346 results on '"Rothman L"'
Search Results
2. Trends in child pedestrian motor vehicle collision injury rates by neighborhood deprivation score in Toronto, Canada
- Author
-
Schwartz, N., primary, Rothman, L., additional, Howard, A., additional, To, T., additional, and Macarthur, C., additional
- Published
- 2022
- Full Text
- View/download PDF
3. The HITRAN2020 molecular spectroscopic database
- Author
-
Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets, E., V, Skinner, F. M., Conway, E. K., Hill, C., Kochanov, R., V, Tan, Y., Wcislo, P., Finenko, A. A., Nelson, K., Bernath, P. F., Birk, M., Boudon, V, Campargue, A., Chance, K., V, Coustenis, A., Drouin, B. J., Flaud, J-M, Gamache, R. R., Hodges, J. T., Jacquemart, D., Mlawer, E. J., Nikitin, A., V, Perevalov, V., I, Rotger, M., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Adkins, E. M., Baker, A., Barbe, A., Cane, E., Csaszar, A. G., Dudaryonok, A., Egorov, O., Fleisher, A. J., Fleurbaey, H., Foltynowicz, A., Furtenbacher, T., Harrison, J. J., Hartmann, J-M, Horneman, V-M, Huang, X., Karman, T., Karns, J., Kassi, S., Kleiner, I, Kofman, V, Kwabia-Tchana, F., Lavrentieva, N. N., Lee, T. J., Long, D. A., Lukashevskaya, A. A., Lyulin, O. M., Makhnev, V. Yu, Matt, W., Massie, S. T., Melosso, M., Mikhailenko, S. N., Mondelain, D., Mueller, H. S. P., Naumenko, O., V, Perrin, A., Polyansky, O. L., Raddaoui, E., Raston, P. L., Reed, Z. D., Rey, M., Richard, C., Tobias, R., Sadiek, I, Schwenke, D. W., Starikova, E., Sung, K., Tamassia, F., Tashkun, S. A., Vander Auwera, J., Vasilenko, I. A., Vigasin, A. A., Villanueva, G. L., Vispoel, B., Wagner, G., Yachmenev, A., Yurchenko, S. N., Gordon, I. E., Rothman, L. S., Hargreaves, R. J., Hashemi, R., Karlovets, E., V, Skinner, F. M., Conway, E. K., Hill, C., Kochanov, R., V, Tan, Y., Wcislo, P., Finenko, A. A., Nelson, K., Bernath, P. F., Birk, M., Boudon, V, Campargue, A., Chance, K., V, Coustenis, A., Drouin, B. J., Flaud, J-M, Gamache, R. R., Hodges, J. T., Jacquemart, D., Mlawer, E. J., Nikitin, A., V, Perevalov, V., I, Rotger, M., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Adkins, E. M., Baker, A., Barbe, A., Cane, E., Csaszar, A. G., Dudaryonok, A., Egorov, O., Fleisher, A. J., Fleurbaey, H., Foltynowicz, A., Furtenbacher, T., Harrison, J. J., Hartmann, J-M, Horneman, V-M, Huang, X., Karman, T., Karns, J., Kassi, S., Kleiner, I, Kofman, V, Kwabia-Tchana, F., Lavrentieva, N. N., Lee, T. J., Long, D. A., Lukashevskaya, A. A., Lyulin, O. M., Makhnev, V. Yu, Matt, W., Massie, S. T., Melosso, M., Mikhailenko, S. N., Mondelain, D., Mueller, H. S. P., Naumenko, O., V, Perrin, A., Polyansky, O. L., Raddaoui, E., Raston, P. L., Reed, Z. D., Rey, M., Richard, C., Tobias, R., Sadiek, I, Schwenke, D. W., Starikova, E., Sung, K., Tamassia, F., Tashkun, S. A., Vander Auwera, J., Vasilenko, I. A., Vigasin, A. A., Villanueva, G. L., Vispoel, B., Wagner, G., Yachmenev, A., and Yurchenko, S. N.
- Abstract
The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH3F, GeH4, CS2, CH3I and NF3. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and the HITR
- Published
- 2022
4. The HITRAN2020 molecular spectroscopic database
- Author
-
Gordon, I. E. (I. E.), Rothman, L. S. (L. S.), Hargreaves, R. J. (R. J.), Hashemi, R. (R.), Karlovets, E. V. (E., V), Skinner, F. M. (F. M.), Conway, E. K. (E. K.), Hill, C. (C.), Kochanov, R. V. (R., V), Tan, Y. (Y.), Wcislo, P. (P.), Finenko, A. A. (A. A.), Nelson, K. (K.), Bernath, P. F. (P. F.), Birk, M. (M.), Boudon, V. (V), Campargue, A. (A.), Chance, K. V. (K., V), Coustenis, A. (A.), Drouin, B. J. (B. J.), Flaud, J.-M. (J-M), Gamache, R. R. (R. R.), Hodges, J. T. (J. T.), Jacquemart, D. (D.), Mlawer, E. J. (E. J.), Nikitin, A. V. (A., V), Perevalov, V. I. (V., I), Rotger, M. (M.), Tennyson, J. (J.), Toon, G. C. (G. C.), Tran, H. (H.), Tyuterev, V. G. (V. G.), Adkins, E. M. (E. M.), Baker, A. (A.), Barbe, A. (A.), Cane, E. (E.), Csaszar, A. G. (A. G.), Dudaryonok, A. (A.), Egorov, O. (O.), Fleisher, A. J. (A. J.), Fleurbaey, H. (H.), Foltynowicz, A. (A.), Furtenbacher, T. (T.), Harrison, J. J. (J. J.), Hartmann, J.-M. (J-M), Horneman, V.-M. (V-M), Huang, X. (X.), Karman, T. (T.), Karns, J. (J.), Kassi, S. (S.), Kleiner, I. (I), Kofman, V. (V), Kwabia-Tchana, F. (F.), Lavrentieva, N. N. (N. N.), Lee, T. J. (T. J.), Long, D. A. (D. A.), Lukashevskaya, A. A. (A. A.), Lyulin, O. M. (O. M.), Makhnev, V. Y. (V. Yu), Matt, W. (W.), Massie, S. T. (S. T.), Melosso, M. (M.), Mikhailenko, S. N. (S. N.), Mondelain, D. (D.), Mueller, H. S. (H. S. P.), Naumenko, O. V. (O., V), Perrin, A. (A.), Polyansky, O. L. (O. L.), Raddaoui, E. (E.), Raston, P. L. (P. L.), Reed, Z. D. (Z. D.), Rey, M. (M.), Richard, C. (C.), Tobias, R. (R.), Sadiek, I. (I), Schwenke, D. W. (D. W.), Starikova, E. (E.), Sung, K. (K.), Tamassia, F. (F.), Tashkun, S. A. (S. A.), Vander Auwera, J. (J.), Vasilenko, I. A. (I. A.), Vigasin, A. A. (A. A.), Villanueva, G. L. (G. L.), Vispoel, B. (B.), Wagner, G. (G.), Yachmenev, A. (A.), Yurchenko, S. N. (S. N.), Gordon, I. E. (I. E.), Rothman, L. S. (L. S.), Hargreaves, R. J. (R. J.), Hashemi, R. (R.), Karlovets, E. V. (E., V), Skinner, F. M. (F. M.), Conway, E. K. (E. K.), Hill, C. (C.), Kochanov, R. V. (R., V), Tan, Y. (Y.), Wcislo, P. (P.), Finenko, A. A. (A. A.), Nelson, K. (K.), Bernath, P. F. (P. F.), Birk, M. (M.), Boudon, V. (V), Campargue, A. (A.), Chance, K. V. (K., V), Coustenis, A. (A.), Drouin, B. J. (B. J.), Flaud, J.-M. (J-M), Gamache, R. R. (R. R.), Hodges, J. T. (J. T.), Jacquemart, D. (D.), Mlawer, E. J. (E. J.), Nikitin, A. V. (A., V), Perevalov, V. I. (V., I), Rotger, M. (M.), Tennyson, J. (J.), Toon, G. C. (G. C.), Tran, H. (H.), Tyuterev, V. G. (V. G.), Adkins, E. M. (E. M.), Baker, A. (A.), Barbe, A. (A.), Cane, E. (E.), Csaszar, A. G. (A. G.), Dudaryonok, A. (A.), Egorov, O. (O.), Fleisher, A. J. (A. J.), Fleurbaey, H. (H.), Foltynowicz, A. (A.), Furtenbacher, T. (T.), Harrison, J. J. (J. J.), Hartmann, J.-M. (J-M), Horneman, V.-M. (V-M), Huang, X. (X.), Karman, T. (T.), Karns, J. (J.), Kassi, S. (S.), Kleiner, I. (I), Kofman, V. (V), Kwabia-Tchana, F. (F.), Lavrentieva, N. N. (N. N.), Lee, T. J. (T. J.), Long, D. A. (D. A.), Lukashevskaya, A. A. (A. A.), Lyulin, O. M. (O. M.), Makhnev, V. Y. (V. Yu), Matt, W. (W.), Massie, S. T. (S. T.), Melosso, M. (M.), Mikhailenko, S. N. (S. N.), Mondelain, D. (D.), Mueller, H. S. (H. S. P.), Naumenko, O. V. (O., V), Perrin, A. (A.), Polyansky, O. L. (O. L.), Raddaoui, E. (E.), Raston, P. L. (P. L.), Reed, Z. D. (Z. D.), Rey, M. (M.), Richard, C. (C.), Tobias, R. (R.), Sadiek, I. (I), Schwenke, D. W. (D. W.), Starikova, E. (E.), Sung, K. (K.), Tamassia, F. (F.), Tashkun, S. A. (S. A.), Vander Auwera, J. (J.), Vasilenko, I. A. (I. A.), Vigasin, A. A. (A. A.), Villanueva, G. L. (G. L.), Vispoel, B. (B.), Wagner, G. (G.), Yachmenev, A. (A.), and Yurchenko, S. N. (S. N.)
- Abstract
The HITRAN database is a compilation of molecular spectroscopic parameters. It was established in the early 1970s and is used by various computer codes to predict and simulate the transmission and emission of light in gaseous media (with an emphasis on terrestrial and planetary atmospheres). The HITRAN compilation is composed of five major components: the line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, experimental infrared absorption cross-sections (for molecules where it is not yet feasible for representation in a line-by-line form), collision-induced absorption data, aerosol indices of refraction, and general tables (including partition sums) that apply globally to the data. This paper describes the contents of the 2020 quadrennial edition of HITRAN. The HITRAN2020 edition takes advantage of recent experimental and theoretical data that were meticulously validated, in particular, against laboratory and atmospheric spectra. The new edition replaces the previous HITRAN edition of 2016 (including its updates during the intervening years). All five components of HITRAN have undergone major updates. In particular, the extent of the updates in the HITRAN2020 edition range from updating a few lines of specific molecules to complete replacements of the lists, and also the introduction of additional isotopologues and new (to HITRAN) molecules: SO, CH₃F, GeH₄, CS₂, CH₃I and NF₃. Many new vibrational bands were added, extending the spectral coverage and completeness of the line lists. Also, the accuracy of the parameters for major atmospheric absorbers has been increased substantially, often featuring sub-percent uncertainties. Broadening parameters associated with the ambient pressure of water vapor were introduced to HITRAN for the first time and are now available for several molecules. The HITRAN2020 edition continues to take advantage of the relational structure and efficient interface available at www.hitran.org and
- Published
- 2022
5. The use of just-about-right (JAR) scales in food product development and reformulation
- Author
-
Rothman, L, primary
- Published
- 2007
- Full Text
- View/download PDF
6. The use of just-about-right (JAR) scales in food product development and reformulation
- Author
-
Rothman, L., primary
- Published
- 2007
- Full Text
- View/download PDF
7. Contributor contact details
- Author
-
MacFie, Hal, primary, Meiselman, H.L., additional, Tuorila, H., additional, Rozin, P., additional, Yeomans, M.R., additional, Saba, A., additional, Siegrist, M., additional, Buck, D., additional, Krystallis, A., additional, Brunsø, K., additional, Grunert, K.G., additional, Cardello, A.V., additional, Köster, E.P., additional, Mojet, J., additional, Thomson, D., additional, Stone, H., additional, Sidel, J.L., additional, van Kleef, E., additional, van Trijp, H.C.M., additional, Moskowitz, H., additional, Popper, R., additional, Kroll, J.J., additional, Rothman, L., additional, O’Mahony, M., additional, Delwiche, J.F., additional, Lohéac, Y., additional, Issanchou, S., additional, Martens, M., additional, Martens, H., additional, Tenenhaus, Michel, additional, Esposito Vinzi, Vincenzo, additional, Bogue, J., additional, Sorenson, D., additional, and MacFie, Hal, additional
- Published
- 2007
- Full Text
- View/download PDF
8. Booster seat laws and child fatalities: a case–control study
- Author
-
Farmer, P, Howard, A, Rothman, L, and Macpherson, A
- Published
- 2009
- Full Text
- View/download PDF
9. Are school zones effective? An examination of motor vehicle versus child pedestrian crashes near schools
- Author
-
Warsh, J, Rothman, L, Slater, M, Steverango, C, and Howard, A
- Published
- 2009
- Full Text
- View/download PDF
10. A comparison of booster seat use in Canadian provinces with and without legislation
- Author
-
Snowdon, A, Rothman, L, Slater, M, Kolga, C, Hussein, A, Boase, P, and Howard, A
- Published
- 2009
- Full Text
- View/download PDF
11. Pedestrian injuries in school-attending children: a comparison of injury data sources in a low-income setting
- Author
-
Lee, P P S, Mihailovic, A, Rothman, L, Mutto, M, Nakitto, M, and Howard, A W
- Published
- 2009
- Full Text
- View/download PDF
12. Once bitten, twice shy? Medically-attended injuries can sensitise parents to children’s risk of injuries on playgrounds
- Author
-
Morrongiello, B A, Howard, A W, Rothman, L, and Sandomierski, M
- Published
- 2009
- Full Text
- View/download PDF
13. Evaluation of Safe Kids Week 2004: Age 4 to 9? It’s Booster Seat Time!
- Author
-
Howard, A, Beben, N, Rothman, L, Fiissel, D, and MacArthur, C
- Published
- 2006
14. Column liquid chromatography: equipment and instrumentation
- Author
-
Rothman, L. David
- Subjects
Liquid chromatography -- Bibliography ,Chemistry - Abstract
Advances in equipment and instrumentation of column liquid chromatography (LC) are reviewed using literature published from Oct. 1993 to Oct. 1995. Review articles are obtained from Chemical Abstracts and are restricted to articles published in English and appearing in technical journals. Additional relevant information on LC equipment and instrumentation, which are excluded in the review, can be found in Chemical and Engineering News, LC-GC, R&D Magazine and American Laboratory.
- Published
- 1996
15. A systematic review on organizational empowerment
- Author
-
Rothman, L., De Velder, F., Schalk, R., Van Regenmortel, M., Rothman, L., De Velder, F., Schalk, R., and Van Regenmortel, M.
- Abstract
Purpose This paper aims to present a systematic review on organizational empowerment (OE) using Peterson and Zimmerman´s model (2004) as a starting point. The aim is to further conceptualize OE, discover how the components in the model influence each other and identify recommendations for future research. Design/methodology/approach All articles that cited the OE model, published in 2004 by Peterson and Zimmerman, have been systematically reviewed. In total, 37 studies of 410, found in Google Scholar and Web of Science, are included in the review. Findings The review revealed that intra-, inter- and extra-organizational empowerment affect each other and that evidence for the processes and outcomes on intra-organizational empowerment have increased, but there is limited additional evidence for the other two components. Research limitations/implications Literature was searched in two databases, focusing on the OE model. A search using other databases on OE as a broad concept might provide additional sources. Practical implications Findings are relevant for professionals, leaders in human service organizations, educators and researchers. Practice can be improved by applying the knowledge; educators can use the results in their program and researchers may use the findings for the further development of OE. Originality/value Since the OE model was presented in 2004, no systematic review has been performed. Therefore, this review contributes to the further conceptualization of OE.
- Published
- 2019
16. Factors affecting the interconnection resistance and yield in multilayer polyimide/copper structures
- Author
-
Shih-Da-Yuan, Yeh, Helen L., Paraszczak, Jurij, Lewis, J., Graham, W., Nunes, S., Narayan, C., McGouey, R., Galligan, Eileen, Cataldo, John, Serino, R., Perfecto, Eric, Chang, Chin-An, Deutsch, Alina, Rothman, L., Ritsko, John J., and Wilczynski, Janusz S.
- Subjects
Thin films, Multilayered -- Research ,Electric resistance -- Research ,Business ,Engineering and manufacturing industries ,Science and technology - Abstract
The effect of plasma processing conditions, the type of passivation metal and the gap-fill/etch-stop material on the interconnection resistance and yield in polyimide/copper multilayered structures were investigated. The results showed that all three factors significantly influenced interconnection resistance and yield. Optimization of these parameters allowed devices with excellent characteristics to be formed.
- Published
- 1993
17. Introduction of Water‐Vapor Broadening Parameters and Their Temperature‐Dependent Exponents Into the HITRAN Database: Part I—CO 2 , N 2 O, CO, CH 4 , O 2 , NH 3 , and H 2 S
- Author
-
Tan, Y., primary, Kochanov, R. V., additional, Rothman, L. S., additional, and Gordon, I. E., additional
- Published
- 2019
- Full Text
- View/download PDF
18. The Norcross Project: investigating the relationship between ergonomic factors and particle addition in manual access minienvironments
- Author
-
Muller, P., Silverman, S., Bostwick, J., Rothman, L., Miller, R. J., Wang, R. D., Van Sickle, P. M., Tanaka, M., and Costa, J.
- Subjects
Clean rooms -- Environmental aspects ,Ergonomics -- Research ,Manufacturing processes -- Management ,Aerospace and defense industries ,Business ,Computers and office automation industries ,Electronics and electrical industries - Published
- 1994
19. The Norcross project: comparing manual and robotic wafer handling using minienvironments in a degraded cleanroom
- Author
-
Muller, P., Silverman, S., Bostwick, J., Rothman, L., Miller, R.J., Wang, R.D., Van Sickle, P.M., Tanaka, M., and Costa, J.
- Subjects
Semiconductor industry -- Research ,Clean rooms -- Research ,Manufacturing cells -- Research ,Aerospace and defense industries ,Business ,Computers and office automation industries ,Electronics and electrical industries - Published
- 1994
20. The HITRAN2016 molecular spectroscopic database
- Author
-
Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J., Flaud, J. -M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M. -A. H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Barbe, A., Csaszar, A. G., Devi, V. M., Furtenbacher, T., Harrison, J. J., Hartmann, J. -M., Jolly, A., Johnson, T. J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M., Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Mueller, H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Vander Auwera, J., Wagner, G., Wilzewski, J., Wcislo, P., Yu, S., Zak, E. J., Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V., Tan, Y., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V., Drouin, B. J., Flaud, J. -M., Gamache, R. R., Hodges, J. T., Jacquemart, D., Perevalov, V. I., Perrin, A., Shine, K. P., Smith, M. -A. H., Tennyson, J., Toon, G. C., Tran, H., Tyuterev, V. G., Barbe, A., Csaszar, A. G., Devi, V. M., Furtenbacher, T., Harrison, J. J., Hartmann, J. -M., Jolly, A., Johnson, T. J., Karman, T., Kleiner, I., Kyuberis, A. A., Loos, J., Lyulin, O. M., Massie, S. T., Mikhailenko, S. N., Moazzen-Ahmadi, N., Mueller, H. S. P., Naumenko, O. V., Nikitin, A. V., Polyansky, O. L., Rey, M., Rotger, M., Sharpe, S. W., Sung, K., Starikova, E., Tashkun, S. A., Vander Auwera, J., Wagner, G., Wilzewski, J., Wcislo, P., Yu, S., and Zak, E. J.
- Abstract
This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many, ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided. Published by Elsevier Ltd.
- Published
- 2017
21. Recommended isolated-line profile for representing high-resolution spectroscopic transitions
- Author
-
TENNYSON J, BERNATH P. F, CAMPARGUE A, CSÁSZÁR A. G, DAUMONT L, GAMACHE R. R, HODGES J. T, LISAK D, NAUMENKO O. V, ROTHMAN L. S, TRAN H, ZOBOV N. F, BULDYREVA J, BOONE C. D, DE VIZIA M. D, GIANFRANI, Livio, HARTMANN J, MCPHEAT R, WEIDMANN D, MURRAY J, NGO N. H, POLYANSKY O. L., Univers, Transport, Interfaces, Nanostructures, Atmosphère et environnement, Molécules (UMR 6213) (UTINAM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Tennyson, J, Bernath, P. F., Campargue, A, Császár, A. G., Daumont, L, Gamache, R. R., Hodges, J. T., Lisak, D, Naumenko, O. V., Rothman, L. S., Tran, H, Zobov, N. F., Buldyreva, J, Boone, C. D., DE VIZIA, M. D., Gianfrani, Livio, Hartmann, J, Mcpheat, R, Weidmann, D, Murray, J, Ngo, N. H., and Polyansky, O. L.
- Subjects
[PHYS]Physics [physics] ,water vapor ,[CHIM]Chemical Sciences ,high-resolution spectroscopy ,IUPAC Physical and Biophysical Chemistry Division ,line shifts ,line profiles ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2014
22. Introduction of Water‐Vapor Broadening Parameters and Their Temperature‐Dependent Exponents Into the HITRAN Database: Part I—CO2, N2O, CO, CH4, O2, NH3, and H2S.
- Author
-
Tan, Y., Kochanov, R. V., Rothman, L. S., and Gordon, I. E.
- Subjects
ATMOSPHERIC water vapor ,SPECTRAL lines ,WATER analysis ,SEMI-empirical calculations ,ACQUISITION of data - Abstract
The amount of water vapor in the terrestrial atmosphere is highly variable both spatially and temporally. In the tropics it sometimes constitutes 4–5% of the atmosphere. At the same time collisional broadening of spectral lines by water vapor is much larger than that by nitrogen and oxygen. Therefore, in order to accurately characterize and model spectra of the atmospheres with significant amounts of water vapor, the line‐shape parameters for spectral lines broadened by water vapor are required. In this work, the pressure‐broadening parameters (and their temperature‐dependent exponents) due to the pressure of water vapor for spectral lines of CO2, N2O, CO, CH4, O2, NH3, and H2S from both experimental and theoretical studies were collected and carefully reviewed. A set of semiempirical models based on these collected data was proposed and then used to estimate water broadening and its temperature dependence for all transitions of selected molecules in the HITRAN2016 database. Key Points: Water‐vapor broadening parameters for molecules in the HITRAN database are introduced for the first timeH2O‐broadening effects for spectral lines of different molecules are discussedProcedures describing how to work with new parameters using HITRANonline and HAPI are explained [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
23. The virtual atomic and molecular data centre (VAMDC) consortium
- Author
-
Dubernet, M. L., Antony, B. K., Ba, Y. A., Babikov, Yu L., Bartschat, K., Boudon, V., Braams, B. J., Chung, H-K, Daniel, F., Delahaye, F., Del Zanna, G., de Urquijo, J., Dimitrijevic, M. S., Domaracka, A., Doronin, M., Drouin, B. J., Endres, C. P., Fazliev, A. Z., Gagarin, S. V., Gordon, I. E., Gratier, P., Heiter, Ulrike, Hill, C., Jevremovic, D., Joblin, C., Kasprzak, A., Krishnakumar, E., Leto, G., Loboda, P. A., Louge, T., Maclot, S., Marinkovic, B. P., Markwick, A., Marquart, Thomas, Mason, H. E., Mason, N. J., Mendoza, C., Mihajlov, A. A., Millar, T. J., Moreau, N., Mulas, G., Pakhomov, Yu, Palmeri, P., Pancheshnyi, S., Perevalov, V. I., Piskunov, Nikolai, Postler, J., Quinet, P., Quintas-Sanchez, E., Ralchenko, Yu, Rhee, Y-J, Rixon, G., Rothman, L. S., Roueff, E., Ryabchikova, T., Sahal-Brechot, S., Scheier, P., Schlemmer, S., Schmitt, B., Stempels, Eric H. C., Tashkun, S., Tennyson, J., Tyuterev, Vl G., Vujcic, V., Wakelam, V., Walton, N. A., Zatsarinny, O., Zeippen, C. J., Zwoelf, C. M., Dubernet, M. L., Antony, B. K., Ba, Y. A., Babikov, Yu L., Bartschat, K., Boudon, V., Braams, B. J., Chung, H-K, Daniel, F., Delahaye, F., Del Zanna, G., de Urquijo, J., Dimitrijevic, M. S., Domaracka, A., Doronin, M., Drouin, B. J., Endres, C. P., Fazliev, A. Z., Gagarin, S. V., Gordon, I. E., Gratier, P., Heiter, Ulrike, Hill, C., Jevremovic, D., Joblin, C., Kasprzak, A., Krishnakumar, E., Leto, G., Loboda, P. A., Louge, T., Maclot, S., Marinkovic, B. P., Markwick, A., Marquart, Thomas, Mason, H. E., Mason, N. J., Mendoza, C., Mihajlov, A. A., Millar, T. J., Moreau, N., Mulas, G., Pakhomov, Yu, Palmeri, P., Pancheshnyi, S., Perevalov, V. I., Piskunov, Nikolai, Postler, J., Quinet, P., Quintas-Sanchez, E., Ralchenko, Yu, Rhee, Y-J, Rixon, G., Rothman, L. S., Roueff, E., Ryabchikova, T., Sahal-Brechot, S., Scheier, P., Schlemmer, S., Schmitt, B., Stempels, Eric H. C., Tashkun, S., Tennyson, J., Tyuterev, Vl G., Vujcic, V., Wakelam, V., Walton, N. A., Zatsarinny, O., Zeippen, C. J., and Zwoelf, C. M.
- Abstract
The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.
- Published
- 2016
- Full Text
- View/download PDF
24. Status of the HITRAN and HITEMP databases
- Author
-
Rothman, L. S. and Gordon, I.E.
- Subjects
Databases - Abstract
HITRAN20121 is the current official release of the database. In HITRAN2012, the line-by-line lists for almost all of the 42 HITRAN molecules were updated with respect to the previous compilation (HITRAN20082). The scope of the updates ranges from corrections to the representations of quantum assignments to complete replacements of the lists and introduction of new isotopologues. Five new molecules and their isotopologues were added to the database, namely:HC3N, C4H2, H2, CS and SO3. Some of the most important updates, relevant to the studies of the terrestrial atmosphere such as for water vapor,CO2, molecular oxygen, etc, will be presented in more detail. Examples of definite improvements of the quality and extent of the spectral parameters will be demonstrated with respect to applications. Some remaining problems will also be shown. In addition, new as well as improved sets of cross-section data have been added. Finally, collision-induced absorption (CIA) parameters were introduced into the database for the first time, and this initiative already has received very positive feedback from the community. The immediate plans for updates to the existing spectral parameters will be presented. The status and future plans for the HITEMP database3 will also be discussed. The project for adapting a relational structure of the database with a dynamic and user-friendly web interface will be described. The new structure will enable introduction of a generalized line-shape formalism and parameters as well as many other advantages. The HITRAN database is supported by the NASA Earth Observing System (EOS) under the grant NNX11AF91G, and by the NASA Planetary Atmospheres program under grant NNX13AI59G.
- Published
- 2014
- Full Text
- View/download PDF
25. Recommended Isolated-Line Profile for Representing High-Resolution Spectroscoscopic Transitions
- Author
-
Tennyson, J., Bernath, P. F., Campargue, A., Császár, A. G., Daumont, L., Gamache, R. R., Hodges, J. T., Lisak, D., Naumenko, O. V., Rothman, L. S., Tran, H., Hartmann, J. -M., Zobov, N. F., Buldyreva, J., Boone, C. D., De Vizia, M. Domenica, Gianfrani, L., McPheat, R., Weidmann, D., Murray, J., Ngo, N. H., and Polyansky, O. L.
- Subjects
Poster Session - Abstract
Recommendations of an IUPAC Task Group, formed in 2011 on “Intensities and line shapes in high-resolution spectra of water isotopologues from experiment and theory”(Project No. 2011-022-2-100), on line profiles of isolated high-resolution rotational-vibrational transitions perturbed by neutral gas-phase molecules are presented. The well-documented inadequacies of the Voigt profile, used almost universally by databases and radiative-transfer codes to represent pressure effects and Doppler broadening in isolated vibrational-rotational and pure rotational transitions of the water molecule, have resulted in the development of a variety of alternative line profile models. These models capture more of the physics of the influence of pressure on line shapes but, in general, at the price of greater complexity. The Task Group recommends that the partially-Correlated quadratic-Speed-Dependent Hard-Collision profile should be adopted as the appropriate model for high-resolution spectroscopy. For simplicity this should be called the Hartmann–Tran profile (HTP). This profile is sophisticated enough to capture the various collisional contributions to the isolated line shape, can be computed in a straightforward and rapid manner, and reduces to simpler profiles, including the Voigt profile, under certain simplifying assumptions. For further details see: J. Tennyson et al, Pure Appl. Chem., 2014, in press.
- Published
- 2014
- Full Text
- View/download PDF
26. 198 Policy maker’s perceptions of the role of research in injury prevention legislation
- Author
-
Macpherson, A, primary, Rothman, L, additional, Fuselli, Pamela, additional, Belton, Kathy, additional, Olsen, Lise, additional, and Pike, Ian, additional
- Published
- 2016
- Full Text
- View/download PDF
27. The virtual atomic and molecular data centre (VAMDC) consortium
- Author
-
Dubernet, M L, primary, Antony, B K, additional, Ba, Y A, additional, Babikov, Yu L, additional, Bartschat, K, additional, Boudon, V, additional, Braams, B J, additional, Chung, H-K, additional, Daniel, F, additional, Delahaye, F, additional, Zanna, G Del, additional, Urquijo, J de, additional, Dimitrijević, M S, additional, Domaracka, A, additional, Doronin, M, additional, Drouin, B J, additional, Endres, C P, additional, Fazliev, A Z, additional, Gagarin, S V, additional, Gordon, I E, additional, Gratier, P, additional, Heiter, U, additional, Hill, C, additional, Jevremović, D, additional, Joblin, C, additional, Kasprzak, A, additional, Krishnakumar, E, additional, Leto, G, additional, Loboda, P A, additional, Louge, T, additional, Maclot, S, additional, Marinković, B P, additional, Markwick, A, additional, Marquart, T, additional, Mason, H E, additional, Mason, N J, additional, Mendoza, C, additional, Mihajlov, A A, additional, Millar, T J, additional, Moreau, N, additional, Mulas, G, additional, Pakhomov, Yu, additional, Palmeri, P, additional, Pancheshnyi, S, additional, Perevalov, V I, additional, Piskunov, N, additional, Postler, J, additional, Quinet, P, additional, Quintas-Sánchez, E, additional, Ralchenko, Yu, additional, Rhee, Y-J, additional, Rixon, G, additional, Rothman, L S, additional, Roueff, E, additional, Ryabchikova, T, additional, Sahal-Bréchot, S, additional, Scheier, P, additional, Schlemmer, S, additional, Schmitt, B, additional, Stempels, E, additional, Tashkun, S, additional, Tennyson, J, additional, Tyuterev, Vl G, additional, Vujčić, V, additional, Wakelam, V, additional, Walton, N A, additional, Zatsarinny, O, additional, Zeippen, C J, additional, and Zwölf, C M, additional
- Published
- 2016
- Full Text
- View/download PDF
28. The HITRAN2012 molecular spectroscopic database
- Author
-
Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Bizzocchi, L., Boudon, V., Brown, L. R., Campargue, A., Chance, K., Cohen, E. A., Coudert, L. H., Devi, V. M., Drouin, B. J., Fayt, A., Flaud, J.-M., Gamache, R. R., Harrison, J. J., Hartmann, J.-M., Hill, C., Hodges, J. T., Jacquemart, D., Jolly, A., Lamouroux, J., Le Roy, R. J., Li, G., Long, D. A., Lyulin, O. M., Mackie, C. J., Massie, S. T., Mikhailenko, S., Müller, H. S. P., Naumenko, O. V., Nikitin, A. V., Orphal, J., Perevalov, V., Perrin, A., Polovtseva, E. R., Richard, C., Smith, M. A. H., Starikova, E., Sung, K., Tashkun, S., Tennyson, J., Toon, G. C., Tyuterev, Vl. G., Wagner, G., Atomic and Molecular Physics Division [Cambridge] (AMP), Harvard-Smithsonian Center for Astrophysics (CfA), Smithsonian Institution-Harvard University [Cambridge]-Smithsonian Institution-Harvard University [Cambridge], Department of Physics, College of William and Mary [Williamsburg] (WM), Department of Chemistry and Biochemistry [Norfolk], Old Dominion University [Norfolk] (ODU), LAsers, Molécules et Environnement (LAME-LIPhy), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Environmental, Earth, and Atmospheric Sciences [Lowell], University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Laboratoire de Dynamique Interactions et Réactivité (LADIR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), GNS Science, University of New South Wales [Sydney] (UNSW), V.E. Zuev Institute of Atmospheric Optics (IAO), Siberian Branch of the Russian Academy of Sciences (SB RAS), Institute for Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology (KIT), Smithsonian Institution-Harvard University [Cambridge], Rothman, L.S., Harvard University [Cambridge]-Smithsonian Institution-Harvard University [Cambridge]-Smithsonian Institution, Harvard University [Cambridge]-Smithsonian Institution, LIPhy-LAME, Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Unité Commune d'Expérimentation Animale, Institut National de la Recherche Agronomique (INRA), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Harvard University-Smithsonian Institution-Harvard University-Smithsonian Institution, and Harvard University-Smithsonian Institution
- Subjects
Aerosols ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,Radiation ,Spectroscopic database ,010504 meteorology & atmospheric sciences ,Spectroscopic line parameters ,01 natural sciences ,Molecular spectroscopy ,Atomic and Molecular Physics, and Optics ,010309 optics ,HITRAN ,Molecular absorption ,0103 physical sciences ,Experimentelle Verfahren ,Absorption cross-sections ,Spectroscopy ,0105 earth and related environmental sciences - Abstract
International audience; This paper describes the status of the 2012 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2008 and its updates during the intervening years. The HITRAN molecular absorption compilation is comprised of six major components structured into folders that are freely accessible on the internet. These folders consist of the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, ultraviolet spectroscopic parameters, aerosol indices of refraction, collision-induced absorption data, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, and validity. Molecules and isotopologues have been added that address the issues of atmospheres beyond the Earth. Also discussed is a new initiative that casts HITRAN into a relational database format that offers many advantages over the long-standing sequential text-based structure that has existed since the initial release of HITRAN in the early 1970s.
- Published
- 2013
29. Introduction of Water‐Vapor Broadening Parameters and Their Temperature‐Dependent Exponents Into the HITRAN Database: Part I—CO2, N2O, CO, CH4, O2, NH3, and H2S
- Author
-
Tan, Y., Kochanov, R. V., Rothman, L. S., and Gordon, I. E.
- Abstract
The amount of water vapor in the terrestrial atmosphere is highly variable both spatially and temporally. In the tropics it sometimes constitutes 4–5% of the atmosphere. At the same time collisional broadening of spectral lines by water vapor is much larger than that by nitrogen and oxygen. Therefore, in order to accurately characterize and model spectra of the atmospheres with significant amounts of water vapor, the line‐shape parameters for spectral lines broadened by water vapor are required. In this work, the pressure‐broadening parameters (and their temperature‐dependent exponents) due to the pressure of water vapor for spectral lines of CO2, N2O, CO, CH4, O2, NH3, and H2S from both experimental and theoretical studies were collected and carefully reviewed. A set of semiempirical models based on these collected data was proposed and then used to estimate water broadening and its temperature dependence for all transitions of selected molecules in the HITRAN2016 database. Water‐vapor broadening parameters for molecules in the HITRAN database are introduced for the first timeH2O‐broadening effects for spectral lines of different molecules are discussedProcedures describing how to work with new parameters using HITRANonlineand HAPI are explained
- Published
- 2019
- Full Text
- View/download PDF
30. From the Thoughtful Businessman.
- Author
-
Slichter, Sumner H., Schmidt, Emerson P., Laband, W. H., Muncaster, Harold F., Young, Bradford P., Rothman, L. J., Purdy, V. M., King, John F., and Welch, Charles E.
- Subjects
LETTERS to the editor ,PRICE inflation ,JOB evaluation ,PROFITABILITY ,CAPITALISM ,RELIGION ,INTERPERSONAL relations ,ORGANIZATIONAL effectiveness ,HUMAN resource accounting ,INVESTMENT analysis ,CHRISTIAN ethics - Abstract
The letters to the editor refer to articles in previous issues of "Harvard Business Review." Readers comment on "Thinking Ahead: On the Side of Inflation," by Sumner H. Slichter, " which is in the September-October 1957 issue. "Capitalism and Christianity," by Thomas C. Campbell, Jr., and "Profitability Index for Investments," by Ray I. Reul, are in the July-August 1957 issue. "Thinking Ahead: What Price Human Relations?," by Malcolm P. McNair is in the March-April 1957 issue. "The Job of Job Evaluation," by Douglas S. Sherwin, is in the May-June 1957 issue.
- Published
- 1957
31. Letters to the Editor
- Author
-
Rothman, L. J., Benjamin, B., Jolly, W. P., and Maitland, J.
- Published
- 1961
- Full Text
- View/download PDF
32. IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part II: Energy levels and transition wavenumbers for HD16O, HD17O, and HD18O
- Author
-
Tennyson, Jonathan, Bernath, P. F., Brown, Linda, Campargue, Alain, Csaszar, Attila G, Daumont, L., Gamache, Robert, Hodges, J.T., Naumenko, O. V., Polyansky, O., Rothman, L. S., Toth, R.-A., Vandaele, Ann Carine, Zobov, N.F., Fally, S., Fazliev, A. Z., Furtenbacher, T., Gordon, I.E., Hu, Shui-Ming, Mikhailenko, S. N., Voronin, Boris A, Department of Physics and Astronomy [UCL London], University College of London [London] ( UCL ), Jet Propulsion Laboratory ( JPL ), California Institute of Technology ( CALTECH ) -NASA, LIPhy-LAME, Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] ( LIPhy ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Environmental, Earth, and Atmospheric Sciences [Lowell], University of Massachusetts at Lowell ( UMass Lowell ), Open Laboratory of Bond Selective Chemistry, University of Science and Technology of China [Hefei] ( USTC ), Department of Chemistry [Waterloo], University of Waterloo [Waterloo], Department of Chemistry [York, UK], University of York [York, UK], Laboratoire de Spectrométrie Physique ( LSP ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratory of Molecular Spectroscopy, Institute of Chemistry, Groupe de spectrométrie moléculaire et atmosphérique - UMR 7331 ( GSMA ), Université de Reims Champagne-Ardenne ( URCA ) -Centre National de la Recherche Scientifique ( CNRS ), Physics Laboratory ( NIST ), National Institute of Standards and Technology [Gaithersburg] ( NIST ), Institute of Atmospheric Optics ( IAO ), Siberian Branch of the Russian Academy of Sciences ( SB RAS ), Institute of Applied Physics of RAS, Russian Academy of Sciences [Moscow] ( RAS ), Atomic and Molecular Physics Division ( AMPD ), Harvard-Smithsonian Center for Astrophysics, Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique ( BIRA-IASB ), Institut of Applied Physics ( IAP ), Service de Chimie Quantique et Photophysique, Université Libre de Bruxelles [Bruxelles] ( ULB ), Institute of Atmospheric Optics SB RAS, Eötvös Loránd University ( ELTE ), V.E. Zuev Institute of Atmospheric Optics ( IAO ), University College of London [London] (UCL), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), LAsers, Molécules et Environnement (LAME-LIPhy), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), University of Science and Technology of China [Hefei] (USTC), Laboratoire de Spectrométrie Physique (LSP), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), Physics Laboratory (NIST), National Institute of Standards and Technology [Gaithersburg] (NIST), V.E. Zuev Institute of Atmospheric Optics (IAO), Siberian Branch of the Russian Academy of Sciences (SB RAS), Russian Academy of Sciences [Moscow] (RAS), Atomic and Molecular Physics Division [Cambridge] (AMP), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University [Cambridge]-Smithsonian Institution-Harvard University [Cambridge]-Smithsonian Institution, Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Institut of Applied Physics (IAP), Université libre de Bruxelles (ULB), and Eötvös Loránd University (ELTE)
- Subjects
HD17O ,[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics] ,HD16O ,Aéronomie ,[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics] ,[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph] ,[ PHYS.PHYS.PHYS-ATOM-PH ] Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph] ,Atmospheric physics ,HD18O ,Infrared spectra ,W@DIS ,Information system ,Database ,Microwave spectra ,Spectroscopie [électromagnétisme, optique, acoustique] ,Transition wavenumbers ,Chimie quantique ,Energy levels ,MARVEL ,ComputingMilieux_MISCELLANEOUS ,Water vapor - Abstract
This is the second of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, pressure dependences, and energy levels, with associated critically reviewed assignments and uncertainties, for all the main isotopologues of water. This article presents energy levels and line positions of the following singly deuterated isotopologues of water: HD16O, HD17O, and HD18O. The MARVEL (measured active rotational-vibrational energy levels) procedure is used to determine the levels, the lines, and their self-consistent uncertainties for the spectral regions 0-22708, 0-1674, and 0-12105cm-1 for HD16O, HD17O, and HD18O, respectively. For HD16O, 54740 transitions were analyzed from 76 sources, the lines come from spectra recorded both at room temperature and from hot samples. These lines correspond to 36690 distinct assignments and 8818 energy levels. For HD17O, only 485 transitions could be analyzed from three sources; the lines correspond to 162 MARVEL energy levels. For HD18O, 8729 transitions were analyzed from 11 sources and these lines correspond to 1864 energy levels. The energy levels are checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators. This comparison shows that the measured transitions account for about 86% of the anticipated absorbance of HD16O at 296K and that the transitions predicted by the MARVEL energy levels account for essentially all the remaining absorbance. The extensive list of MARVEL lines and levels obtained are given in the Supplementary Material of this article, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved. In addition, the transition and energy level information for H217O and H218O, given in the first paper of this series [Tennyson, et al. J Quant Spectr Rad Transfer 2009;110:573-96], has been updated. © 2010 Elsevier Ltd., SCOPUS: ar.j, info:eu-repo/semantics/published
- Published
- 2010
33. Outdoor playground use for active healthy play in Toronto, Canada
- Author
-
Rothman, L, primary, Kim, T, additional, and Macpherson, A, additional
- Published
- 2015
- Full Text
- View/download PDF
34. Driving behaviours near schools and child pedestrian-motor vehicle collisions in Toronto, Canada
- Author
-
Rothman, L, primary, Howard, A, additional, Buliung, R, additional, Macarthur, C, additional, and Macpherson, A, additional
- Published
- 2015
- Full Text
- View/download PDF
35. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)
- Author
-
Kochanov, R. V., primary, Gordon, I. E., additional, Rothman, L. S., additional, Sharpe, S. W., additional, Johnson, T. J., additional, and Sams, R. L., additional
- Published
- 2015
- Full Text
- View/download PDF
36. Towards New Line List of Magnetic Dipole and Electric Quadrupole Transitions in the a1Δg X3Σ-g Band of Oxygen
- Author
-
Gordon, I. E., Rothman, L. S., Kassi, S., Campargue, A., and Toonc, G. C.
- Subjects
HITRAN ,Astronomical spectroscopy - Abstract
The spectroscopic parameters for the a1Δg X3Σ− g band of molecular oxygen near 1.27 μm were given in HITRAN almost since the inception of the database. This band is of fundamental importance in the field of remote sensing. Although, the spectral parameters were updated several times numerous uncertainties have remained. Even the most recent update (November, 2009), that was proven to be superior to previous versions of HITRAN in the atmospheric retrievals 1, leaves room for improvement. This includes not only correction of the existing parameters (for instance the J-dependence of line intensities for 16O18O) but also accounting for electric quadrupole transitions. The addition of the ΔJ=±2 electric quadrupole transitions was recently shown to be important 2. Also one has to evaluate, the correlation between the overlapping ΔJ=±1, 0 magnetic dipole and electric quadrupole lines. The (1-1) band of 16O2 and (0-0) band of 16O17O have intensities similar to quadrupole transitions, and therefore the reference spectroscopic data for these species is required. In order to provide accurate input parameters for calculation of line lists the CW-Cavity Ring Down Spectroscopy (CWCRDS) technique has been used to record the high sensitivity absorption spectrum of this band. The spectra were obtained between 7640 and 7917 cm−1 with “natural” oxygen and the absolute intensities of 377 oxygen transitions were measured. They include the a1Δg X3Σ− g (0-0) bands of 16O2, 16O18O and 16O17O. The (0-0) bands of 16O2 contain electric quadrupole transitions with line intensities ranging from 1X10−30 to 1.9X10−28 cm/molecule. The lines from (1-1) band were also measured.
- Published
- 2010
- Full Text
- View/download PDF
37. High Sensitivity CRDS of the a1Δg X3Σg Band of Oxygen near 1.27 μ: Magnetic Dipole and Electric Quadrupole Transitions in Different Bands of Six Isotopologues
- Author
-
Kassi,S., Leshchishina, O. M., Wang, L., Gordon, I. E., Rothman, L. S., and Camparguea,A.
- Subjects
HITRAN ,Astronomical spectroscopy - Abstract
The knowledge of accurate spectroscopic parameters for a1Δg X3Σ− g band of molecular oxygen near 1.27 μ is very important in the field of remote sensing. Although, this band was studied by spectroscopists for over a century a lot of discrepancies still remain in the previously reported line positions and intensities. In this work the CWCavity Ring Down Spectroscopy (CW-CRDS) technique has been used to record the high sensitivity absorption spectrum of this band. The spectra were obtained between 7640 and 7917 cm−1 with “natural” oxygen and with samples highly enriched in 18O and 17O. They measured transitions belong to the a1Δg X3Σ− g (0-0) bands of 16O2, 16O18O, 16O17O, 17O18O, 18O2 and 17O2. The (0-0) bands of 16O2 and 18O2 show (previously undetected) electric quadrupole transitions with line intensities ranging from 1X10−30 to 1.9X10−28 cm/molecule. They are accompanied by the a1Δg X3Σ− g (1-1) hot bands which are also reported for the first time. Lines of the isotopologues containing 17O atom were observed to be plagued with unresolved hyperfine structure, especially in the 17O2 spectrum. Accurate spectroscopic parameters for the observed bands were derived from a global fit of the experimental line positions, combined with microwave and Raman measurements available in the literature.
- Published
- 2010
- Full Text
- View/download PDF
38. Supplementary material to "Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)"
- Author
-
Kochanov, R. V., primary, Gordon, I. E., additional, Rothman, L. S., additional, Sharpe, S. W., additional, Johnson, T. J., additional, and Sams, R. L., additional
- Published
- 2015
- Full Text
- View/download PDF
39. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)
- Author
-
Kochanov, R. V., primary, Gordon, I. E., additional, Rothman, L. S., additional, Sharpe, S. W., additional, Johnson, T. J., additional, and Sams, R. L., additional
- Published
- 2015
- Full Text
- View/download PDF
40. Virtual Atomic and Molecular Data Center
- Author
-
Dubernet, M. L., Vincent Boudon, Culhane, J. L., Dimitrijevic, M. S., Fazliev, A. Z., Joblin, C., Kupka, F., Leto, G., Pierre Le Sidaner, Loboda, P. A., Mason, H. E., Mason, N. J., Mendoza, C., Mulas, G., Millar, T. J., Nuñez, L. A., Perevalov, V. I., Piskunov, N., Ralchenko, Y., Rixon, G., Rothman, L. S., Roueff, E., Ryabchikova, T. A., Ryabtsev, A., Sahal-Brechot, S., Bernard Schmitt, Schlemmer, S., Tennyson, J., Tyuterev, Vladimir G., Walton, N. A., Valentine Wakelam, Zeippen, C. J., Laboratoire de Physique Moleculaire pour l'Atmosphere et l'Astrophysique ( LPMAA ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Univers et Théories ( LUTH ), Institut national des sciences de l'Univers ( INSU - CNRS ) -Observatoire de Paris-Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Interdisciplinaire Carnot de Bourgogne ( LICB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Mullard Space Science Laboratory ( MSSL ), University College of London [London] ( UCL ), Astronomical Observatory Belgrade, V.E. Zuev Institute of Atmospheric Optics ( IAO ), Siberian Branch of the Russian Academy of Sciences ( SB RAS ), Univ Toulouse UPS, Ctr Etud Spatiale Rayonnements, F-31062 Toulouse 9, France, Centre Etud Spatiale Rayonnements Toulouse, University Vienna, Fac Math, Osserv Astrofis Catania, Ist Nazl Astrofis, Observatoire de Paris - Site de Meudon ( OBSPM ), Observatoire de Paris-Centre National de la Recherche Scientifique ( CNRS ), All-Russian Scientific Research Institute of Technical Physics RFNTC VNIITF, Centre for Mathematical Science, Dept Appl Math & Theoret Phys Cambridge, Centre for Mathematical Science, Open university Faculty of Sciences, Universidad de Los Andes Venezuela, CeCalCULA, Corp Parque Tecnol Merida, Ctr Calculo Cient, Universidad de Los Andes Venezuela, Instituto Venezolano Investigaciones Cientificas, Ctr Fis, Caracas, Instituto Venezolano Investigaciones Cientificas, Osservatorio Astronomico di Cagliari, Ist Nazl Astrofis, Osservatorio Astronomico di Cagliari, Queen's UniversityBelfast, Sch Math & Phys, Universidad Industrial de Santander [Bucaramanga] ( UIS ), AMOR 2010, Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux ( L3AB ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Observatoire aquitain des sciences de l'univers ( OASU ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Laboratoire d'Astrophysique de Bordeaux [Pessac] ( LAB ), Université de Bordeaux ( UB ) -Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Bordeaux ( UB ), Laboratoire de Physique Moleculaire pour l'Atmosphere et l'Astrophysique (LPMAA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Mullard Space Science Laboratory (MSSL), University College of London [London] (UCL), Astronomical Observatory Belgrade (AOB), V.E. Zuev Institute of Atmospheric Optics (IAO), Siberian Branch of the Russian Academy of Sciences (SB RAS), Centre d'étude spatiale des rayonnements (CESR), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Observatoire de Paris - Site de Meudon (OBSPM), Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Universidad de Los Andes [Mérida, Venezuela] (ULA), INAF - Osservatorio Astronomico di Cagliari (OAC), Istituto Nazionale di Astrofisica (INAF), Queen's University [Belfast] (QUB), Universidad Industrial de Santander [Bucaramanga] (UIS), Laboratoire d'astrodynamique, d'astrophysique et d'aéronomie de bordeaux (L3AB), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB), Francois, Francoise, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Laboratoire Interdisciplinaire Carnot de Bourgogne (LICB), Universidad de Los Andes [Venezuela] (ULA), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and PSL Research University (PSL)-PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.ASTR.EP] Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[ PHYS.ASTR.EP ] Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[ SDU.ASTR.EP ] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
(special issue HighRus2009). VAMDC; International audience
- Published
- 2010
41. The HITRAN 2004 molecular spectroscopic database
- Author
-
Rothman, L. S., Jacquemart, D., Barbe, A., Benner, D. C., Birk, M., Brown, L. R., Carleer, M. R., Chackerian, C., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Flaud, J. M., Gamache, R. R., Goldman, A., Hartmann, J. M., Jucks, K. W., Maki, A. G., Mandin, J. Y., Massie, S. T., Orphal, J., Perrin, A., Rinsland, C. P., Smith, M. A. H., Tennyson, J., Tolchenov, R. N., Toth, R. A., Vander Auwera, J., Varanasi, P., Wagner, G., Atomic and Molecular Physics Division [Cambridge] (AMP), Harvard-Smithsonian Center for Astrophysics (CfA), Smithsonian Institution-Harvard University [Cambridge]-Smithsonian Institution-Harvard University [Cambridge], Groupe de spectrométrie moléculaire et atmosphérique (GSMA), Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS), Department of Physics, The College of William and Mary, College of William and Mary [Williamsburg] (WM), DLR Institut für Methodik der Fernerkundung / DLR Remote Sensing Technology Institute (IMF), Deutsches Zentrum für Luft- und Raumfahrt [Oberpfaffenhofen-Wessling] (DLR), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Service de Chimie Quantique et Photophysique, Université libre de Bruxelles (ULB), NASA Ames Research Center (ARC), Laboratoire de Photophysique Moléculaire (PPM), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de Physique Moleculaire pour l'Atmosphere et l'Astrophysique (LPMAA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Department of Environmental, Earth, and Atmospheric Sciences [Lowell], University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), Department of Physics [Denver], University of Colorado [Denver], Smithsonian Institution-Harvard University [Cambridge], Laboratoire de Physique moléculaire et applications (LPMA), National Center for Atmospheric Research [Boulder] (NCAR), Center for Atmospheric Sciences [Hampton] (CAS), Hampton University, Department of Physics and Astronomy [UCL London], University College of London [London] (UCL), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Harvard University-Smithsonian Institution-Harvard University-Smithsonian Institution, Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and Harvard University-Smithsonian Institution
- Subjects
Aerosols ,Radiation ,Spectroscopic database ,010504 meteorology & atmospheric sciences ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,HITRAN, spectroscopic database, molecular spectroscopy, molecular absorption, line parameters, absorption cross-sections, aerosols, SELF-BROADENING COEFFICIENTS, ABSOLUTE LINE-INTENSITIES, FOURIER-TRANSFORM SPECTROSCOPY, ABSORPTION CROSS-SECTIONS, DIODE-LASER SPECTROSCOPY, FAR-INFRARED SPECTRUM, MULTISPECTRUM FITTING PROCEDURE, PRESSURE-SHIFT COEFFICIENTS, EFFECTIVE DIPOLE-MOMENT, MU-M REGION ,01 natural sciences ,Molecular spectroscopy ,Atomic and Molecular Physics, and Optics ,Fernerkundung ,010309 optics ,Line parameters ,Molecular absorption ,HITRAN ,0103 physical sciences ,spektroskopische Datenbasis ,Absorption cross-sections ,Spectroscopy ,0105 earth and related environmental sciences - Abstract
This paper describes the status of the 2004 edition of the HITRAN molecular spectroscopic database. The HITRAN compilation consists of several components that serve as input for radiative transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in which the individual lines are unresolvable; individual line parameters and absorption cross-sections for bands in the ultra-violet; refractive indices of aerosols; tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for 39 molecules including many of their isotopologues.The format of the section of the database on individual line parameters of HITRAN has undergone the most extensive enhancement in almost two decades. It now lists the Einstein A-coefficients, statistical weights of the upper and lower levels of the transitions, a better system for the representation of quantum identifications, and enhanced referencing and uncertainty codes. In addition, there is a provision for making corrections to the broadening of line transitions due to line mixing. (C) 2005 Elsevier Ltd. All rights reserved.
- Published
- 2005
42. Chapter 6—Relationship Between Consumer Responses and Analytical Measurements
- Author
-
Muñoz, AM, primary and Rothman, L, additional
- Full Text
- View/download PDF
43. TRIM8/GERP RING finger protein interacts with SOCS-1
- Author
-
Toniato, E., Chen, X. P., Losman, J., Flati, Vincenzo, and Rothman, L. DONAHUE AND P.
- Published
- 2002
44. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014).
- Author
-
Kochanov, R. V., Gordon, I. E., Rothman, L. S., Sharpe, S. W., Johnson, T. J., and Sams, R. L.
- Subjects
GREENHOUSE gases research ,SPECTRUM analysis ,MONOMERS ,DIMERS spectra ,WAVELENGTHS - Abstract
In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases," Clim. Past. 10, 1779-1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50-1800 cm
-1 ), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2 , HNO3 , H2 CO, H2 O2 , HCOOH, C2 H4 , CH2 OH and CH3 Br there exist large or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2 O4 (dimer)CNO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra. [ABSTRACT FROM AUTHOR]- Published
- 2015
- Full Text
- View/download PDF
45. DETERMINANTS OF PARENT PERCEPTIONS OF DANGEROUS TRAFFIC RELATED TO SCHOOL TRAVEL
- Author
-
Rothman, L, primary, Macarthur, C, additional, To, T, additional, Buliung, R, additional, and Howard, A, additional
- Published
- 2012
- Full Text
- View/download PDF
46. The relationship between walking to school and child pedestrian injury in Toronto, Canada
- Author
-
Rothman, L, primary, Macarthur, C, additional, Buliung, R, additional, To, T, additional, and Howard, A, additional
- Published
- 2012
- Full Text
- View/download PDF
47. Pedestrian injury at signalised midblock versus signalised intersections locations in Toronto, Canada
- Author
-
Rothman, L, primary, Howard, A, additional, Camden, A, additional, and Macarthur, C, additional
- Published
- 2012
- Full Text
- View/download PDF
48. Walkable but unsafe? a systematic review of built environment correlates of walking and child pedestrian injury
- Author
-
Rothman, L, primary, Macarthur, C, additional, Buliung, R, additional, To, T, additional, and Howard, A, additional
- Published
- 2012
- Full Text
- View/download PDF
49. VAMDC—The Virtual Atomic and Molecular Data Centre—A New Way to Disseminate Atomic and Molecular Data—VAMDC Level 1 Release
- Author
-
Rixon, G., primary, Dubernet, M. L., additional, Piskunov, N., additional, Walton, N., additional, Mason, N., additional, Le Sidaner, P., additional, Schlemmer, S., additional, Tennyson, J., additional, Akram, A., additional, Benson, K., additional, Bureau, J., additional, Doronin, M., additional, Endres, C., additional, Heiter, U., additional, Hill, C., additional, Kupka, F., additional, Nenadovic, L., additional, Marquart, T., additional, Mulas, G., additional, Ralchenko, Y., additional, Shih, A., additional, Smith, K., additional, Schmitt, B., additional, Witherick, D., additional, Boudon, V., additional, Culhane, J. L., additional, Dimitrijevic, M. S., additional, Fazliev, A. Z., additional, Joblin, C., additional, Leto, G., additional, Loboda, P. A., additional, Mason, H. E., additional, Mendoza, C., additional, Millar, T. J., additional, Nunez, L. A., additional, Perevalov, V. I., additional, Rothman, L. S., additional, Roueff, E., additional, Ryabchikova, T. A., additional, Ryabtsev, A., additional, Sahal-Bréchot, S., additional, Tyuterev, V. G., additional, Wakelam, V., additional, and Zeippen, C. J., additional
- Published
- 2011
- Full Text
- View/download PDF
50. Collision investigations of child pedestrians or cyclists stuck by motor vehicles
- Author
-
Rothman, L., primary, Lee, V., additional, and Howard, A., additional
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.