the different traits to water availability, it is suggested that biomass sorghum varieties optimizing their responses to water availability in terms of growth and cell wall deposition can be developed for different bioenergy targets.
- Published
- 2019
32. Conception de bases de données expérimentales à des fins de modélisation - Interfaçage avec R
- Author
-
Auzoux, Sandrine, Paradis, Sébastien, and Rouan, Lauriane
- Published
- 2018
33. Analyzing and modelling biomass accumulation in sorghum stem and its drought regulation at tissue and organ level – genotypic variability and implications for ideotype conception
- Author
-
Luquet, Delphine, Perrier, Lisa, Clément-Vidal, Anne, Jaffuel, Sylvie, Verdeil, Jean-Luc, Pot, David, Larue, Florian, Soutiras, Armelle, Roques, Sandrine, Baptiste, Christelle, Gatineau, Frédéric, Beurier, Grégory, and Rouan, Lauriane
- Subjects
food and beverages - Abstract
Sorghum can significantly contribute to growing needs in ligno-cellulosic biomass for bio-sourced product diversification, particularly in water-limited conditions. However, the genotypic and environmental variability of stem biomass production and quality is still poorly understood, limiting its genetic improvement. This study aimed to identify the morphogenetic, biochemical and histological traits underlying at internode level the genotypic and environmental variability of stem biomass accumulation by sorghum. Three field experiments were organized to compare 8 genotypes under irrigated and drought (applied during stem elongation). The eco-physiological model Ecomeristem was used to explore trait impact for different cropping situations and production targets. Both stem biomass production and quality were affected by water deficit due to the reduction of the number, length and ligno-cellulosic content of expanded internodes, whereas their soluble sugar content was increased and diameter unaffected. Internodes developed after re-watering observed a remarkable recovery whereas those developed under stress did not recover. Genotypic variability for drought sensitivity and recovery was highlighted but no correlation was found between them. The drought response of growth, biochemical and histological traits was slightly correlated, suggesting only partial trade-offs between stem biomass production and quality response to drought, obviously under complex physiological and genetic controls. Once validated on available data, the crop growth model Ecomeristem was used to in silico explore trait impact on biomass production depending on the variation in key cropping criteria for biomass sorghum worldwide: targeted production (structural, nonstructural carbohydrates), planting density and water availability. Different ideotypes were suggested for each simulated situation, mainly defined by the trade-off between tillering propensity and internode sink capacity (related either to size or biomass density). It is suggested that not only internode biomass accumulation but also tillering capacity should be further considered for phenotyping and ideotyping biomass sorghum in its targeted cropping environments.
- Published
- 2018
34. Developing and sharing ontologies: a key step towards efficient genetic and breeding strategies, a sorghum case study
- Author
-
Pot, David, Rami, Jean-François, Auzoux, Sandrine, Rouan, Lauriane, Laporte, Marie-Angélique, and Arnaud, Elizabeth
- Abstract
Deciphering the genetic determinism of the traits of agronomic interest and predicting the genetic values of genotypes are key steps towards the development of efficient breeding strategies. Both steps take advantage of comparative analyses between studies to validate chromosomic regions' effects and reach a better accuracy regarding estimated genetic values. In this context there is a crucial need for researchers to be able to compare their phenotypic traits with other studies in order maximize genetic analyses efficiency.
- Published
- 2018
35. Cardinal temperatures variability within a tropical japonica rice diversity panel
- Author
-
Rouan, Lauriane, Audebert, Alain, Luquet, Delphine, Roques, Sandrine, Dardou, Audrey, Gozé, Eric, Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Université de Montpellier (UM), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Agroécologie et Intensification Durables des cultures annuelles (UPR AIDA), and CIRAD thematic action ORYTAGE
- Subjects
Intéraction génotype environnement ,P40 - Météorologie et climatologie ,[SDV]Life Sciences [q-bio] ,Oryza sativa ,base temperature ,crop model ,leaf growth ,hierarchical modeling ,error propagation ,F62 - Physiologie végétale - Croissance et développement ,lcsh:Plant culture ,Facteur climatique ,F30 - Génétique et amélioration des plantes ,Variation génétique ,[SDV.BV]Life Sciences [q-bio]/Vegetal Biology ,lcsh:SB1-1110 ,Croissance ,Changement climatique ,Feuille ,Surface foliaire ,food and beverages ,Température ,Provenance - Abstract
International audience; Air temperature is one of the most critical climatic factors controlling rice growth, development, and production in current and future climatic scenarii predicting increasingly frequent situations of extreme and/or fluctuating temperatures. With its large spectrum of geographical origins and cropping areas, one can credit tropical japonica rice subspecies of a probable genetic diversity of its response to air temperature, which is of major interest for the breeding of better adapted rice varieties. A panel of 195 rice accessions (175 japonica plus 20 reference cultivars) was studied in controlled environment to estimate cardinal (base, optimum, and maximum) temperatures based on the monitoring of the elongation rate (LERmax) of the sixth leaf on the main stem in response to six fixed thermal treatments ranging from 16 to 35 degrees C. A dedicated statistical framework was elaborated for estimating LERmax, cardinal temperature and related uncertainties. Developed statistical framework enhanced the precision of cardinal temperatures estimated compared to previously reported methods, especially for base temperature. Maximum temperature was trickier to estimate and will require further studies. A significant genotypic variability for base and optimal temperature was pointed out, suggesting tropical japonica subspecies represents a relevant genetic pool to breed for rice genotypes adapted to various thermal situations. These results also suggested that using genotype-dependent cardinal temperature values should enhance the way crop growth models account for genotype x environment interactions hence their predictive value in current and future climatic conditions.
- Published
- 2018
- Full Text
- View/download PDF
36. Using Phenoarch platform to dissect the genetic and physiological control of growth and water use response to drought of African sorghum. [P61]
- Author
-
Larue, Florian, Roques, Sandrine, Beurier, Grégory, Rouan, Lauriane, Cabrera-Bosquet, Llorenç, Luchaire, Nathalie, and Luquet, Delphine
- Published
- 2018
37. A Practical Guide for Conducting Calibration and Decision-Making Optimisation with Complex Ecological Models
- Author
-
Mahévas, Stephanie, primary, Picheny, Victor, additional, Lambert, Patrick, additional, Dumoulin, Nicolas, additional, Rouan, Lauriane, additional, Soulié, Jean-Christophe, additional, Brockhoff, Dimo, additional, Lehuta, Sigrid, additional, Le Riche, Rodolphe, additional, Faivre, Robert, additional, and Drouineau, Hilaire, additional
- Published
- 2019
- Full Text
- View/download PDF
38. Role of Triose Phosphate Utilization in photosynthetic response of rice to variable carbon dioxide levels and plant source-sink relations
- Author
-
Fabre, Denis, primary, Yin, Xinyou, additional, Dingkuhn, Michael, additional, Clément-Vidal, Anne, additional, Roques, Sandrine, additional, Rouan, Lauriane, additional, Soutiras, Armelle, additional, and Luquet, Delphine, additional
- Published
- 2019
- Full Text
- View/download PDF
39. Modelling tiller growth and mortality as a sink-driven process using Ecomeristem: implications for biomass sorghum ideotyping
- Author
-
Larue, Florian, primary, Fumey, Damien, additional, Rouan, Lauriane, additional, Soulié, Jean-Christophe, additional, Roques, Sandrine, additional, Beurier, Grégory, additional, and Luquet, Delphine, additional
- Published
- 2019
- Full Text
- View/download PDF
40. Covariate and multinomial: Accounting for distance in movement in capture–recapture analyses
- Author
-
Guéry, Loreleï, primary, Rouan, Lauriane, additional, Descamps, Sébastien, additional, Bêty, Joël, additional, Fernández‐Chacón, Albert, additional, Gilchrist, Grant, additional, and Pradel, Roger, additional
- Published
- 2019
- Full Text
- View/download PDF
41. DAPHNE-Ecofi V2.0
- Author
-
Auzoux, Sandrine, Rouan, Lauriane, Pot, David, Beurier, Grégory, Aguilar, Grégory, Soulie, Jean-Christophe, Auzoux, Sandrine, Rouan, Lauriane, Pot, David, Beurier, Grégory, Aguilar, Grégory, and Soulie, Jean-Christophe
- Abstract
Daphne est un système d'information (SI) qui a été développé dans le cadre du projet BFF (Biomass For the Future). C'est un projet " Investissements d'avenir " qui a débuté en 2012 et finit en 2019, qui rassemble 9 instituts de recherche publics, 11 partenaires privés et 2 collectivités locales. Le sorgho constitue l'une des cultures les plus importantes pour les pays du Sud et est, par conséquent, l'une des principales espèces cibles du CIRAD qui a développé depuis plusieurs décennies une forte expertise en physiologie, génétique et amélioration sur cette espèce. Le projet BFF avec comme plante modèle le Sorgho, constitue une opportunité pour développer une approche intégrative de la modélisation éco-physiologique, du développement de méthodologies de phénotypage, de la dissection de l'architecture génétique des caractères cibles, et de l'optimisation des schémas de sélection. Le projet génère une grande quantité de données de physiologie, de génétique et de sélection du Sorgho, issues de domaines très différents: écophysiologie, météorologie, génétique, histologie, biochimie, de nature variable, qui étaient stockées dans des fichiers Excel sans homogénéité, ni interconnexions.
- Published
- 2018
42. Suivez le guide! Optimiser un modèle complexe suppose une bonne démarche et de bons outils
- Author
-
Mahévas, Stéphanie, Picheny, Victor, Lambert, Patrick, Nicolas, Dumoulin, Rouan, Lauriane, Soulié, Jean-Christophe, Drouineau, Hilaire, Le Riche, Rodolphe, Faivre, Robert, Lehuta, Sigrid, Brockoff, D., Écologie et Modèles pour l'halieutique (EMH), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Institut National de la Recherche Agronomique (INRA), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Recyclage et risque (Cirad-Persyst-UPR 78 Recyclage et risque), Département Performances des systèmes de production et de transformation tropicaux (Cirad-PERSYST), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Département Génie mathématique et industriel (FAYOL-ENSMSE), Ecole Nationale Supérieure des Mines de St Etienne-Institut Henri Fayol, Laboratoire d'Informatique, de Modélisation et d'Optimisation des Systèmes (LIMOS), Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne (UCA)-Centre National de la Recherche Scientifique (CNRS), École des Mines de Saint-Étienne (Mines Saint-Étienne MSE), Institut Mines-Télécom [Paris] (IMT), Institut Henri Fayol (FAYOL-ENSMSE), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Centre National de la Recherche Scientifique (CNRS), Unité de Biométrie et Intelligence Artificielle (UBIA), IFREMER, Écologie et Modèles pour l'Halieutique (IFREMER EMH), Institut Français de Recherche pour l'Exploitation de la Mer - Atlantique (IFREMER Atlantique), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Recyclage et risque (UPR Recyclage et risque), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Ecole Nationale Supérieure des Mines de St Etienne-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020]), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Ecole Nationale Supérieure des Mines de St Etienne-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Écologie et Modèles pour l'Halieutique (EMH), Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Institut Henri Fayol, Ecole Nationale Supérieure des Mines de St Etienne (ENSM ST-ETIENNE)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), and Unité de Biométrie et Intelligence Artificielle (ancêtre de MIAT) (UBIA)
- Subjects
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation - Abstract
Face aux enjeux de compréhension des écosystèmes marins et de gestion des usagesmarins, les modèles complexes se révèlent des outils pertinents pour tester lesmodifications induites par le changement global, anticiper des évolutions des socioécosystèmesmarins et aider à la sélection de stratégies de gestion. Construire unmodèle numérique et faire des simulations est une chose, mesurer la confiance dessorties du modèle en est une autre. Une étape indispensable dans l’usage des modèlesnumériques est la confrontation des sorties du modèle aux observations du systèmemodélisé pour caler le modèle. La sélection de stratégies de gestion et la calibrationsont deux finalités de l’optimisation.Les problèmes d’optimisation en modélisation halieutique sont le plus souventcomplexes avec des caractéristiques mathématiques diverses. La fonction à optimiserpeut être déterministe ou stochastique, avec ou sans contraintes, à une ou plusieursdimensions. Le nombre de paramètres à optimiser peut varier de l’unité à plusieurscentaines et le coût informatique peut induire de fortes restrictions sur le nombre desimulations réalisables avec le modèle, d’une centaine à quelques milliers pour lesmoins coûteux.Aucun guide pratique n’est disponible dans la littérature pour mettre en oeuvre uneoptimisation rigoureuse avec un modèle complexe. Nous proposons ici une démarched’optimisation articulée en 3 étapes (prétraitement, choix de l’algorithme et posttraitement),basée des outils et méthodes existants et dont la réalisation peut être nonlinéaire. Ce guide inspiré d’une analyse des expériences d’un groupe de modélisateursouvre des pistes de recherche pour pallier aux difficultés, aux autocensures etfrustrations des modélisateurs.
- Published
- 2017
43. Plasticity of sorghum stem biomass accumulation in response to water deficit: A multiscale analysis from internode tissue to plant level
- Author
-
Perrier, Lisa, Rouan, Lauriane, Jaffuel, Sylvie, Clément-Vidal, Anne, Roques, Sandrine, Soutiras, Armelle, Baptiste, Christelle, Bastianelli, Denis, Fabre, Denis, Dubois, Cécile, Pot, David, Luquet, Delphine, Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Systèmes d'élevage méditerranéens et tropicaux (UMR SELMET), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
(non)-structural ,internode growth ,[SDV]Life Sciences [q-bio] ,carbohydrates ,food and beverages ,F62 - Physiologie végétale - Croissance et développement ,Plant Science ,tissue histology ,lcsh:Plant culture ,stem biomass ,(non)-structural carbohydrates ,lignocellulose ,cell-wall ,lcsh:SB1-1110 ,sorghum ,H50 - Troubles divers des plantes ,water deficit ,Original Research - Abstract
Sorghum is increasingly used as a biomass crop worldwide. Its genetic diversity provides a large range of stem biochemical composition suitable for various end-uses as bioenergy or forage. Its drought tolerance enables it to reasonably sustain biomass production under water limited conditions. However, drought effect on the accumulation of sorghum stem biomass remains poorly understood which limits progress in crop improvement and management. This study aimed at identifying the morphological, biochemical and histological traits underlying biomass accumulation in the sorghum stem and its plasticity in response to water deficit. Two hybrids (G1, G4) different in stem biochemical composition (G4, more lignified, less sweet) were evaluated during 2 years in the field in Southern France, under two water treatments differentiated during stem elongation (irrigated; 1 month dry-down until an average soil water deficit of -8.85 bars). Plant phenology was observed weekly. At the end of the water treatment and at final harvest, plant height, stem and leaf dry-weight and the size, biochemical composition and tissue histology of internodes at 2-4 positions along the stem were measured. Stem biomass accumulation was significantly reduced by drought (in average 42% at the end of the dry-down). This was due to the reduction of the length, but not diameter, of the internodes expanded during water deficit. These internodes had more soluble sugar but lower lignin and cellulose contents. This was associated with a decrease of the areal proportion of lignified cell wall in internode outer zone whereas the areal proportion of this zone was not affected. All internodes for a given genotype and environment followed a common histochemical dynamics. Hemicellulose content and the areal proportion of inner vs. outer internode tissues were set up early during internode growth and were not drought responsive. G4 exhibited a higher drought sensitivity than G1 for plant height only. At final harvest, the stem dry weight was only 18% lower in water deficit (re-watered) compared to well-watered treatment and internodes growing during re-watering were similar to those on the well-watered plants. These results are being valorized to refine the phenotyping of sorghum diversity panels and breeding populations.
- Published
- 2017
- Full Text
- View/download PDF
44. Genotypic covariations of traits underlying sorghum stem biomass production and quality and their regulations by water availability: Insight from studies at organ and tissue levels
- Author
-
Luquet, Delphine, primary, Perrier, Lisa, additional, Clément‐Vidal, Anne, additional, Jaffuel, Sylvie, additional, Verdeil, Jean‐Luc, additional, Roques, Sandrine, additional, Soutiras, Armelle, additional, Baptiste, Christelle, additional, Fabre, Denis, additional, Bastianelli, Denis, additional, Bonnal, Laurent, additional, Sartre, Pascal, additional, Rouan, Lauriane, additional, and Pot, David, additional
- Published
- 2018
- Full Text
- View/download PDF
45. Predicting quality, texture and chemical content of yam (Dioscorea alata L.) tubers using near infrared spectroscopy
- Author
-
Ehounou, Adou Emmanuel, Cornet, Denis, Desfontaines, Lucienne, Marie-Magdeleine, Carine, Maledon, Erick, Nudol, Elie, Beurier, Gregory, Rouan, Lauriane, Brat, Pierre, Lechaudel, Mathieu, Nous, Camille, N'Guetta, Assanvo Simon Pierre, Kouakou, Amani Michel, and Arnau, Gemma
- Abstract
Despite the importance of yam (Dioscorea spp.) tuber quality traits, and more precisely texture attributes, high-throughput screening methods for varietal selection are still lacking. This study sets out to define the profile of good quality pounded yam and provide screening tools based on predictive models using near infrared reflectance spectroscopy. Seventy-four out of 216 studied samples proved to be moldable, i.e. suitable for pounded yam. While samples with low dry matter (<25%), high sugar (>4%) and high protein (>6%) contents, low hardness (<5 N), high springiness (>0.5) and high cohesiveness (>0.5) grouped mostly non-moldable genotypes, the opposite was not true. This outline definition of a desirable chemotype may allow breeders to choose screening thresholds to support their choice. Moreover, traditional near infrared reflectance spectroscopy quantitative prediction models provided good prediction for chemical aspects (R^2 > 0.85 for dry matter, starch, protein and sugar content), but not for texture attributes (R^2 < 0.58). Conversely, convolutional neural network classification models enabled good qualitative prediction for all texture parameters but hardness (i.e. an accuracy of 80, 95, 100 and 55%, respectively, for moldability, cohesiveness, springiness and hardness). This study demonstrated the usefulness of near infrared reflectance spectroscopy as a high-throughput way of phenotyping pounded yam quality. Altogether, these results allow for an efficient screening toolbox for quality traits in yams.
- Published
- 2021
46. Enhancing EcoMeristem model to better predict rice crop performance in response to increasing atmospheric CO2 concentrations
- Author
-
Fumey, Damien, Denis Fabre, Rouan, Lauriane, and Luquet, Delphine
- Abstract
Atmospheric CO2 is expected to reach near 800 ppm in 2100, accompanied by a rise of temperature. This will considerably impact crop performance due to a direct impact on leaf C assimilation, and finally on yield components' elaboration (tillering, leaf area, panicle number, grain filling). Making crop models more predictive in future climate scenario is essential and implies firstly to better simulate the C gain generated by photosynthesis response to CO2. Crop models commonly compute biomass production using light interception (εi) and use (εb) efficiencies (Monteith's approach). Few of them consider for so key crop architectural traits, leaf photosynthesis and stomatal conductance. EcoMeristem is a functional-structural crop model, simulating cereals' plant growth and phenotypic plasticity at the organ level in response to plant C and water status. It is thus relevant to capture yield components' regulation by climate parameters, particularly CO2. However it was initially developed using εi and εb. Also, a light interception model accounting for key crop architectural parameters and leaf photosynthesis model inspired from FvCB model accounting for key climate change and leaf parameters, were recently implemented and confronted to experimental data on rice. This study aims to compare the original and the novel version of EcoMeristem in the way they simulate the regulation of yield elaboration for a few morphologically contrasted rice genotypes in response to radiation, temperature and CO2. Sensitivity analyses and simulation results will be presented and discussed with respect to the challenge of using crop modelling to support breeding in climate change context.
- Published
- 2016
47. Daphne: a generic database to integrate multiscale agronomic and phenotypic information for crop modelling
- Author
-
Rouan, Lauriane, Pot, David, Boulnemour, Medhi, and Auzoux, Sandrine
- Abstract
Studies of genotype x environment x management (GXEXM) interactions commonly use Crop Simulation Models (CSM). The minimum datasets required for a successful model implementation are multi-scale, multi-species and multi-disciplinary. We observed that although they are organized differently, CSM input files and field experiment datasets shared the same measurements (yield, leaf area index, biomass, etc.) and a few similar tables corresponding to the minimum dataset (weather, soil, crop, and management data). Based on this analysis, we have designed the schema of DAPHNE. We used the relevant technology of metadata. Thus, in DAPHNE, all variable labels are stored in a metadata table including the units and methods of measurements and the observed and experimental units. The main advantage of this technology is that the addition of any variable does not imply to reconsider the structure of the database. Database query performance is also improved. DAPHNE already has a wide application in GXEXM experiments on sorghum and sugarcane. The genericness of the schema of DAPHNE can allow intercomparison of CSM that require the same datasets with no common data structure.
- Published
- 2016
48. Integrative biology and modelling of biomass sorghum growth to support its genetic analysis and ideotype conception
- Author
-
Luquet, Delphine, Perrier, Lisa, Roques, Sandrine, Clément-Vidal, Anne, Pot, David, Fabre, Denis, Rouan, Lauriane, and Soulie, Jean-Christophe
- Subjects
U10 - Méthodes mathématiques et statistiques ,fungi ,food and beverages ,F62 - Physiologie végétale : croissance et développement ,F30 - Génétique et amélioration des plantes - Abstract
Sorghum genetic diversity offers the opportunity to develop multipurpose genotypes combining high grain, ligno-cellulosic biomass and/or sweet juice productions. It provides a large spectrum of adaptive traits, particularly to drought, essential for ensuring production stability in an increasingly fluctuating climatic context. Sorghum is thus a crucial crop to breed for and contribute to meet future expectations regarding food, feed and bioenergy productions, while minimizing resource and land use competition. Accordingly, ideotypes must be developed combining appropriate developmental, morphogenetic and biochemical traits depending on targeted cropping contexts (eg. dedicated vs. intermediate crop, wateravailability) and end-uses (eg. energy, feed). Trait impact on plant phenotype construction must be first quantified, considering possible linkages and trade-offs among them that can appreciably modulate their respective benefits depending on the genotype and the environment. With this respect, ecophysiological modelling plays an original role since, by formalizing experimental knowledge on individual processes, it helps analyzing their trade-offs and impacts on resulting plant phenotypic variability, across genotypes and environments. Supported by appropriate mathematical tools, it can help quantifying elemental traits within a range of genetic diversity, in away not accessible experimentally, toward their genetic study and the in silico optimization of their combination for a given context. This approach is currently set-up in two companion projects aiming to develop multipurpose sorghum for both Mediterranean and semi-arid, drought prone environments. Field trials were carried out to identify traits controlling vegetative biomass production, composition and expressing variability across genotypes and water situations, at tissue, organ and plant level. Accordingly, the plant growth model Ecomeristem is progressively adapted to capture key processes controlling such phenotypic variability. Recent progresses and future developments will be presented, highlighting how modelling enables to analyze trait compensations and impacts on grain and biomass production and finally define ideotypes depending on targeted contexts. (Texte intégral)
- Published
- 2015
49. ECOFI : une nouvelle base de données générique pour faciliter la modélisation et l'analyse des jeux de données issues des expérimentations en agro-écologie
- Author
-
Auzoux, Sandrine, Martiné, Jean-François, Loison, Romain, Poser, Christophe, Marnotte, Pascal, Goebel, François-Régis, Dusserre, Julie, Rouan, Lauriane, Adam, Myriam, Pot, David, Auzoux, Sandrine, Martiné, Jean-François, Loison, Romain, Poser, Christophe, Marnotte, Pascal, Goebel, François-Régis, Dusserre, Julie, Rouan, Lauriane, Adam, Myriam, and Pot, David
- Abstract
Les études réalisées dans le domaine de l'agroécologie générent de nombreux jeux de données qui peuvent être multi-échelles, multi-disciplinaires et multi-espèces. ECOFI est une base de données optimisée et performante qui permet d'améliorer l'analyse de ces systèmes complexes. Son modèle a été construit à partir des résultats de l'analyse de la structure et des variables de nombreux jeux de données expérimentaux. La spécificité du modèle d'ECOFI est sa généricité qui permet : - de stocker n'importe quel dispositif expérimental avec autant de subdivisions des unités d'observations que souhaitées par l'utilisateur et d'autre part, - de gérer la généalogie (traçabilité) des échantillons biologiques - de stocker un nombre non limité de variables observées et mesurées sur le dispositif expérimental. Dans les bases de données standards, ajouter une nouvelle variable implique une modification de la structure de la base de données. Dans ECOFI, cet ajout est géré de façon dynamique par l'ajout d'un enregistrement dans une table sans modifier la structure de la base de données. La généricité de la structure d'ECOFI augmente la performance des requêtes. Les données sont à disposition sous le même format et utilisent une sémantique commune (vocabulaire contrôlé) en lien avec les ontologies : plant ontology, crop ontology, agronomy ontology. Cette base de données a été utilisée dans le cadre du projet SYPECAR (système de production énergétique à base de canne à la Réunion), pour le partenaire eRcane (ITK@s), et utilisée dans le cadre du projet BFF (Biomass for the future). ECOFI a une large gamme d'applications potentielles que cela soit en entomologie, en malherbologie, en phytopathologie, en écophysiologie ou en agronomie.
- Published
- 2016
50. ECOFI: A generic agronomic database to facilitate analysis and crop modelling
- Author
-
Auzoux, Sandrine, Rouan, Lauriane, Loison, Romain, Martiné, Jean-François, Auzoux, Sandrine, Rouan, Lauriane, Loison, Romain, and Martiné, Jean-François
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.