472,876 results on '"Rossi, A"'
Search Results
2. MuCol Milestone Report No. 5: Preliminary Parameters
- Author
-
Accettura, Carlotta, Adrian, Simon, Agarwal, Rohit, Ahdida, Claudia, Aimé, Chiara, Aksoy, Avni, Alberghi, Gian Luigi, Alden, Siobhan, Alfonso, Luca, Amapane, Nicola, Amorim, David, Andreetto, Paolo, Anulli, Fabio, Appleby, Rob, Apresyan, Artur, Asadi, Pouya, Mahmoud, Mohammed Attia, Auchmann, Bernhard, Back, John, Badea, Anthony, Bae, Kyu Jung, Bahng, E. J., Balconi, Lorenzo, Balli, Fabrice, Bandiera, Laura, Barbagallo, Carmelo, Barlow, Roger, Bartoli, Camilla, Bartosik, Nazar, Barzi, Emanuela, Batsch, Fabian, Bauce, Matteo, Begel, Michael, Berg, J. Scott, Bersani, Andrea, Bertarelli, Alessandro, Bertinelli, Francesco, Bertolin, Alessandro, Bhat, Pushpalatha, Bianchi, Clarissa, Bianco, Michele, Bishop, William, Black, Kevin, Boattini, Fulvio, Bogacz, Alex, Bonesini, Maurizio, Bordini, Bernardo, de Sousa, Patricia Borges, Bottaro, Salvatore, Bottura, Luca, Boyd, Steven, Breschi, Marco, Broggi, Francesco, Brunoldi, Matteo, Buffat, Xavier, Buonincontri, Laura, Burrows, Philip Nicholas, Burt, Graeme Campbell, Buttazzo, Dario, Caiffi, Barbara, Calatroni, Sergio, Calviani, Marco, Calzaferri, Simone, Calzolari, Daniele, Cantone, Claudio, Capdevilla, Rodolfo, Carli, Christian, Carrelli, Carlo, Casaburo, Fausto, Casarsa, Massimo, Castelli, Luca, Catanesi, Maria Gabriella, Cavallucci, Lorenzo, Cavoto, Gianluca, Celiberto, Francesco Giovanni, Celona, Luigi, Cemmi, Alessia, Ceravolo, Sergio, Cerri, Alessandro, Cerutti, Francesco, Cesarini, Gianmario, Cesarotti, Cari, Chancé, Antoine, Charitonidis, Nikolaos, Chiesa, Mauro, Chiggiato, Paolo, Ciccarella, Vittoria Ludovica, Puviani, Pietro Cioli, Colaleo, Anna, Colao, Francesco, Collamati, Francesco, Costa, Marco, Craig, Nathaniel, Curtin, David, Damerau, Heiko, Da Molin, Giacomo, D'Angelo, Laura, Dasu, Sridhara, de Blas, Jorge, De Curtis, Stefania, De Gersem, Herbert, Delahaye, Jean-Pierre, Del Moro, Tommaso, Denisov, Dmitri, Denizli, Haluk, Dermisek, Radovan, Valdor, Paula Desiré, Desponds, Charlotte, Di Luzio, Luca, Di Meco, Elisa, Diociaiuti, Eleonora, Di Petrillo, Karri Folan, Di Sarcina, Ilaria, Dorigo, Tommaso, Dreimanis, Karlis, Pree, Tristan du, Yildiz, Hatice Duran, Edgecock, Thomas, Fabbri, Siara, Fabbrichesi, Marco, Farinon, Stefania, Ferrand, Guillaume, Somoza, Jose Antonio Ferreira, Fieg, Max, Filthaut, Frank, Fox, Patrick, Franceschini, Roberto, Ximenes, Rui Franqueira, Gallinaro, Michele, Garcia-Sciveres, Maurice, Garcia-Tabares, Luis, Gargiulo, Ruben, Garion, Cedric, Garzelli, Maria Vittoria, Gast, Marco, Generoso, Lisa, Gerber, Cecilia E., Giambastiani, Luca, Gianelle, Alessio, Gianfelice-Wendt, Eliana, Gibson, Stephen, Gilardoni, Simone, Giove, Dario Augusto, Giovinco, Valentina, Giraldin, Carlo, Glioti, Alfredo, Gorzawski, Arkadiusz, Greco, Mario, Grojean, Christophe, Grudiev, Alexej, Gschwendtner, Edda, Gueli, Emanuele, Guilhaudin, Nicolas, Han, Chengcheng, Han, Tao, Hauptman, John Michael, Herndon, Matthew, Hillier, Adrian D, Hillman, Micah, Holmes, Tova Ray, Homiller, Samuel, Jana, Sudip, Jindariani, Sergo, Johannesson, Sofia, Johnson, Benjamin, Jones, Owain Rhodri, Jurj, Paul-Bogdan, Kahn, Yonatan, Kamath, Rohan, Kario, Anna, Karpov, Ivan, Kelliher, David, Kilian, Wolfgang, Kitano, Ryuichiro, Kling, Felix, Kolehmainen, Antti, Kong, K. C., Kosse, Jaap, Krintiras, Georgios, Krizka, Karol, Kumar, Nilanjana, Kvikne, Erik, Kyle, Robert, Laface, Emanuele, Lane, Kenneth, Latina, Andrea, Lechner, Anton, Lee, Junghyun, Lee, Lawrence, Lee, Seh Wook, Lefevre, Thibaut, Leonardi, Emanuele, Lerner, Giuseppe, Li, Peiran, Li, Qiang, Li, Tong, Li, Wei, Lindroos, Mats, Lipton, Ronald, Liu, Da, Liu, Miaoyuan, Liu, Zhen, Voti, Roberto Li, Lombardi, Alessandra, Lomte, Shivani, Long, Kenneth, Longo, Luigi, Lorenzo, José, Losito, Roberto, Low, Ian, Lu, Xianguo, Lucchesi, Donatella, Luo, Tianhuan, Lupato, Anna, Ma, Yang, Machida, Shinji, Madlener, Thomas, Magaletti, Lorenzo, Maggi, Marcello, Durand, Helene Mainaud, Maltoni, Fabio, Manczak, Jerzy Mikolaj, Mandurrino, Marco, Marchand, Claude, Mariani, Francesco, Marin, Stefano, Mariotto, Samuele, Martin-Haugh, Stewart, Masullo, Maria Rosaria, Mauro, Giorgio Sebastiano, Mazzolari, Andrea, Mękała, Krzysztof, Mele, Barbara, Meloni, Federico, Meng, Xiangwei, Mentink, Matthias, Métral, Elias, Miceli, Rebecca, Milas, Natalia, Mohammadi, Abdollah, Moll, Dominik, Montella, Alessandro, Morandin, Mauro, Morrone, Marco, Mulder, Tim, Musenich, Riccardo, Nardecchia, Marco, Nardi, Federico, Nenna, Felice, Neuffer, David, Newbold, David, Novelli, Daniel, Olvegård, Maja, Onel, Yasar, Orestano, Domizia, Osborne, John, Otten, Simon, Torres, Yohan Mauricio Oviedo, Paesani, Daniele, Griso, Simone Pagan, Pagani, Davide, Pal, Kincso, Palmer, Mark, Pampaloni, Alessandra, Panci, Paolo, Pani, Priscilla, Papaphilippou, Yannis, Paparella, Rocco, Paradisi, Paride, Passeri, Antonio, Pasternak, Jaroslaw, Pastrone, Nadia, Pellecchia, Antonello, Piccinini, Fulvio, Piekarz, Henryk, Pieloni, Tatiana, Plouin, Juliette, Portone, Alfredo, Potamianos, Karolos, Potdevin, Joséphine, Prestemon, Soren, Puig, Teresa, Qiang, Ji, Quettier, Lionel, Rabemananjara, Tanjona Radonirina, Radicioni, Emilio, Radogna, Raffaella, Rago, Ilaria Carmela, Ratkus, Andris, Resseguie, Elodie, Reuter, Juergen, Ribani, Pier Luigi, Riccardi, Cristina, Ricciardi, Stefania, Robens, Tania, Robert, Youri, Rogers, Chris, Rojo, Juan, Romagnoni, Marco, Ronald, Kevin, Rosser, Benjamin, Rossi, Carlo, Rossi, Lucio, Rozanov, Leo, Ruhdorfer, Maximilian, Ruiz, Richard, Saini, Saurabh, Sala, Filippo, Salierno, Claudia, Salmi, Tiina, Salvini, Paola, Salvioni, Ennio, Sammut, Nicholas, Santini, Carlo, Saputi, Alessandro, Sarra, Ivano, Scarantino, Giuseppe, Schneider-Muntau, Hans, Schulte, Daniel, Scifo, Jessica, Sen, Tanaji, Senatore, Carmine, Senol, Abdulkadir, Sertore, Daniele, Sestini, Lorenzo, Rêgo, Ricardo César Silva, Simone, Federica Maria, Skoufaris, Kyriacos, Sorbello, Gino, Sorbi, Massimo, Sorti, Stefano, Soubirou, Lisa, Spataro, David, Queiroz, Farinaldo S., Stamerra, Anna, Stapnes, Steinar, Stark, Giordon, Statera, Marco, Stechauner, Bernd Michael, Su, Shufang, Su, Wei, Sun, Xiaohu, Sytov, Alexei, Tang, Jian, Tang, Jingyu, Taylor, Rebecca, Kate, Herman Ten, Testoni, Pietro, Thiele, Leonard Sebastian, Garcia, Rogelio Tomas, Topp-Mugglestone, Max, Torims, Toms, Torre, Riccardo, Tortora, Luca, Tortora, Ludovico, Trifinopoulos, Sokratis, Udongwo, Sosoho-Abasi, Vai, Ilaria, Valente, Riccardo Umberto, van Rienen, Ursula, Van Weelderen, Rob, Vanwelde, Marion, Velev, Gueorgui, Venditti, Rosamaria, Vendrasco, Adam, Verna, Adriano, Vernassa, Gianluca, Verweij, Arjan, Verwilligen, Piet, Villamizar, Yoxara, Vittorio, Ludovico, Vitulo, Paolo, Vojskovic, Isabella, Wang, Dayong, Wang, Lian-Tao, Wang, Xing, Wendt, Manfred, Widorski, Markus, Wozniak, Mariusz, Wu, Yongcheng, Wulzer, Andrea, Xie, Keping, Yang, Yifeng, Yap, Yee Chinn, Yonehara, Katsuya, Yoo, Hwi Dong, You, Zhengyun, Zanetti, Marco, Zaza, Angela, Zhang, Liang, Zhu, Ruihu, Zlobin, Alexander, Zuliani, Davide, and Zurita, José Francisco
- Subjects
Physics - Accelerator Physics - Abstract
This document is comprised of a collection of updated preliminary parameters for the key parts of the muon collider. The updated preliminary parameters follow on from the October 2023 Tentative Parameters Report. Particular attention has been given to regions of the facility that are believed to hold greater technical uncertainty in their design and that have a strong impact on the cost and power consumption of the facility. The data is collected from a collaborative spreadsheet and transferred to overleaf.
- Published
- 2024
- Full Text
- View/download PDF
3. Statistical analysis on the effectiveness of a low insulin index, alkaline and functional diet evaluated with machine learning techniques
- Author
-
Antoniali, Fabiana, Conza, Maria Luisa, Conventi, Francesco Alessandro, Cirotto, Francesco, D'Avanzo, Antonio, De Iorio, Agostino, De Iorio, Annalisa, Formicola, Nunzia, Forte, Manuela, Miele, Federica, Perna, Giovanni, Rossi, Biagio, and Rossi, Elvira
- Subjects
Quantitative Biology - Quantitative Methods ,Physics - Applied Physics ,Physics - Data Analysis, Statistics and Probability - Abstract
In this paper, a statistical analysis of the performance of a low insulin index, alkaline and functional diet developed by ANTUR evaluated with machine learning techniques is reported. The sample of patients was checked on a regular basis with a BioImpedenziometric (BIA) analysis. The BIA gives about 40 parameters output describing the health status of the patient. The sample of 1626 patients was grouped in clusters with similar characteristics by a neural network algorithm. A study of the behaviour of the BIA parameters evolution over time with respect to the first visit was performed. More than the 75% of the patient that followed the ANTUR diet showed an improvement of the health status.
- Published
- 2024
4. Generalized coupled cluster theory for ground and excited state intersections
- Author
-
Rossi, Federico, Kjønstad, Eirik F., Angelico, Sara, and Koch, Henrik
- Subjects
Physics - Chemical Physics - Abstract
Coupled cluster theory in the standard formulation is unable to correctly describe conical intersections among states of the same symmetry. This limitation has restricted the practical application of an otherwise highly accurate electronic structure model, particularly in nonadiabatic dynamics. Recently, the intersection problem among the excited states was fully characterized and resolved. However, intersections with the ground state remain an open challenge, and addressing this problem is our objective here. We present a generalized coupled cluster framework that correctly accounts for the geometric phase effect and avoids bifurcations of the solutions to the ground state equations. Several applications are presented that demonstrate the correct description of ground state conical intersections. We also propose how the framework can be used for other electronic-structure methods., Comment: 45 pages, 9 figures
- Published
- 2024
5. Optimizing Data Delivery: Insights from User Preferences on Visuals, Tables, and Text
- Author
-
Luera, Reuben, Rossi, Ryan, Dernoncourt, Franck, Siu, Alexa, Kim, Sungchul, Yu, Tong, Zhang, Ruiyi, Chen, Xiang, Lipka, Nedim, Zhang, Zhehao, Kim, Seon Gyeom, and Lee, Tak Yeon
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
In this work, we research user preferences to see a chart, table, or text given a question asked by the user. This enables us to understand when it is best to show a chart, table, or text to the user for the specific question. For this, we conduct a user study where users are shown a question and asked what they would prefer to see and used the data to establish that a user's personal traits does influence the data outputs that they prefer. Understanding how user characteristics impact a user's preferences is critical to creating data tools with a better user experience. Additionally, we investigate to what degree an LLM can be used to replicate a user's preference with and without user preference data. Overall, these findings have significant implications pertaining to the development of data tools and the replication of human preferences using LLMs. Furthermore, this work demonstrates the potential use of LLMs to replicate user preference data which has major implications for future user modeling and personalization research.
- Published
- 2024
6. Enhancing Robot Assistive Behaviour with Reinforcement Learning and Theory of Mind
- Author
-
Andriella, Antonio, Falcone, Giovanni, and Rossi, Silvia
- Subjects
Computer Science - Robotics ,Computer Science - Artificial Intelligence ,Computer Science - Human-Computer Interaction - Abstract
The adaptation to users' preferences and the ability to infer and interpret humans' beliefs and intents, which is known as the Theory of Mind (ToM), are two crucial aspects for achieving effective human-robot collaboration. Despite its importance, very few studies have investigated the impact of adaptive robots with ToM abilities. In this work, we present an exploratory comparative study to investigate how social robots equipped with ToM abilities impact users' performance and perception. We design a two-layer architecture. The Q-learning agent on the first layer learns the robot's higher-level behaviour. On the second layer, a heuristic-based ToM infers the user's intended strategy and is responsible for implementing the robot's assistance, as well as providing the motivation behind its choice. We conducted a user study in a real-world setting, involving 56 participants who interacted with either an adaptive robot capable of ToM, or with a robot lacking such abilities. Our findings suggest that participants in the ToM condition performed better, accepted the robot's assistance more often, and perceived its ability to adapt, predict and recognise their intents to a higher degree. Our preliminary insights could inform future research and pave the way for designing more complex computation architectures for adaptive behaviour with ToM capabilities.
- Published
- 2024
7. CodeLutra: Boosting LLM Code Generation via Preference-Guided Refinement
- Author
-
Tao, Leitian, Chen, Xiang, Yu, Tong, Mai, Tung, Rossi, Ryan, Li, Yixuan, and Mitra, Saayan
- Subjects
Computer Science - Computation and Language - Abstract
Large Language Models (LLMs) have significantly advanced code generation but often require substantial resources and tend to over-generalize, limiting their efficiency for specific tasks. Fine-tuning smaller, open-source LLMs presents a viable alternative; however, it typically lags behind cutting-edge models due to supervised fine-tuning's reliance solely on correct code examples, which restricts the model's ability to learn from its own mistakes and adapt to diverse programming challenges. To bridge this gap, we introduce CodeLutra, a novel framework that enhances low-performing LLMs by leveraging both successful and failed code generation attempts. Unlike conventional fine-tuning, CodeLutra employs an iterative preference learning mechanism to compare correct and incorrect solutions as well as maximize the likelihood of correct codes. Through continuous iterative refinement, CodeLutra enables smaller LLMs to match or surpass GPT-4's performance in various code generation tasks without relying on vast external datasets or larger auxiliary models. On a challenging data analysis task, using just 500 samples improved Llama-3-8B's accuracy from 28.2% to 48.6%, approaching GPT-4's performance. These results highlight CodeLutra's potential to close the gap between open-source and closed-source models, making it a promising approach in the field of code generation., Comment: 18 pages, 4 figures
- Published
- 2024
8. Unification of Finite Symmetries in Simulation of Many-body Systems on Quantum Computers
- Author
-
Bastidas, Victor M., Fitzpatrick, Nathan, Joven, K. J., Rossi, Zane M., Islam, Shariful, Van Voorhis, Troy, Chuang, Isaac L., and Liu, Yuan
- Subjects
Quantum Physics - Abstract
Symmetry is fundamental in the description and simulation of quantum systems. Leveraging symmetries in classical simulations of many-body quantum systems often results in an exponential overhead due to the exponentially growing size of some symmetry groups as the number of particles increases. Quantum computers hold the promise of achieving exponential speedup in simulating quantum many-body systems; however, a general method for utilizing symmetries in quantum simulations has not yet been established. In this work, we present a unified framework for incorporating symmetry groups into the simulation of many-body systems on quantum computers. The core of our approach lies in the development of efficient quantum circuits for symmetry-adapted projection onto irreducible representations of a group or pairs of commuting groups. We provide resource estimations for common groups, including the cyclic and permutation groups. Our algorithms demonstrate the capability to prepare coherent superpositions of symmetry-adapted states and to perform quantum evolution across a wide range of models in condensed matter physics and ab initio electronic structure in quantum chemistry. We execute a symmetry-adapted quantum subroutine for small molecules in first quantization on noisy hardware, and demonstrate the emulation of symmetry-adapted quantum phase estimation for preparing coherent superpositions of quantum states in various irreducible representations. In addition, we present a discussion of major open problems regarding the use of symmetries in digital quantum simulations of many-body systems, paving the way for future systematic investigations into leveraging symmetries for practical quantum advantage. The broad applicability and the efficiency of the proposed symmetry-adapted subroutine holds the promise for exponential speedup in quantum simulation of many-body systems., Comment: 26 pages, 18 figures
- Published
- 2024
9. Almost finitely generated inverse systems and reduced k-algebras
- Author
-
Elias, Joan and Rossi, Maria Evelina
- Subjects
Mathematics - Commutative Algebra - Abstract
The purpose of this paper is to characterize one-dimensional local domains, or more in general reduced, in terms of its Macaulay's inverse system. This leads to study almost finitely generated modules in the divided power ring. We specialize the results to a numerical semigroup ring by computing explicitly its inverse system. In the graded case we characterize reduced arithmetically Gorenstein $0$-dimensional schemes.
- Published
- 2024
- Full Text
- View/download PDF
10. The first identification of Lyman $\alpha$ Changing-look Quasars at high-redshift in DESI
- Author
-
Guo, Wei-Jian, Pan, Zhiwei, Siudek, Małgorzata, Aguilar, Jessica Nicole, Ahlen, Steven, Bianchi, Davide, Brooks, David, Claybaugh, Todd, Dawson, Kyle, de la Macorra, Axel, Doel, Peter, Fanning, Kevin, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Honscheid, Klaus, Kehoe, Robert, Kisner, Theodore, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Manera, Marc, Meisner, Aaron, Moustakas, John, Muñoz-Gutiérrez, Andrea, Myers, Adam, Nie, Jundan, Palanque-Delabrouille, Nathalie, Poppett, Claire, Prada, Francisco, Rezaie, Mehdi, Rossi, Graziano, Sanchez, Eusebio, Schubnelll, Michael, Seo, Hee-Jong, Silber, Joseph Harry, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin Alan, Zhou, Zhimin, and Zou, Hu
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We present two cases of Ly$\alpha$ changing-look (CL) quasars (J1306 and J1512) along with two additional candidates (J1511 and J1602), all discovered serendipitously at $z >2$ through the Dark Energy Spectroscopic Instrument (DESI) and the Sloan Digital Sky Survey (SDSS). It is the first time to capture CL events in Ly$\alpha$ at high redshift, which is crucial for understanding underlying mechanisms driving the CL phenomenon and the evolution of high-redshift quasars and galaxies. The variability of all four sources is confirmed by the significant change of amplitude in the $r$ band ($|r_{\rm DESI}-r_{\rm SDSS}| >0.5 \ \rm mag$). We find that the accretion rate in the dim state for these CL objects corresponds to a relatively low value ($\mathscr{\dot M} \approx 2\times10^{-3}$), which suggests that the inner region of the accretion disk might be in transition between the Advection Dominated Accretion Flow ($\mathscr{\dot M}<10^{-3}\sim 10^{-2}$) and the canonical accretion disk (optically thick, geometrically thin). However, unlike in C {\sc iv} CL quasars in which broad Ly$\alpha$ remained, the broad C {\sc iv} may still persist after a CL event occurs in Ly$\alpha$, making the physical origin of the CL and ionization mechanism event more puzzling and interesting.
- Published
- 2024
11. DynaSaur: Large Language Agents Beyond Predefined Actions
- Author
-
Nguyen, Dang, Lai, Viet Dac, Yoon, Seunghyun, Rossi, Ryan A., Zhao, Handong, Zhang, Ruiyi, Mathur, Puneet, Lipka, Nedim, Wang, Yu, Bui, Trung, Dernoncourt, Franck, and Zhou, Tianyi
- Subjects
Computer Science - Computation and Language - Abstract
Existing LLM agent systems typically select actions from a fixed and predefined set at every step. While this approach is effective in closed, narrowly-scoped environments, we argue that it presents two major challenges when deploying LLM agents in real-world scenarios: (1) selecting from a fixed set of actions significantly restricts the planning and acting capabilities of LLM agents, and (2) this approach requires substantial human effort to enumerate and implement all possible actions, which becomes impractical in complex environments with a vast number of potential actions. In this work, we propose an LLM agent framework that enables the dynamic creation and composition of actions in an online manner. In this framework, the agent interacts with the environment by generating and executing programs written in a general-purpose programming language at each step. Furthermore, generated actions are accumulated over time for future reuse. Our extensive experiments on the GAIA benchmark demonstrate that this framework offers significantly greater flexibility and outperforms previous methods. Notably, it allows an LLM agent to recover in scenarios where no relevant action exists in the predefined set or when existing actions fail due to unforeseen edge cases. At the time of writing, we hold the top position on the GAIA public leaderboard. Our code can be found in \href{https://github.com/adobe-research/dynasaur}{https://github.com/adobe-research/dynasaur}., Comment: 15 pages, 8 figures
- Published
- 2024
12. LoRA-Contextualizing Adaptation of Large Multimodal Models for Long Document Understanding
- Author
-
Chen, Jian, Zhang, Ruiyi, Zhou, Yufan, Yu, Tong, Dernoncourt, Franck, Gu, Jiuxiang, Rossi, Ryan A., Chen, Changyou, and Sun, Tong
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Large multimodal models (LMMs) have recently shown great progress in text-rich image understanding, yet they still struggle with complex, multi-page, visually-rich documents. Traditional methods using document parsers for retrieval-augmented generation suffer from performance and efficiency limitations, while directly presenting all pages to LMMs leads to inefficiencies, especially with lengthy documents. In this work, we present a novel framework named LoRA-Contextualizing Adaptation of Large multimodal models (LoCAL), which broadens the capabilities of any LMM to support long-document understanding. We demonstrate that LMMs can effectively serve as multimodal retrievers, fetching relevant pages to answer user questions based on these pages. LoCAL is implemented with two specific LMM adapters: one for evidence page retrieval and another for question answering. Empirical results show state-of-the-art performance on public benchmarks, demonstrating the effectiveness of LoCAL., Comment: Currently Under Review
- Published
- 2024
13. Dynamical simulations of many-body quantum chaos on a quantum computer
- Author
-
Fischer, Laurin E., Leahy, Matea, Eddins, Andrew, Keenan, Nathan, Ferracin, Davide, Rossi, Matteo A. C., Kim, Youngseok, He, Andre, Pietracaprina, Francesca, Sokolov, Boris, Dooley, Shane, Zimborás, Zoltán, Tacchino, Francesco, Maniscalco, Sabrina, Goold, John, García-Pérez, Guillermo, Tavernelli, Ivano, Kandala, Abhinav, and Filippov, Sergey N.
- Subjects
Quantum Physics ,Condensed Matter - Statistical Mechanics - Abstract
Quantum circuits with local unitaries have emerged as a rich playground for the exploration of many-body quantum dynamics of discrete-time systems. While the intrinsic locality makes them particularly suited to run on current quantum processors, the task of verification at non-trivial scales is complicated for non-integrable systems. Here, we study a special class of maximally chaotic circuits known as dual unitary circuits -- exhibiting unitarity in both space and time -- that are known to have exact analytical solutions for certain correlation functions. With advances in noise learning and the implementation of novel error mitigation methods, we show that a superconducting quantum processor with 91 qubits is able to accurately simulate these correlators. We then probe dynamics beyond exact verification, by perturbing the circuits away from the dual unitary point, and compare our results to classical approximations with tensor networks. These results cement error-mitigated digital quantum simulation on pre-fault-tolerant quantum processors as a trustworthy platform for the exploration and discovery of novel emergent quantum many-body phases., Comment: 7 + 23 pages, 3 + 17 figures, 0 + 2 tables
- Published
- 2024
14. GRS-QA -- Graph Reasoning-Structured Question Answering Dataset
- Author
-
Pahilajani, Anish, Trivedi, Devasha, Shuai, Jincen, Yone, Khin S., Jain, Samyak Rajesh, Park, Namyong, Rossi, Ryan A., Ahmed, Nesreen K., Dernoncourt, Franck, and Wang, Yu
- Subjects
Computer Science - Computation and Language - Abstract
Large Language Models (LLMs) have excelled in multi-hop question-answering (M-QA) due to their advanced reasoning abilities. However, the impact of the inherent reasoning structures on LLM M-QA performance remains unclear, largely due to the absence of QA datasets that provide fine-grained reasoning structures. To address this gap, we introduce the Graph Reasoning-Structured Question Answering Dataset (GRS-QA), which includes both semantic contexts and reasoning structures for QA pairs. Unlike existing M-QA datasets, where different reasoning structures are entangled together, GRS-QA explicitly captures intricate reasoning pathways by constructing reasoning graphs, where nodes represent textual contexts and edges denote logical flows. These reasoning graphs of different structures enable a fine-grained evaluation of LLM reasoning capabilities across various reasoning structures. Our empirical analysis reveals that LLMs perform differently when handling questions with varying reasoning structures. This finding facilitates the exploration of textual structures as compared with semantics., Comment: 15 pages, 24 figures, 10 tables
- Published
- 2024
15. DESIVAST: A Catalog of Low-Redshift Voids using Data from the DESI DR1 Bright Galaxy Survey
- Author
-
Rincon, Hernan, BenZvi, Segev, Douglass, Kelly, Veyrat, Dahlia, Aguilar, Jessica Nicole, Ahlen, Steven, Bianchi, Davide, Brooks, David, Claybaugh, Todd, Cole, Shaun, de la Macorra, Axel, Doel, Peter, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Honscheid, Klaus, Howlett, Cullan, Juneau, Stephanie, Kehoe, Robert, Koposov, Sergey, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Meisner, Aaron, Miquel, Ramon, Moustakas, John, Niz, Gustavo, Percival, Will, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schubnell, Michael, Seo, Hee-Jong, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin Alan, and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present three separate void catalogs created using a volume-limited sample of the DESI Year 1 Bright Galaxy Survey. We use the algorithms VoidFinder and V2 to construct void catalogs out to a redshift of z=0.24. We obtain 1,461 interior voids with VoidFinder, 420 with V2 using REVOLVER pruning, and 295 with V2 using VIDE pruning. Comparing our catalog with an overlapping SDSS void catalog, we find generally consistent void properties but significant differences in the void volume overlap, which we attribute to differences in the galaxy selection and survey masks. These catalogs are suitable for studying the variation in galaxy properties with cosmic environment and for cosmological studies., Comment: 17 pages, 6 figures
- Published
- 2024
16. Tripling the Census of Dwarf AGN Candidates Using DESI Early Data
- Author
-
Pucha, Ragadeepika, Juneau, S., Dey, Arjun, Siudek, M., Mezcua, M., Moustakas, J., BenZvi, S., Hainline, K., Hviding, R., Mao, Yao-Yuan, Alexander, D. M., Alfarsy, R., Circosta, C., Guo, Wei-Jian, Manwadkar, V., Martini, P., Weaver, B. A., Aguilar, J., Ahlen, S., Bianchi, D., Brooks, D., Canning, R., Claybaugh, T., Dawson, K., de la Macorra, A., Dey, Biprateep, Doel, P., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Kehoe, R., Koposov, S. E., Lambert, A., Landriau, M., Guillou, L. Le, Meisner, A., Miquel, R., Prada, F., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., and Zou, H.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Using early data from the Dark Energy Spectroscopic Instrument (DESI) survey, we search for AGN signatures in 410,757 line-emitting galaxies. By employing the BPT emission-line ratio diagnostic diagram, we identify AGN in 75,928/296,261 ($\approx$25.6%) high-mass ($\log (M_{\star}/\rm M_{\odot}) >$ 9.5) and 2,444/114,496 ($\approx$2.1%) dwarf ($\log (M_{\star}/\rm M_{\odot}) \leq$ 9.5) galaxies. Of these AGN candidates, 4,181 sources exhibit a broad H$\alpha$ component, allowing us to estimate their BH masses via virial techniques. This study more than triples the census of dwarf AGN as well as that of intermediate-mass black hole (IMBH; $M_{\rm BH} \le 10^6~\rm M_{\odot}$) candidates, spanning a broad discovery space in stellar mass (7 $< \log (M_{\star}/\rm M_{\odot}) <$ 12) and redshift (0.001 $< \rm z <$ 0.45). The observed AGN fraction in dwarf galaxies ($\approx$2.1%) is nearly four times higher than prior estimates, primarily due to DESI's smaller fiber size, which enables the detection of lower luminosity dwarf AGN candidates. We also extend the $M_{\rm BH}$ - $M_{\star}$ scaling relation down to $\log (M_{\star}/\rm M_{\odot}) \approx$ 8.5 and $\log (M_{\rm BH}/M_{\odot}) \approx$ 4.4, with our results aligning well with previous low-redshift studies. The large statistical sample of dwarf AGN candidates from current and future DESI releases will be invaluable for enhancing our understanding of galaxy evolution at the low-mass end of the galaxy mass function., Comment: 35 pages, 22 figures, Submitted to AAS Journals, Comments are welcome
- Published
- 2024
17. A graph-based algorithm for the non-stationary lot-sizing problem with penalty scheme
- Author
-
Ma, Xiyuan, Rossi, Roberto, and Archibald, Thomas
- Subjects
Mathematics - Optimization and Control - Abstract
This paper introduces a graph-based algorithm for solving single-item, single-location inventory lot-sizing problems under non-stationary stochastic demand using the $(R_t, S_t)$ policy and a penalty cost scheme. The proposed method relaxes the original mixed-integer linear programming (MILP) model by eliminating non-negative order quantity constraints and formulating it as a shortest-path problem on a weighted directed acyclic graph. A repetitive augmentation procedure is proposed to resolve any infeasibility in the solution. This procedure consists of three stages: (1) filtration, (2) repeated augmentation by redirecting, reconnecting, and duplicating between newly introduced and existing nodes to adjust the graph and eliminate negative replenishment orders, and (3) re-optimising. The effectiveness and computational efficiency of the proposed approach are assessed through extensive experiments on 1,620 test instances across various demand patterns and parameter settings. The results show that 195 instances required augmentation, mainly those with high penalty costs, low fixed ordering costs, large demand variability, and extended planning horizons. The efficiency of the algorithm for instances with extended planning horizon scenarios demonstrates its suitability for use in real-world scenarios.
- Published
- 2024
18. Personalization of Large Language Models: A Survey
- Author
-
Zhang, Zhehao, Rossi, Ryan A., Kveton, Branislav, Shao, Yijia, Yang, Diyi, Zamani, Hamed, Dernoncourt, Franck, Barrow, Joe, Yu, Tong, Kim, Sungchul, Zhang, Ruiyi, Gu, Jiuxiang, Derr, Tyler, Chen, Hongjie, Wu, Junda, Chen, Xiang, Wang, Zichao, Mitra, Subrata, Lipka, Nedim, Ahmed, Nesreen, and Wang, Yu
- Subjects
Computer Science - Computation and Language - Abstract
Personalization of Large Language Models (LLMs) has recently become increasingly important with a wide range of applications. Despite the importance and recent progress, most existing works on personalized LLMs have focused either entirely on (a) personalized text generation or (b) leveraging LLMs for personalization-related downstream applications, such as recommendation systems. In this work, we bridge the gap between these two separate main directions for the first time by introducing a taxonomy for personalized LLM usage and summarizing the key differences and challenges. We provide a formalization of the foundations of personalized LLMs that consolidates and expands notions of personalization of LLMs, defining and discussing novel facets of personalization, usage, and desiderata of personalized LLMs. We then unify the literature across these diverse fields and usage scenarios by proposing systematic taxonomies for the granularity of personalization, personalization techniques, datasets, evaluation methods, and applications of personalized LLMs. Finally, we highlight challenges and important open problems that remain to be addressed. By unifying and surveying recent research using the proposed taxonomies, we aim to provide a clear guide to the existing literature and different facets of personalization in LLMs, empowering both researchers and practitioners.
- Published
- 2024
19. Survey of User Interface Design and Interaction Techniques in Generative AI Applications
- Author
-
Luera, Reuben, Rossi, Ryan A., Siu, Alexa, Dernoncourt, Franck, Yu, Tong, Kim, Sungchul, Zhang, Ruiyi, Chen, Xiang, Salehy, Hanieh, Zhao, Jian, Basu, Samyadeep, Mathur, Puneet, and Lipka, Nedim
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Artificial Intelligence ,Computer Science - Computation and Language ,Computer Science - Machine Learning - Abstract
The applications of generative AI have become extremely impressive, and the interplay between users and AI is even more so. Current human-AI interaction literature has taken a broad look at how humans interact with generative AI, but it lacks specificity regarding the user interface designs and patterns used to create these applications. Therefore, we present a survey that comprehensively presents taxonomies of how a human interacts with AI and the user interaction patterns designed to meet the needs of a variety of relevant use cases. We focus primarily on user-guided interactions, surveying interactions that are initiated by the user and do not include any implicit signals given by the user. With this survey, we aim to create a compendium of different user-interaction patterns that can be used as a reference for designers and developers alike. In doing so, we also strive to lower the entry barrier for those attempting to learn more about the design of generative AI applications.
- Published
- 2024
20. A Survey of Small Language Models
- Author
-
Van Nguyen, Chien, Shen, Xuan, Aponte, Ryan, Xia, Yu, Basu, Samyadeep, Hu, Zhengmian, Chen, Jian, Parmar, Mihir, Kunapuli, Sasidhar, Barrow, Joe, Wu, Junda, Singh, Ashish, Wang, Yu, Gu, Jiuxiang, Dernoncourt, Franck, Ahmed, Nesreen K., Lipka, Nedim, Zhang, Ruiyi, Chen, Xiang, Yu, Tong, Kim, Sungchul, Deilamsalehy, Hanieh, Park, Namyong, Rimer, Mike, Zhang, Zhehao, Yang, Huanrui, Rossi, Ryan A., and Nguyen, Thien Huu
- Subjects
Computer Science - Computation and Language - Abstract
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources, making them ideal for various settings including on-device, mobile, edge devices, among many others. In this article, we present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques. We propose a novel taxonomy for categorizing the methods used to optimize SLMs, including model compression, pruning, and quantization techniques. We summarize the benchmark datasets that are useful for benchmarking SLMs along with the evaluation metrics commonly used. Additionally, we highlight key open challenges that remain to be addressed. Our survey aims to serve as a valuable resource for researchers and practitioners interested in developing and deploying small yet efficient language models.
- Published
- 2024
21. Taipan: Efficient and Expressive State Space Language Models with Selective Attention
- Author
-
Van Nguyen, Chien, Nguyen, Huy Huu, Pham, Thang M., Zhang, Ruiyi, Deilamsalehy, Hanieh, Mathur, Puneet, Rossi, Ryan A., Bui, Trung, Lai, Viet Dac, Dernoncourt, Franck, and Nguyen, Thien Huu
- Subjects
Computer Science - Computation and Language ,Computer Science - Artificial Intelligence ,Computer Science - Machine Learning - Abstract
Efficient long-context language modeling remains a significant challenge in Natural Language Processing (NLP). While Transformers dominate language tasks, they struggle with long sequences due to quadratic computational complexity in training and linearly scaling memory costs during inference. Recent State Space Models (SSMs) such as Mamba offer alternatives with constant memory usage, but they underperform in tasks requiring extensive in-context retrieval. We introduce Taipan, a novel hybrid architecture that combines Mamba-2 with Selective Attention Layers (SALs). These SALs identify tokens requiring long-range interactions, remove less important features, and then augment their representations using the attention module. This approach balances Mamba's efficiency with Transformer-like performance in memory-intensive tasks. By constraining the attention budget, Taipan extends accurate predictions to context lengths of up to 1 million tokens while preserving computational efficiency. Our experiments demonstrate Taipan's superior performance across various scales and tasks, offering a promising solution for efficient long-context language modeling.
- Published
- 2024
22. Electronic Bound States in the Continuum in a 2D Metal
- Author
-
Thinel, Morgan, Turkel, Simon, Rossi, Sebastian E., Koay, Christie S., Chica, Daniel G., Huang, Xiong, Holbrook, Madisen, Devarakonda, Aravind, Nashabeh, Luca M., Georgescu, Alexandru B., Roy, Xavier, Zhu, Xiaoyang, Pasupathy, Abhay N., and Queiroz, Raquel
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Strongly Correlated Electrons - Abstract
Bound states in the continuum (BICs) are quantum states that remain localized despite existing within a continuum of extended, delocalized states. They defy conventional wave theories and could be instrumental for quantum technologies that rely on the precise control of quantum states. While optical BICs have been realized in photonic systems, achieving electronic bound states in a metallic background remains an ongoing challenge. Here, we observe two defect states that remain localized within the metallic continuum of Pd5AlI2, a two-dimensional van der Waals metal. The emergence of these states is a manifestation of the hopping interference in the Pd5AlI2 lattice. This interference results in a (quasi) flat band and spatially localized eigenstates that are orthogonal to the metallic continuum thus avoiding hybridization with extended states.
- Published
- 2024
23. On the stability of vacuum in the screened Vlasov-Poisson equation
- Author
-
Iacobelli, Mikaela, Rossi, Stefano, and Widmayer, Klaus
- Subjects
Mathematics - Analysis of PDEs ,Mathematical Physics ,35B40, 35B35, 35F20 - Abstract
We study the asymptotic behavior of small data solutions to the screened Vlasov-Poisson equation on $\mathbb{R}^d\times\mathbb{R}^d$ near vacuum. We show that for dimensions $d\geq 2$, under mild assumptions on localization (in terms of spatial moments) and regularity (in terms of at most three Sobolev derivatives) solutions scatter freely. In dimension $d=1$, we obtain a long time existence result in analytic regularity., Comment: 30 pages
- Published
- 2024
24. Lunar Subterra: a Self-Integrative Unit with an Automated Drilling System
- Author
-
Sfeir, Anthony, Petkova, Asya, Chaaya, Sabine, Chichova, Karina, Rossi, Marta, Vock, Anna, Mosut, Alessandro, Saravanaraj, Akshayanivasini Ramasamy, Sumini, Valentina, and Nilsson, Tommy
- Subjects
Computer Science - Human-Computer Interaction ,Computer Science - Emerging Technologies ,93B51, 97M50 ,J.6 ,K.4 ,H.1.2 ,I.3.8 ,J.4 ,J.m ,K.8.2 - Abstract
As humans venture deeper into space, the need for a lunar settlement, housing the first group of settlers, grows steadily. By means of new technologies such as in situ resource utilisation (ISRU) as well as computational design, this goal can be implemented in present years. Providing the first arrivals with an immediate underground habitat safe from radiation and other environmental constraints is of crucial importance to initialise a prolonged mission on the Moon. The project's proposal revolves around the idea of establishing a base which provides an immediately habitable space with the possibility for future expansion. Advanced construction methods and sustainable practices lay the groundwork for a permanent human presence, predominantly based on ISRU. This paper outlines a two-phase initiative aimed at the foundation of the Lunar Subterra, followed by an extension of the habitat above ground. Following our collaboration with the PoliSpace Sparc Student Association group, a Virtual Reality (VR) reproduction of the proposed habitat enabled quick iterative testing of the habitable space with the use of a Meta Quest 2 headset. This not only allowed an evaluation of the environment and its impact on human residents but also eradicated the need for tangible models to conceptualise the idea, enabling rapid user-centred design and implementation in the future of space exploration., Comment: 75th International Astronautical Congress (IAC), Milan, Italy, 14-18 October 2024
- Published
- 2024
25. Search for gravitational waves emitted from SN 2023ixf
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Obergaulinger, M., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McClelland, D. E., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narikawa, T., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchikata, N., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zimmerman, A. B., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19th, during the LIGO-Virgo-KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered $\sim 14\%$ of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz where we assume the GW emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy $1 \times 10^{-5} M_{\odot} c^2$ and luminosity $4 \times 10^{-5} M_{\odot} c^2/\text{s}$ for a source emitting at 50 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as $1.04$, at frequencies above $1200$ Hz, surpassing results from SN 2019ejj., Comment: Main paper: 6 pages, 4 figures and 1 table. Total with appendices: 20 pages, 4 figures, and 1 table
- Published
- 2024
26. Experimental simulation of daemonic work extraction in open quantum batteries on a digital quantum computer
- Author
-
Elyasi, Seyed Navid, Rossi, Matteo A. C., and Genoni, Marco G.
- Subjects
Quantum Physics - Abstract
The possibility of extracting more work from a physical system thanks to the information obtained from measurements has been a topic of fundamental interest in the context of thermodynamics since the formulation of the Maxwell's demon thought experiment. We here consider this problem from the perspective of an open quantum battery interacting with an environment that can be continuously measured. By modeling it via a continuously monitored collisional model, we show how to implement the corresponding dynamics as a quantum circuit, including the final conditional feedback unitary evolution that allows to enhance the amount of work extracted. By exploiting the flexibility of IBM quantum computers and by properly modelling the corresponding quantum circuit, we experimentally simulate the work extraction protocol showing how the obtained experimental values of the daemonic extracted work are close to their theoretical upper bound quantified by the so-called daemonic ergotropy. We also demonstrate how by properly modelling the noise affecting the quantum circuit, one can improve the work extraction protocol by optimizing the corresponding extraction unitary feedback operation.
- Published
- 2024
27. VipAct: Visual-Perception Enhancement via Specialized VLM Agent Collaboration and Tool-use
- Author
-
Zhang, Zhehao, Rossi, Ryan, Yu, Tong, Dernoncourt, Franck, Zhang, Ruiyi, Gu, Jiuxiang, Kim, Sungchul, Chen, Xiang, Wang, Zichao, and Lipka, Nedim
- Subjects
Computer Science - Computation and Language - Abstract
While vision-language models (VLMs) have demonstrated remarkable performance across various tasks combining textual and visual information, they continue to struggle with fine-grained visual perception tasks that require detailed pixel-level analysis. Effectively eliciting comprehensive reasoning from VLMs on such intricate visual elements remains an open challenge. In this paper, we present VipAct, an agent framework that enhances VLMs by integrating multi-agent collaboration and vision expert models, enabling more precise visual understanding and comprehensive reasoning. VipAct consists of an orchestrator agent, which manages task requirement analysis, planning, and coordination, along with specialized agents that handle specific tasks such as image captioning and vision expert models that provide high-precision perceptual information. This multi-agent approach allows VLMs to better perform fine-grained visual perception tasks by synergizing planning, reasoning, and tool use. We evaluate VipAct on benchmarks featuring a diverse set of visual perception tasks, with experimental results demonstrating significant performance improvements over state-of-the-art baselines across all tasks. Furthermore, comprehensive ablation studies reveal the critical role of multi-agent collaboration in eliciting more detailed System-2 reasoning and highlight the importance of image input for task planning. Additionally, our error analysis identifies patterns of VLMs' inherent limitations in visual perception, providing insights into potential future improvements. VipAct offers a flexible and extensible framework, paving the way for more advanced visual perception systems across various real-world applications.
- Published
- 2024
28. GRB 211024B: an ultra-long GRB powered by magnetar
- Author
-
Fu, Shao-Yu, Xu, Dong, Lei, Wei-Hua, Postigo, Antonio de Ugarte, Malesani, Daniele B., Kann, David Alexander, Jakobsson, Páll, Fynbo, Johan P. U., Maiorano, Elisabetta, Rossi, Andrea, Paris, Diego, Liu, Xing, Jiang, Shuai-Qing, Lu, Tian-Hua, An, Jie, Zhu, Zi-Pei, Gao, Xing, and Wei, Jian-Yan
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
Ultra-long gamma-ray bursts (ULGRBs) are characterized by exceptionally long-duration central engine activities, with characteristic timescales exceeding 1000 seconds. We present ground-based optical afterglow observations of the ultra-long gamma-ray burst GRB 211024B, detected by \textit{Swift}. Its X-ray light curve exhibits a characteristic ``internal plateau" with a shallow decay phase lasting approximately $\sim 15$ ks, followed by a steep decline ($\alpha_{\rm drop}\sim-7.5$). Moreover, the early optical emission predicted by the late r-band optical afterglow is significantly higher than the observed value, indicating an external shock with energy injection. To explain these observations, we propose a magnetar central engine model. The magnetar collapse into a black hole due to spin-down or hyperaccretion, leading to the observed steep break in the X-ray light curve. The afterglow model fitting reveals that the afterglow injection luminosity varies with different assumptions of the circumburst medium density, implying different potential energy sources. For the interstellar medium (ISM) case with a fixed injection end time, the energy may originate from the magnetar's dipole radiation. However, in other scenarios, relativistic jets produced by the magnetar/black hole system could be the primary energy source., Comment: 18 pages, 7 figures, accepted by ApJ
- Published
- 2024
29. The GROND gamma-ray burst sample. I. Overview and statistics
- Author
-
Greiner, J., Krühler, T., Bolmer, J., Klose, S., Afonso, P. M. J., Elliott, J., Filgas, R., Graham, J. F., Kann, D. A., Knust, F., Yoldaş, A. Küpcü, Nardini, M., Guelbenzu, A. M. Nicuesa, Estay, F. Olivares, Rossi, A., Schady, P., Schweyer, T., Sudilovsky, V., Varela, K., and Wiseman, P.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
A dedicated gamma-ray burst (GRB) afterglow observing program was performed between 2007 and 2016 with GROND, a seven-channel optical and near-infrared imager at the 2.2m telescope of the Max-Planck Society at ESO/La Silla. In this first of a series of papers, we describe the GRB observing plan, providing first readings of all so far unpublished GRB afterglow measurements and some observing statistics. In total, we observed 514 GRBs with GROND, including 434 Swift-detected GRBs, representing 81\% of the observable Swift sample. For GROND-observations within 30 min of the GRB trigger, the optical/NIR afterglow detection rate is 81\% for long- and 57\% for short-duration GRBs. We report the discovery of ten new GRB afterglows plus one candidate, along with redshift estimates (partly improved) for four GRBs and new host detections for seven GRBs. We identify the (already known) afterglow of GRB 140209A as the sixth GRB exhibiting a 2175 Angstroem dust feature. As a side result, we identified two blazars, with one at a redshift of z=3.8 (in the GRB 131209A field)., Comment: 20 pages, 31 figures, accepted for publication in Astronomy & Astrophysics
- Published
- 2024
30. CFTS-GAN: Continual Few-Shot Teacher Student for Generative Adversarial Networks
- Author
-
Ali, Munsif, Rossi, Leonardo, and Bertozzi, Massimo
- Subjects
Computer Science - Machine Learning ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Few-shot and continual learning face two well-known challenges in GANs: overfitting and catastrophic forgetting. Learning new tasks results in catastrophic forgetting in deep learning models. In the case of a few-shot setting, the model learns from a very limited number of samples (e.g. 10 samples), which can lead to overfitting and mode collapse. So, this paper proposes a Continual Few-shot Teacher-Student technique for the generative adversarial network (CFTS-GAN) that considers both challenges together. Our CFTS-GAN uses an adapter module as a student to learn a new task without affecting the previous knowledge. To make the student model efficient in learning new tasks, the knowledge from a teacher model is distilled to the student. In addition, the Cross-Domain Correspondence (CDC) loss is used by both teacher and student to promote diversity and to avoid mode collapse. Moreover, an effective strategy of freezing the discriminator is also utilized for enhancing performance. Qualitative and quantitative results demonstrate more diverse image synthesis and produce qualitative samples comparatively good to very stronger state-of-the-art models.
- Published
- 2024
31. Knowledge-Aware Query Expansion with Large Language Models for Textual and Relational Retrieval
- Author
-
Xia, Yu, Wu, Junda, Kim, Sungchul, Yu, Tong, Rossi, Ryan A., Wang, Haoliang, and McAuley, Julian
- Subjects
Computer Science - Computation and Language ,Computer Science - Information Retrieval - Abstract
Large language models (LLMs) have been used to generate query expansions augmenting original queries for improving information search. Recent studies also explore providing LLMs with initial retrieval results to generate query expansions more grounded to document corpus. However, these methods mostly focus on enhancing textual similarities between search queries and target documents, overlooking document relations. For queries like "Find me a highly rated camera for wildlife photography compatible with my Nikon F-Mount lenses", existing methods may generate expansions that are semantically similar but structurally unrelated to user intents. To handle such semi-structured queries with both textual and relational requirements, in this paper we propose a knowledge-aware query expansion framework, augmenting LLMs with structured document relations from knowledge graph (KG). To further address the limitation of entity-based scoring in existing KG-based methods, we leverage document texts as rich KG node representations and use document-based relation filtering for our Knowledge-Aware Retrieval (KAR). Extensive experiments on three datasets of diverse domains show the advantages of our method compared against state-of-the-art baselines on textual and relational semi-structured retrieval.
- Published
- 2024
32. Optimizing Multi-Task Learning for Accurate Spacecraft Pose Estimation
- Author
-
Evangelisti, Francesco, Rossi, Francesco, Giani, Tobia, Bloise, Ilaria, and Varile, Mattia
- Subjects
Computer Science - Machine Learning - Abstract
Accurate satellite pose estimation is crucial for autonomous guidance, navigation, and control (GNC) systems in in-orbit servicing (IOS) missions. This paper explores the impact of different tasks within a multi-task learning (MTL) framework for satellite pose estimation using monocular images. By integrating tasks such as direct pose estimation, keypoint prediction, object localization, and segmentation into a single network, the study aims to evaluate the reciprocal influence between tasks by testing different multi-task configurations thanks to the modularity of the convolutional neural network (CNN) used in this work. The trends of mutual bias between the analyzed tasks are found by employing different weighting strategies to further test the robustness of the findings. A synthetic dataset was developed to train and test the MTL network. Results indicate that direct pose estimation and heatmap-based pose estimation positively influence each other in general, while both the bounding box and segmentation tasks do not provide significant contributions and tend to degrade the overall estimation accuracy.
- Published
- 2024
- Full Text
- View/download PDF
33. Cascade learning in multi-task encoder-decoder networks for concurrent bone segmentation and glenohumeral joint assessment in shoulder CT scans
- Author
-
Marsilio, Luca, Marzorati, Davide, Rossi, Matteo, Moglia, Andrea, Mainardi, Luca, Manzotti, Alfonso, and Cerveri, Pietro
- Subjects
Electrical Engineering and Systems Science - Image and Video Processing ,Computer Science - Artificial Intelligence ,Computer Science - Computer Vision and Pattern Recognition - Abstract
Osteoarthritis is a degenerative condition affecting bones and cartilage, often leading to osteophyte formation, bone density loss, and joint space narrowing. Treatment options to restore normal joint function vary depending on the severity of the condition. This work introduces an innovative deep-learning framework processing shoulder CT scans. It features the semantic segmentation of the proximal humerus and scapula, the 3D reconstruction of bone surfaces, the identification of the glenohumeral (GH) joint region, and the staging of three common osteoarthritic-related pathologies: osteophyte formation (OS), GH space reduction (JS), and humeroscapular alignment (HSA). The pipeline comprises two cascaded CNN architectures: 3D CEL-UNet for segmentation and 3D Arthro-Net for threefold classification. A retrospective dataset of 571 CT scans featuring patients with various degrees of GH osteoarthritic-related pathologies was used to train, validate, and test the pipeline. Root mean squared error and Hausdorff distance median values for 3D reconstruction were 0.22mm and 1.48mm for the humerus and 0.24mm and 1.48mm for the scapula, outperforming state-of-the-art architectures and making it potentially suitable for a PSI-based shoulder arthroplasty preoperative plan context. The classification accuracy for OS, JS, and HSA consistently reached around 90% across all three categories. The computational time for the inference pipeline was less than 15s, showcasing the framework's efficiency and compatibility with orthopedic radiology practice. The outcomes represent a promising advancement toward the medical translation of artificial intelligence tools. This progress aims to streamline the preoperative planning pipeline delivering high-quality bone surfaces and supporting surgeons in selecting the most suitable surgical approach according to the unique patient joint conditions.
- Published
- 2024
34. The Atacama Cosmology Telescope DR6 and DESI: Structure growth measurements from the cross-correlation of DESI Legacy Imaging galaxies and CMB lensing from ACT DR6 and Planck PR4
- Author
-
Qu, Frank J., Hang, Qianjun, Farren, Gerrit, Bolliet, Boris, Aguilar, Jessica Nicole, Ahlen, Steven, Alam, Shadab, Brooks, David, Cai, Yan-Chuan, Calabrese, Erminia, Claybaugh, Todd, de la Macorra, Axel, Devlin, Mark J., Doel, Peter, Embil-Villagra, Carmen, Ferraro, Simone, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gluscevic, Vera, Gontcho, Satya Gontcho A, Gutierrez, Gaston, Howlett, Cullan, Kehoe, Robert, Kim, Joshua, Kremin, Anthony, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Levi, Michael, Louis, Thibaut, Meisner, Aaron, Miquel, Ramon, Moustakas, John, Newman, Jeffrey A., Niz, Gustavo, Peacock, John, Percival, Will, Poppett, Claire, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Sehgal, Neelima, Shaikh, Shabbir, Sherwin, Blake, Sifón, Cristóbal, Schubnell, Michael, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin Alan, Wollack, Edward J., and Zou, Hu
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We measure the growth of cosmic density fluctuations on large scales and across the redshift range $0.3
- Published
- 2024
35. Consensus in Multiagent Systems with lack of connection
- Author
-
Bentaibi, Mohamed, Caravenna, Laura, Gauthier, Jean-Paul A., and Rossi, Francesco
- Subjects
Mathematics - Optimization and Control ,Electrical Engineering and Systems Science - Systems and Control - Abstract
We consider multi-agent systems with cooperative interactions and study the convergence to consensus in the case of time-dependent lack of interaction. We prove a new condition ensuring consensus: we define a graph in which directed arrows correspond to connection functions that converge (in the weak sense) to some function with a positive integral on all intervals of the form $[t,+\infty)$. If the graph has a vertex reachable from all other indices, then the system converges to consensus. We show that this requirement generalizes some known sufficient conditions for convergence, such as the Persistent Excitation one. We also give a second new condition, transversal to the known ones: total connectedness of the undirected graph formed by the non-vanishing of limiting functions.
- Published
- 2024
36. A search using GEO600 for gravitational waves coincident with fast radio bursts from SGR 1935+2154
- Author
-
The LIGO Scientific Collaboration, the Virgo Collaboration, the KAGRA Collaboration, Abac, A. G., Abbott, R., Abouelfettouh, I., Acernese, F., Ackley, K., Adhicary, S., Adhikari, N., Adhikari, R. X., Adkins, V. K., Agarwal, D., Agathos, M., Abchouyeh, M. Aghaei, Aguiar, O. D., Aguilar, I., Aiello, L., Ain, A., Ajith, P., Akutsu, T., Albanesi, S., Alfaidi, R. A., Al-Jodah, A., Alléné, C., Allocca, A., Al-Shammari, S., Altin, P. A., Alvarez-Lopez, S., Amato, A., Amez-Droz, L., Amorosi, A., Amra, C., Ananyeva, A., Anderson, S. B., Anderson, W. G., Andia, M., Ando, M., Andrade, T., Andres, N., Andrés-Carcasona, M., Andrić, T., Anglin, J., Ansoldi, S., Antelis, J. M., Antier, S., Aoumi, M., Appavuravther, E. Z., Appert, S., Apple, S. K., Arai, K., Araya, A., Araya, M. C., Areeda, J. S., Argianas, L., Aritomi, N., Armato, F., Arnaud, N., Arogeti, M., Aronson, S. M., Ashton, G., Aso, Y., Assiduo, M., Melo, S. Assis de Souza, Aston, S. M., Astone, P., Attadio, F., Aubin, F., AultONeal, K., Avallone, G., Azrad, D., Babak, S., Badaracco, F., Badger, C., Bae, S., Bagnasco, S., Bagui, E., Baier, J. G., Baiotti, L., Bajpai, R., Baka, T., Ball, M., Ballardin, G., Ballmer, S. W., Banagiri, S., Banerjee, B., Bankar, D., Baral, P., Barayoga, J. C., Barish, B. C., Barker, D., Barneo, P., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartoletti, A. M., Barton, M. A., Bartos, I., Basak, S., Basalaev, A., Bassiri, R., Basti, A., Bates, D. E., Bawaj, M., Baxi, P., Bayley, J. C., Baylor, A. C., Baynard II, P. A., Bazzan, M., Bedakihale, V. M., Beirnaert, F., Bejger, M., Belardinelli, D., Bell, A. S., Benedetto, V., Benoit, W., Bentley, J. D., Yaala, M. Ben, Bera, S., Berbel, M., Bergamin, F., Berger, B. K., Bernuzzi, S., Beroiz, M., Bersanetti, D., Bertolini, A., Betzwieser, J., Beveridge, D., Bevins, N., Bhandare, R., Bhardwaj, U., Bhatt, R., Bhattacharjee, D., Bhaumik, S., Bhowmick, S., Bianchi, A., Bilenko, I. A., Billingsley, G., Binetti, A., Bini, S., Birnholtz, O., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M. -A., Blackburn, J. K., Blagg, L. A., Blair, C. D., Blair, D. G., Bobba, F., Bode, N., Boileau, G., Boldrini, M., Bolingbroke, G. N., Bolliand, A., Bonavena, L. D., Bondarescu, R., Bondu, F., Bonilla, E., Bonilla, M. S., Bonino, A., Bonnand, R., Booker, P., Borchers, A., Boschi, V., Bose, S., Bossilkov, V., Boudart, V., Boudon, A., Bozzi, A., Bradaschia, C., Brady, P. R., Braglia, M., Branch, A., Branchesi, M., Brandt, J., Braun, I., Breschi, M., Briant, T., Brillet, A., Brinkmann, M., Brockill, P., Brockmueller, E., Brooks, A. F., Brown, B. C., Brown, D. D., Brozzetti, M. L., Brunett, S., Bruno, G., Bruntz, R., Bryant, J., Bucci, F., Buchanan, J., Bulashenko, O., Bulik, T., Bulten, H. J., Buonanno, A., Burtnyk, K., Buscicchio, R., Buskulic, D., Buy, C., Byer, R. L., Davies, G. S. Cabourn, Cabras, G., Cabrita, R., Cáceres-Barbosa, V., Cadonati, L., Cagnoli, G., Cahillane, C., Bustillo, J. Calderón, Callister, T. A., Calloni, E., Camp, J. B., Canepa, M., Santoro, G. Caneva, Cannon, K. C., Cao, H., Capistran, L. A., Capocasa, E., Capote, E., Carapella, G., Carbognani, F., Carlassara, M., Carlin, J. B., Carpinelli, M., Carrillo, G., Carter, J. J., Carullo, G., Diaz, J. Casanueva, Casentini, C., Castro-Lucas, S. Y., Caudill, S., Cavaglià, M., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, W., Chakraborty, P., Subrahmanya, S. Chalathadka, Chan, J. C. L., Chan, M., Chandra, K., Chang, R. -J., Chao, S., Charlton, E. L., Charlton, P., Chassande-Mottin, E., Chatterjee, C., Chatterjee, Debarati, Chatterjee, Deep, Chaturvedi, M., Chaty, S., Chen, A., Chen, A. H. -Y., Chen, D., Chen, H., Chen, H. Y., Chen, J., Chen, K. H., Chen, Y., Chen, Yanbei, Chen, Yitian, Cheng, H. P., Chessa, P., Cheung, H. T., Cheung, S. Y., Chiadini, F., Chiarini, G., Chierici, R., Chincarini, A., Chiofalo, M. L., Chiummo, A., Chou, C., Choudhary, S., Christensen, N., Chua, S. S. Y., Chugh, P., Ciani, G., Ciecielag, P., Cieślar, M., Cifaldi, M., Ciolfi, R., Clara, F., Clark, J. A., Clarke, J., Clarke, T. A., Clearwater, P., Clesse, S., Coccia, E., Codazzo, E., Cohadon, P. -F., Colace, S., Colleoni, M., Collette, C. G., Collins, J., Colloms, S., Colombo, A., Colpi, M., Compton, C. M., Connolly, G., Conti, L., Corbitt, T. R., Cordero-Carrión, I., Corezzi, S., Cornish, N. J., Corsi, A., Cortese, S., Costa, C. A., Cottingham, R., Coughlin, M. W., Couineaux, A., Coulon, J. -P., Countryman, S. T., Coupechoux, J. -F., Couvares, P., Coward, D. M., Cowart, M. J., Coyne, R., Craig, K., Creed, R., Creighton, J. D. E., Creighton, T. D., Cremonese, P., Criswell, A. W., Crockett-Gray, J. C. G., Crook, S., Crouch, R., Csizmazia, J., Cudell, J. R., Cullen, T. J., Cumming, A., Cuoco, E., Cusinato, M., Dabadie, P., Canton, T. Dal, Dall'Osso, S., Pra, S. Dal, Dálya, G., D'Angelo, B., Danilishin, S., D'Antonio, S., Danzmann, K., Darroch, K. E., Dartez, L. P., Dasgupta, A., Datta, S., Dattilo, V., Daumas, A., Davari, N., Dave, I., Davenport, A., Davier, M., Davies, T. F., Davis, D., Davis, L., Davis, M. C., Davis, P. J., Dax, M., De Bolle, J., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., De Lillo, F., Dell'Aquila, D., Del Pozzo, W., De Marco, F., De Matteis, F., D'Emilio, V., Demos, N., Dent, T., Depasse, A., DePergola, N., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., De Simone, R., Dhani, A., Diab, R., Díaz, M. C., Di Cesare, M., Dideron, G., Didio, N. A., Dietrich, T., Di Fiore, L., Di Fronzo, C., Di Giovanni, M., Di Girolamo, T., Diksha, D., Di Michele, A., Ding, J., Di Pace, S., Di Palma, I., Di Renzo, F., Divyajyoti, Dmitriev, A., Doctor, Z., Dohmen, E., Doleva, P. P., Dominguez, D., D'Onofrio, L., Donovan, F., Dooley, K. L., Dooney, T., Doravari, S., Dorosh, O., Drago, M., Driggers, J. C., Ducoin, J. -G., Dunn, L., Dupletsa, U., D'Urso, D., Duval, H., Duverne, P. -A., Dwyer, S. E., Eassa, C., Ebersold, M., Eckhardt, T., Eddolls, G., Edelman, B., Edo, T. B., Edy, O., Effler, A., Eichholz, J., Einsle, H., Eisenmann, M., Eisenstein, R. A., Ejlli, A., Eleveld, R. M., Emma, M., Endo, K., Engl, A. J., Enloe, E., Errico, L., Essick, R. C., Estellés, H., Estevez, D., Etzel, T., Evans, M., Evstafyeva, T., Ewing, B. E., Ezquiaga, J. M., Fabrizi, F., Faedi, F., Fafone, V., Fairhurst, S., Farah, A. M., Farr, B., Farr, W. M., Favaro, G., Favata, M., Fays, M., Fazio, M., Feicht, J., Fejer, M. M., Felicetti, R. ., Fenyvesi, E., Ferguson, D. L., Ferraiuolo, S., Ferrante, I., Ferreira, T. A., Fidecaro, F., Figura, P., Fiori, A., Fiori, I., Fishbach, M., Fisher, R. P., Fittipaldi, R., Fiumara, V., Flaminio, R., Fleischer, S. M., Fleming, L. S., Floden, E., Foley, E. M., Fong, H., Font, J. A., Fornal, B., Forsyth, P. W. F., Franceschetti, K., Franchini, N., Frasca, S., Frasconi, F., Mascioli, A. Frattale, Frei, Z., Freise, A., Freitas, O., Frey, R., Frischhertz, W., Fritschel, P., Frolov, V. V., Fronzé, G. G., Fuentes-Garcia, M., Fujii, S., Fujimori, T., Fulda, P., Fyffe, M., Gadre, B., Gair, J. R., Galaudage, S., Galdi, V., Gallagher, H., Gallardo, S., Gallego, B., Gamba, R., Gamboa, A., Ganapathy, D., Ganguly, A., Garaventa, B., García-Bellido, J., Núñez, C. García, García-Quirós, C., Gardner, J. W., Gardner, K. A., Gargiulo, J., Garron, A., Garufi, F., Gasbarra, C., Gateley, B., Gayathri, V., Gemme, G., Gennai, A., Gennari, V., George, J., George, R., Gerberding, O., Gergely, L., Ghonge, S., Ghosh, Archisman, Ghosh, Sayantan, Ghosh, Shaon, Ghosh, Shrobana, Ghosh, Suprovo, Ghosh, Tathagata, Giacoppo, L., Giaime, J. A., Giardina, K. D., Gibson, D. R., Gibson, D. T., Gier, C., Giri, P., Gissi, F., Gkaitatzis, S., Glanzer, J., Glotin, F., Godfrey, J., Godwin, P., Goebbels, N. L., Goetz, E., Golomb, J., Lopez, S. Gomez, Goncharov, B., Gong, Y., González, G., Goodarzi, P., Goode, S., Goodwin-Jones, A. W., Gosselin, M., Göttel, A. S., Gouaty, R., Gould, D. W., Govorkova, K., Goyal, S., Grace, B., Grado, A., Graham, V., Granados, A. E., Granata, M., Granata, V., Gras, S., Grassia, P., Gray, A., Gray, C., Gray, R., Greco, G., Green, A. C., Green, S. M., Green, S. R., Gretarsson, A. M., Gretarsson, E. M., Griffith, D., Griffiths, W. L., Griggs, H. L., Grignani, G., Grimaldi, A., Grimaud, C., Grote, H., Guerra, D., Guetta, D., Guidi, G. M., Guimaraes, A. R., Gulati, H. K., Gulminelli, F., Gunny, A. M., Guo, H., Guo, W., Guo, Y., Gupta, Anchal, Gupta, Anuradha, Gupta, Ish, Gupta, N. C., Gupta, P., Gupta, S. K., Gupta, T., Gupte, N., Gurs, J., Gutierrez, N., Guzman, F., H, H. -Y., Haba, D., Haberland, M., Haino, S., Hall, E. D., Hamilton, E. Z., Hammond, G., Han, W. -B., Haney, M., Hanks, J., Hanna, C., Hannam, M. D., Hannuksela, O. A., Hanselman, A. G., Hansen, H., Hanson, J., Harada, R., Hardison, A. R., Haris, K., Harmark, T., Harms, J., Harry, G. M., Harry, I. W., Hart, J., Haskell, B., Haster, C. -J., Hathaway, J. S., Haughian, K., Hayakawa, H., Hayama, K., Hayes, R., Heffernan, A., Heidmann, A., Heintze, M. C., Heinze, J., Heinzel, J., Heitmann, H., Hellman, F., Hello, P., Helmling-Cornell, A. F., Hemming, G., Henderson-Sapir, O., Hendry, M., Heng, I. S., Hennes, E., Henshaw, C., Hertog, T., Heurs, M., Hewitt, A. L., Heyns, J., Higginbotham, S., Hild, S., Hill, S., Himemoto, Y., Hirata, N., Hirose, C., Ho, W. C. G., Hoang, S., Hochheim, S., Hofman, D., Holland, N. A., Holley-Bockelmann, K., Holmes, Z. J., Holz, D. E., Honet, L., Hong, C., Hornung, J., Hoshino, S., Hough, J., Hourihane, S., Howell, E. J., Hoy, C. G., Hrishikesh, C. A., Hsieh, H. -F., Hsiung, C., Hsu, H. C., Hsu, W. -F., Hu, P., Hu, Q., Huang, H. Y., Huang, Y. -J., Huddart, A. D., Hughey, B., Hui, D. C. Y., Hui, V., Husa, S., Huxford, R., Huynh-Dinh, T., Iampieri, L., Iandolo, G. A., Ianni, M., Iess, A., Imafuku, H., Inayoshi, K., Inoue, Y., Iorio, G., Iqbal, M. H., Irwin, J., Ishikawa, R., Isi, M., Ismail, M. A., Itoh, Y., Iwanaga, H., Iwaya, M., Iyer, B. R., JaberianHamedan, V., Jacquet, C., Jacquet, P. -E., Jadhav, S. J., Jadhav, S. P., Jain, T., James, A. L., James, P. A., Jamshidi, R., Janquart, J., Janssens, K., Janthalur, N. N., Jaraba, S., Jaranowski, P., Jaume, R., Javed, W., Jennings, A., Jia, W., Jiang, J., Kubisz, J., Johanson, C., Johns, G. R., Johnson, N. A., Johnston, M. C., Johnston, R., Johny, N., Jones, D. H., Jones, D. I., Jones, R., Jose, S., Joshi, P., Ju, L., Jung, K., Junker, J., Juste, V., Kajita, T., Kaku, I., Kalaghatgi, C., Kalogera, V., Kamiizumi, M., Kanda, N., Kandhasamy, S., Kang, G., Kanner, J. B., Kapadia, S. J., Kapasi, D. P., Karat, S., Karathanasis, C., Kashyap, R., Kasprzack, M., Kastaun, W., Kato, T., Katsavounidis, E., Katzman, W., Kaushik, R., Kawabe, K., Kawamoto, R., Kazemi, A., Keitel, D., Kelley-Derzon, J., Kennington, J., Kesharwani, R., Key, J. S., Khadela, R., Khadka, S., Khalili, F. Y., Khan, F., Khan, I., Khanam, T., Khursheed, M., Khusid, N. M., Kiendrebeogo, W., Kijbunchoo, N., Kim, C., Kim, J. C., Kim, K., Kim, M. H., Kim, S., Kim, Y. -M., Kimball, C., Kinley-Hanlon, M., Kinnear, M., Kissel, J. S., Klimenko, S., Knee, A. M., Knust, N., Kobayashi, K., Koch, P., Koehlenbeck, S. M., Koekoek, G., Kohri, K., Kokeyama, K., Koley, S., Kolitsidou, P., Kolstein, M., Komori, K., Kong, A. K. H., Kontos, A., Korobko, M., Kossak, R. V., Kou, X., Koushik, A., Kouvatsos, N., Kovalam, M., Kozak, D. B., Kranzhoff, S. L., Kringel, V., Krishnendu, N. V., Królak, A., Kruska, K., Kuehn, G., Kuijer, P., Kulkarni, S., Ramamohan, A. Kulur, Kumar, A., Kumar, Praveen, Kumar, Prayush, Kumar, Rahul, Kumar, Rakesh, Kume, J., Kuns, K., Kuntimaddi, N., Kuroyanagi, S., Kurth, N. J., Kuwahara, S., Kwak, K., Kwan, K., Kwok, J., Lacaille, G., Lagabbe, P., Laghi, D., Lai, S., Laity, A. H., Lakkis, M. H., Lalande, E., Lalleman, M., Lalremruati, P. C., Landry, M., Lane, B. B., Lang, R. N., Lange, J., Lantz, B., La Rana, A., La Rosa, I., Lartaux-Vollard, A., Lasky, P. D., Lawrence, J., Lawrence, M. N., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Lecoeuche, Y. K., Lee, H. M., Lee, H. W., Lee, K., Lee, R. -K., Lee, R., Lee, S., Lee, Y., Legred, I. N., Lehmann, J., Lehner, L., Jean, M. Le, Lemaître, A., Lenti, M., Leonardi, M., Lequime, M., Leroy, N., Lesovsky, M., Letendre, N., Lethuillier, M., Levin, S. E., Levin, Y., Leyde, K., Li, A. K. Y., Li, K. L., Li, T. G. F., Li, X., Li, Z., Lihos, A., Lin, C-Y., Lin, C. -Y., Lin, E. T., Lin, F., Lin, H., Lin, L. C. -C., Lin, Y. -C., Linde, F., Linker, S. D., Littenberg, T. B., Liu, A., Liu, G. C., Liu, Jian, Villarreal, F. Llamas, Llobera-Querol, J., Lo, R. K. L., Locquet, J. -P., London, L. T., Longo, A., Lopez, D., Portilla, M. Lopez, Lorenzini, M., Lorenzo-Medina, A., Loriette, V., Lormand, M., Losurdo, G., Lott IV, T. P., Lough, J. D., Loughlin, H. A., Lousto, C. O., Lowry, M. J., Lu, N., Lück, H., Lumaca, D., Lundgren, A. P., Lussier, A. W., Ma, L. -T., Ma, S., Ma'arif, M., Macas, R., Macedo, A., MacInnis, M., Maciy, R. R., Macleod, D. M., MacMillan, I. A. O., Macquet, A., Macri, D., Maeda, K., Maenaut, S., Hernandez, I. Magaña, Magare, S. S., Magazzù, C., Magee, R. M., Maggio, E., Maggiore, R., Magnozzi, M., Mahesh, M., Mahesh, S., Maini, M., Majhi, S., Majorana, E., Makarem, C. N., Makelele, E., Malaquias-Reis, J. A., Mali, U., Maliakal, S., Malik, A., Man, N., Mandic, V., Mangano, V., Mannix, B., Mansell, G. L., Mansingh, G., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Pina, D. Marín, Marion, F., Márka, S., Márka, Z., Markosyan, A. S., Markowitz, A., Maros, E., Marsat, S., Martelli, F., Martin, I. W., Martin, R. M., Martinez, B. B., Martinez, M., Martinez, V., Martini, A., Martinovic, K., Martins, J. C., Martynov, D. V., Marx, E. J., Massaro, L., Masserot, A., Masso-Reid, M., Mastrodicasa, M., Mastrogiovanni, S., Matcovich, T., Matiushechkina, M., Matsuyama, M., Mavalvala, N., Maxwell, N., McCarrol, G., McCarthy, R., McCormick, S., McCuller, L., McEachin, S., McElhenny, C., McGhee, G. I., McGinn, J., McGowan, K. B. M., McIver, J., McLeod, A., McRae, T., Meacher, D., Meijer, Q., Melatos, A., Mellaerts, S., Menendez-Vazquez, A., Menoni, C. S., Mera, F., Mercer, R. A., Mereni, L., Merfeld, K., Merilh, E. L., Mérou, J. R., Merritt, J. D., Merzougui, M., Messenger, C., Messick, C., Meyer-Conde, M., Meylahn, F., Mhaske, A., Miani, A., Miao, H., Michaloliakos, I., Michel, C., Michimura, Y., Middleton, H., Miller, A. L., Miller, S., Millhouse, M., Milotti, E., Milotti, V., Minenkov, Y., Mio, N., Mir, Ll. M., Mirasola, L., Miravet-Tenés, M., Miritescu, C. -A., Mishra, A. K., Mishra, A., Mishra, C., Mishra, T., Mitchell, A. L., Mitchell, J. G., Mitra, S., Mitrofanov, V. P., Mittleman, R., Miyakawa, O., Miyamoto, S., Miyoki, S., Mo, G., Mobilia, L., Mohapatra, S. R. P., Mohite, S. R., Molina-Ruiz, M., Mondal, C., Mondin, M., Montani, M., Moore, C. J., Moraru, D., More, A., More, S., Moreno, G., Morgan, C., Morisaki, S., Moriwaki, Y., Morras, G., Moscatello, A., Mourier, P., Mours, B., Mow-Lowry, C. M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, Samanwaya, Mukherjee, Soma, Mukherjee, Subroto, Mukherjee, Suvodip, Mukund, N., Mullavey, A., Munch, J., Mundi, J., Mungioli, C. L., Oberg, W. R. Munn, Murakami, Y., Murakoshi, M., Murray, P. G., Muusse, S., Nabari, D., Nadji, S. L., Nagar, A., Nagarajan, N., Nagler, K. N., Nakagaki, K., Nakamura, K., Nakano, H., Nakano, M., Nandi, D., Napolano, V., Narayan, P., Nardecchia, I., Narola, H., Naticchioni, L., Nayak, R. K., Neilson, J., Nelson, A., Nelson, T. J. N., Nery, M., Neunzert, A., Ng, S., Quynh, L. Nguyen, Nichols, S. A., Nielsen, A. B., Nieradka, G., Niko, A., Nishino, Y., Nishizawa, A., Nissanke, S., Nitoglia, E., Niu, W., Nocera, F., Norman, M., North, C., Novak, J., Siles, J. F. Nuño, Nuttall, L. K., Obayashi, K., Oberling, J., O'Dell, J., Oertel, M., Offermans, A., Oganesyan, G., Oh, J. J., Oh, K., O'Hanlon, T., Ohashi, M., Ohkawa, M., Ohme, F., Oliveira, A. S., Oliveri, R., O'Neal, B., Oohara, K., O'Reilly, B., Ormsby, N. D., Orselli, M., O'Shaughnessy, R., O'Shea, S., Oshima, Y., Oshino, S., Ossokine, S., Osthelder, C., Ota, I., Ottaway, D. J., Ouzriat, A., Overmier, H., Owen, B. J., Pace, A. E., Pagano, R., Page, M. A., Pai, A., Pal, A., Pal, S., Palaia, M. A., Pálfi, M., Palma, P. P., Palomba, C., Palud, P., Pan, H., Pan, J., Pan, K. C., Panai, R., Panda, P. K., Pandey, S., Panebianco, L., Pang, P. T. H., Pannarale, F., Pannone, K. A., Pant, B. C., Panther, F. H., Paoletti, F., Paolone, A., Papalexakis, E. E., Papalini, L., Papigkiotis, G., Paquis, A., Parisi, A., Park, B. -J., Park, J., Parker, W., Pascale, G., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passenger, L., Passuello, D., Patane, O., Pathak, D., Pathak, M., Patra, A., Patricelli, B., Patron, A. S., Paul, K., Paul, S., Payne, E., Pearce, T., Pedraza, M., Pegna, R., Pele, A., Arellano, F. E. Peña, Penn, S., Penuliar, M. D., Perego, A., Pereira, Z., Perez, J. J., Périgois, C., Perna, G., Perreca, A., Perret, J., Perriès, S., Perry, J. W., Pesios, D., Petracca, S., Petrillo, C., Pfeiffer, H. P., Pham, H., Pham, K. A., Phukon, K. S., Phurailatpam, H., Piarulli, M., Piccari, L., Piccinni, O. J., Pichot, M., Piendibene, M., Piergiovanni, F., Pierini, L., Pierra, G., Pierro, V., Pietrzak, M., Pillas, M., Pilo, F., Pinard, L., Pinto, I. M., Pinto, M., Piotrzkowski, B. J., Pirello, M., Pitkin, M. D., Placidi, A., Placidi, E., Planas, M. L., Plastino, W., Poggiani, R., Polini, E., Pompili, L., Poon, J., Porcelli, E., Porter, E. K., Posnansky, C., Poulton, R., Powell, J., Pracchia, M., Pradhan, B. K., Pradier, T., Prajapati, A. K., Prasai, K., Prasanna, R., Prasia, P., Pratten, G., Principe, G., Principe, M., Prodi, G. A., Prokhorov, L., Prosposito, P., Puecher, A., Pullin, J., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Qin, J., Quéméner, G., Quetschke, V., Quigley, C., Quinonez, P. J., Quitzow-James, R., Raab, F. J., Raabith, S. S., Raaijmakers, G., Raja, S., Rajan, C., Rajbhandari, B., Ramirez, K. E., Vidal, F. A. Ramis, Ramos-Buades, A., Rana, D., Ranjan, S., Ransom, K., Rapagnani, P., Ratto, B., Rawat, S., Ray, A., Raymond, V., Razzano, M., Read, J., Payo, M. Recaman, Regimbau, T., Rei, L., Reid, S., Reitze, D. H., Relton, P., Renzini, A. I., Rettegno, P., Revenu, B., Reyes, R., Rezaei, A. S., Ricci, F., Ricci, M., Ricciardone, A., Richardson, J. W., Richardson, M., Rijal, A., Riles, K., Riley, H. K., Rinaldi, S., Rittmeyer, J., Robertson, C., Robinet, F., Robinson, M., Rocchi, A., Rolland, L., Rollins, J. G., Romano, A. E., Romano, R., Romero, A., Romero-Shaw, I. M., Romie, J. H., Ronchini, S., Roocke, T. J., Rosa, L., Rosauer, T. J., Rose, C. A., Rosińska, D., Ross, M. P., Rossello, M., Rowan, S., Roy, S. K., Roy, S., Rozza, D., Ruggi, P., Ruhama, N., Morales, E. Ruiz, Ruiz-Rocha, K., Sachdev, S., Sadecki, T., Sadiq, J., Saffarieh, P., Sah, M. R., Saha, S. S., Saha, S., Sainrat, T., Menon, S. Sajith, Sakai, K., Sakellariadou, M., Sakon, S., Salafia, O. S., Salces-Carcoba, F., Salconi, L., Saleem, M., Salemi, F., Sallé, M., Salvador, S., Sanchez, A., Sanchez, E. J., Sanchez, J. H., Sanchez, L. E., Sanchis-Gual, N., Sanders, J. R., Sänger, E. M., Santoliquido, F., Saravanan, T. R., Sarin, N., Sasaoka, S., Sasli, A., Sassi, P., Sassolas, B., Satari, H., Sato, R., Sato, Y., Sauter, O., Savage, R. L., Sawada, T., Sawant, H. L., Sayah, S., Scacco, V., Schaetzl, D., Scheel, M., Schiebelbein, A., Schiworski, M. G., Schmidt, P., Schmidt, S., Schnabel, R., Schneewind, M., Schofield, R. M. S., Schouteden, K., Schulte, B. W., Schutz, B. F., Schwartz, E., Scialpi, M., Scott, J., Scott, S. M., Seetharamu, T. C., Seglar-Arroyo, M., Sekiguchi, Y., Sellers, D., Sengupta, A. S., Sentenac, D., Seo, E. G., Seo, J. W., Sequino, V., Serra, M., Servignat, G., Sevrin, A., Shaffer, T., Shah, U. S., Shaikh, M. A., Shao, L., Sharma, A. K., Sharma, P., Sharma-Chaudhary, S., Shaw, M. R., Shawhan, P., Shcheblanov, N. S., Sheridan, E., Shikano, Y., Shikauchi, M., Shimode, K., Shinkai, H., Shiota, J., Shoemaker, D. H., Shoemaker, D. M., Short, R. W., ShyamSundar, S., Sider, A., Siegel, H., Sieniawska, M., Sigg, D., Silenzi, L., Simmonds, M., Singer, L. P., Singh, A., Singh, D., Singh, M. K., Singh, S., Singha, A., Sintes, A. M., Sipala, V., Skliris, V., Slagmolen, B. J. J., Slaven-Blair, T. J., Smetana, J., Smith, J. R., Smith, L., Smith, R. J. E., Smith, W. J., Soldateschi, J., Somiya, K., Song, I., Soni, K., Soni, S., Sordini, V., Sorrentino, F., Sorrentino, N., Sotani, H., Soulard, R., Southgate, A., Spagnuolo, V., Spencer, A. P., Spera, M., Spinicelli, P., Spoon, J. B., Sprague, C. A., Srivastava, A. K., Stachurski, F., Steer, D. A., Steinlechner, J., Steinlechner, S., Stergioulas, N., Stevens, P., StPierre, M., Stratta, G., Strong, M. D., Strunk, A., Sturani, R., Stuver, A. L., Suchenek, M., Sudhagar, S., Sueltmann, N., Suleiman, L., Sullivan, K. D., Sun, L., Sunil, S., Suresh, J., Sutton, P. J., Suzuki, T., Suzuki, Y., Swinkels, B. L., Syx, A., Szczepańczyk, M. J., Szewczyk, P., Tacca, M., Tagoshi, H., Tait, S. C., Takahashi, H., Takahashi, R., Takamori, A., Takase, T., Takatani, K., Takeda, H., Takeshita, K., Talbot, C., Tamaki, M., Tamanini, N., Tanabe, D., Tanaka, K., Tanaka, S. J., Tanaka, T., Tang, D., Tanioka, S., Tanner, D. B., Tao, L., Tapia, R. D., Martín, E. N. Tapia San, Tarafder, R., Taranto, C., Taruya, A., Tasson, J. D., Teloi, M., Tenorio, R., Themann, H., Theodoropoulos, A., Thirugnanasambandam, M. P., Thomas, L. M., Thomas, M., Thomas, P., Thompson, J. E., Thondapu, S. R., Thorne, K. A., Thrane, E., Tissino, J., Tiwari, A., Tiwari, P., Tiwari, S., Tiwari, V., Todd, M. R., Toivonen, A. M., Toland, K., Tolley, A. E., Tomaru, T., Tomita, K., Tomura, T., Tong-Yu, C., Toriyama, A., Toropov, N., Torres-Forné, A., Torrie, C. I., Toscani, M., Melo, I. Tosta e, Tournefier, E., Trapananti, A., Travasso, F., Traylor, G., Trevor, M., Tringali, M. C., Tripathee, A., Troian, G., Troiano, L., Trovato, A., Trozzo, L., Trudeau, R. J., Tsang, T. T. L., Tso, R., Tsuchida, S., Tsukada, L., Tsutsui, T., Turbang, K., Turconi, M., Turski, C., Ubach, H., Uchiyama, T., Udall, R. P., Uehara, T., Uematsu, M., Ueno, K., Ueno, S., Undheim, V., Ushiba, T., Vacatello, M., Vahlbruch, H., Vaidya, N., Vajente, G., Vajpeyi, A., Valdes, G., Valencia, J., Valentini, M., Vallejo-Peña, S. A., Vallero, S., Valsan, V., van Bakel, N., van Beuzekom, M., van Dael, M., Brand, J. F. J. van den, Broeck, C. Van Den, Vander-Hyde, D. C., van der Sluys, M., Van de Walle, A., van Dongen, J., Vandra, K., van Haevermaet, H., van Heijningen, J. V., Van Hove, P., VanKeuren, M., Vanosky, J., van Putten, M. H. P. M., van Ranst, Z., van Remortel, N., Vardaro, M., Vargas, A. F., Varghese, J. J., Varma, V., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P. J., Venikoudis, S., Venneberg, J., Verdier, P., Verkindt, D., Verma, B., Verma, P., Verma, Y., Vermeulen, S. M., Vetrano, F., Veutro, A., Vibhute, A. M., Viceré, A., Vidyant, S., Viets, A. D., Vijaykumar, A., Vilkha, A., Villa-Ortega, V., Vincent, E. T., Vinet, J. -Y., Viret, S., Virtuoso, A., Vitale, S., Vives, A., Vocca, H., Voigt, D., von Reis, E. R. G., von Wrangel, J. S. A., Vyatchanin, S. P., Wade, L. E., Wade, M., Wagner, K. J., Wajid, A., Walker, M., Wallace, G. S., Wallace, L., Wang, H., Wang, J. Z., Wang, W. H., Wang, Z., Waratkar, G., Warner, J., Was, M., Washimi, T., Washington, N. Y., Watarai, D., Wayt, K. E., Weaver, B. R., Weaver, B., Weaving, C. R., Webster, S. A., Weinert, M., Weinstein, A. J., Weiss, R., Wellmann, F., Wen, L., Weßels, P., Wette, K., Whelan, J. T., Whiting, B. F., Whittle, C., Wildberger, J. B., Wilk, O. S., Wilken, D., Wilkin, A. T., Willadsen, D. J., Willetts, K., Williams, D., Williams, M. J., Williams, N. S., Willis, J. L., Willke, B., Wils, M., Winterflood, J., Wipf, C. C., Woan, G., Woehler, J., Wofford, J. K., Wolfe, N. E., Wong, H. T., Wong, H. W. Y., Wong, I. C. F., Wright, J. L., Wright, M., Wu, C., Wu, D. S., Wu, H., Wuchner, E., Wysocki, D. M., Xu, V. A., Xu, Y., Yadav, N., Yamamoto, H., Yamamoto, K., Yamamoto, T. S., Yamamoto, T., Yamamura, S., Yamazaki, R., Yan, S., Yan, T., Yang, F. W., Yang, F., Yang, K. Z., Yang, Y., Yarbrough, Z., Yasui, H., Yeh, S. -W., Yelikar, A. B., Yin, X., Yokoyama, J., Yokozawa, T., Yoo, J., Yu, H., Yuan, S., Yuzurihara, H., Zadrożny, A., Zanolin, M., Zeeshan, M., Zelenova, T., Zendri, J. -P., Zeoli, M., Zerrad, M., Zevin, M., Zhang, A. C., Zhang, L., Zhang, R., Zhang, T., Zhang, Y., Zhao, C., Zhao, Yue, Zhao, Yuhang, Zheng, Y., Zhong, H., Zhou, R., Zhu, X. -J., Zhu, Z. -H., Zucker, M. E., and Zweizig, J.
- Subjects
Astrophysics - High Energy Astrophysical Phenomena - Abstract
The magnetar SGR 1935+2154 is the only known Galactic source of fast radio bursts (FRBs). FRBs from SGR 1935+2154 were first detected by CHIME/FRB and STARE2 in 2020 April, after the conclusion of the LIGO, Virgo, and KAGRA Collaborations' O3 observing run. Here we analyze four periods of gravitational wave (GW) data from the GEO600 detector coincident with four periods of FRB activity detected by CHIME/FRB, as well as X-ray glitches and X-ray bursts detected by NICER and NuSTAR close to the time of one of the FRBs. We do not detect any significant GW emission from any of the events. Instead, using a short-duration GW search (for bursts $\leq$ 1 s) we derive 50\% (90\%) upper limits of $10^{48}$ ($10^{49}$) erg for GWs at 300 Hz and $10^{49}$ ($10^{50}$) erg at 2 kHz, and constrain the GW-to-radio energy ratio to $\leq 10^{14} - 10^{16}$. We also derive upper limits from a long-duration search for bursts with durations between 1 and 10 s. These represent the strictest upper limits on concurrent GW emission from FRBs., Comment: 15 pages of text including references, 4 figures, 5 tables
- Published
- 2024
37. Exploring the interaction between the MW and LMC with a large sample of blue horizontal branch stars from the DESI survey
- Author
-
Byström, Amanda, Koposov, Sergey E., Lilleengen, Sophia, Li, Ting S., Bell, Eric, Silva, Leandro Beraldo e, Carrillo, Andreia, Chandra, Vedant, Gnedin, Oleg Y., Han, Jiwon Jesse, Medina, Gustavo E., Najita, Joan, Riley, Alexander H., Thomas, Guillaume, Valluri, Monica, Aguilar, Jessica N., Ahlen, Steven, Prieto, Carlos Allende, Brooks, David, Claybaugh, Todd, Cole, Shaun, Dawson, Kyle, de la Macorra, Axel, Font-Ribera, Andreu, Forero-Romero, Jaime E., Gaztañaga, Enrique, Gontcho, Satya Gontcho A, Kremin, Anthony, Lambert, Andrew, Landriau, Martin, Guillou, Laurent Le, Levi, Michael E., Meisner, Aaron, Miquel, Ramon, Moustakas, John, Prada, Francisco, Pérez-Ràfols, Ignasi, Rossi, Graziano, Sanchez, Eusebio, Schlegel, David, Schubnell, Michael, Sprayberry, David, Tarlé, Gregory, Weaver, Benjamin A., and Zou, Hu
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
The Large Magellanic Cloud (LMC) is a Milky Way (MW) satellite that is massive enough to gravitationally attract the MW disc and inner halo, causing significant motion of the inner MW with respect to the outer halo. In this work, we probe this interaction by constructing a sample of 9,866 blue horizontal branch (BHB) stars with radial velocities from the DESI spectroscopic survey out to 120 kpc from the Galactic centre. This is the largest spectroscopic set of BHB stars in the literature to date, and it contains four times more stars with Galactocentric distances beyond 50 kpc than previous BHB catalogues. Using the DESI BHB sample combined with SDSS BHBs, we measure the bulk radial velocity of stars in the outer halo and observe that the velocity in the Southern Galactic hemisphere is different by 3.7$\sigma$ from the North. Modelling the projected velocity field shows that its dipole component is directed at a point 22 degrees away from the LMC along its orbit, which we interpret as the travel direction of the inner MW. The velocity field includes a monopole term that is -24 km/s, which we refer to as compression velocity. This velocity is significantly larger than predicted by the current models of the MW and LMC interaction. This work uses DESI data from its first two years of observations, but we expect that with upcoming DESI data releases, the sample of BHB stars will increase and our ability to measure the MW-LMC interaction will improve significantly., Comment: 22 pages, 19 figures. Submitted to MNRAS
- Published
- 2024
38. Adaptive AI-Driven Material Synthesis: Towards Autonomous 2D Materials Growth
- Author
-
Sabattini, Leonardo, Coriolano, Annalisa, Casert, Corneel, Forti, Stiven, Barnard, Edward S., Beltram, Fabio, Pontil, Massimiliano, Whitelam, Stephen, Coletti, Camilla, and Rossi, Antonio
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Materials Science ,Computer Science - Machine Learning - Abstract
Two-dimensional (2D) materials are poised to revolutionize current solid-state technology with their extraordinary properties. Yet, the primary challenge remains their scalable production. While there have been significant advancements, much of the scientific progress has depended on the exfoliation of materials, a method that poses severe challenges for large-scale applications. With the advent of artificial intelligence (AI) in materials science, innovative synthesis methodologies are now on the horizon. This study explores the forefront of autonomous materials synthesis using an artificial neural network (ANN) trained by evolutionary methods, focusing on the efficient production of graphene. Our approach demonstrates that a neural network can iteratively and autonomously learn a time-dependent protocol for the efficient growth of graphene, without requiring pretraining on what constitutes an effective recipe. Evaluation criteria are based on the proximity of the Raman signature to that of monolayer graphene: higher scores are granted to outcomes whose spectrum more closely resembles that of an ideal continuous monolayer structure. This feedback mechanism allows for iterative refinement of the ANN's time-dependent synthesis protocols, progressively improving sample quality. Through the advancement and application of AI methodologies, this work makes a substantial contribution to the field of materials engineering, fostering a new era of innovation and efficiency in the synthesis process.
- Published
- 2024
39. High-redshift LBG selection from broadband and wide photometric surveys using a Random Forest algorithm
- Author
-
Payerne, C., Doumerg, W. d'Assignies, Yèche, C., Ruhlmann-Kleider, V., Raichoor, A., Lang, D., Aguilar, J. N., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., de la Macorra, A., Dey, B., Doel, P., Font-Ribera, A., Forero-Romero, J. E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Juneau, S., Lambert, A., Landriau, M., Guillou, L. Le, Levi, M. E., Magneville, C., Manera, M., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Palanque-Delabrouille, N., Percival, W., Prada, F., Pérez-Ràfols, I., Rossi, G., Sanchez, E., Schlegel, D., Schubnell, M., Sprayberry, D., Tarlé, G., Weaver, B. A., and Zou, H.
- Subjects
Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
In this paper, we investigate the possibility of selecting high-redshift Lyman-Break Galaxies (LBG) using current and future broadband wide photometric surveys, such as UNIONS or the Vera C. Rubin LSST, using a Random Forest algorithm. This work is conducted in the context of future large-scale structure spectroscopic surveys like DESI-II, the next phase of the Dark Energy Spectroscopic Instrument (DESI), which will start around 2029. We use deep imaging data from HSC and CLAUDS on the COSMOS and XMM-LSS fields. To predict the selection performance of LBGs with image quality similar to UNIONS, we degrade the $u, g, r, i$ and $z$ bands to UNIONS depth. The Random Forest algorithm is trained with the $u,g,r,i$ and $z$ bands to classify LBGs in the $2.5 < z < 3.5$ range. We find that fixing a target density budget of $1,100$ deg$^{-2}$, the Random Forest approach gives a density of $z>2$ targets of $873$ deg$^{-2}$, and a density of $493$ deg$^{-2}$ of confirmed LBGs after spectroscopic confirmation with DESI. This UNIONS-like selection was tested in a dedicated spectroscopic observation campaign of 1,000 targets with DESI on the COSMOS field, providing a safe spectroscopic sample with a mean redshift of 3. This sample is used to derive forecasts for DESI-II, assuming a sky coverage of 5,000 deg$^2$. We predict uncertainties on Alcock-Paczynski parameters $\alpha_\perp$ and $\alpha_{\parallel}$ to be 0.7$\%$ and 1$\%$ for $2.6
- Published
- 2024
40. DESI Emission Line Galaxies: Unveiling the Diversity of [OII] Profiles and its Links to Star Formation and Morphology
- Author
-
Lan, Ting-Wen, Prochaska, J. Xavier, Moustakas, John, Siudek, Małgorzata, Aguilar, J., Ahlen, S., Bianchi, D., Brooks, D., Claybaugh, T., Cole, S., Dawson, K., de la Macorra, A., Doel, P., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Guy, J., Honscheid, K., Kehoe, R., Kisner, T., Lambert, A., Landriau, M., Meisner, A., Miquel, R., Muñoz-Gutiérrez, A., Newman, J. A., Poppett, C., Prada, F., Rossi, G., Sanchez, E., Schubnell, M., Seo, H., Sprayberry, D., Tarlé, G., Weaver, B. A., and Zou, H.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
We study the [OII] profiles of emission line galaxies (ELGs) from the Early Data Release of the Dark Energy Spectroscopic Instrument (DESI). To this end, we decompose and classify the shape of [OII] profiles with the first two eigenspectra derived from Principal Component Analysis. Our results show that DESI ELGs have diverse line profiles which can be categorized into three main types: (1) narrow lines with a median width of ~50 km/s, (2) broad lines with a median width of ~80 km/s, and (3) two-redshift systems with a median velocity separation of ~150 km/s, i.e., double-peak galaxies. To investigate the connections between the line profiles and galaxy properties, we utilize the information from the COSMOS dataset and compare the properties of ELGs, including star-formation rate (SFR) and galaxy morphology, with the average properties of reference star-forming galaxies with similar stellar mass, sizes, and redshifts. Our findings show that on average, DESI ELGs have higher SFR and more asymmetrical/disturbed morphology than the reference galaxies. Moreover, we uncover a relationship between the line profiles, the excess SFR and the excess asymmetry parameter, showing that DESI ELGs with broader [OII] line profiles have more disturbed morphology and higher SFR than the reference star-forming galaxies. Finally, we discuss possible physical mechanisms giving rise to the observed relationship and the implications of our findings on the galaxy clustering measurements, including the halo occupation distribution modeling of DESI ELGs and the observed excess velocity dispersion of the satellite ELGs., Comment: 24 pages, 13 figures, submitted to ApJ
- Published
- 2024
41. Epitaxial aluminum layer on antimonide heterostructures for exploring Josephson junction effects
- Author
-
Pan, W., Sapkota, K. R., Lu, P., Muhowski, A. J., Martinez, W. M., Sovinec, C. L. H., Reyna, R., Mendez, J. P., Mamaluy, D., Hawkins, S. D., Klem, J. F., Smith, L. S. L., Temple, D. A., Enderson, Z., Jiang, Z., and Rossi, E.
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed Matter - Superconductivity - Abstract
In this article, we present results of our recent work of epitaxially-grown aluminum (epi-Al) on antimonide heterostructures, where the epi-Al thin film is grown at either room temperature or below zero $^o$C. A sharp superconducting transition at $T \sim 1.3$ K is observed in these epi-Al films, and the critical magnetic field follows the BCS (Bardeen-Cooper-Schrieffer) model. We further show that supercurrent states are achieved in Josephson junctions fabricated in the epi-Al/antimonide heterostructures with mobility $\mu \sim 1.0 \times 10^6$ cm$^2$/Vs, making these heterostructures a promising platform for the exploration of Josephson junction effects for quantum microelectronics applications, and the realization of robust topological superconducting states that potentially allow the realization of intrinsically fault-tolerant qubits and quantum gates.
- Published
- 2024
42. Non-commutative skew-product extension dynamical systems
- Author
-
Crismale, Vitonofrio, Del Vecchio, Simone, Griseta, Maria Elena, and Rossi, Stefano
- Subjects
Mathematics - Dynamical Systems ,Mathematics - Operator Algebras - Abstract
Starting from a uniquely ergodic action of a locally compact group $G$ on a compact space $X_0$, we consider non-commutative skew-product extensions of the dynamics, on the crossed product $C(X_0)\rtimes_\alpha\mathbb{Z}$, through a $1$-cocycle of $G$ in $\mathbb{T}$, with $\alpha$ commuting with the given dynamics. We first prove that any such two skew-product extensions are conjugate if and only if the corresponding cocycles are cohomologous. We then study unique ergodicity and unique ergodicity w.r.t. the fixed-point subalgebra by characterizing both in terms of the cocycle assigning the dynamics. The set of all invariant states is also determined: it is affinely homeomorphic with $\mathcal{P}(\mathbb{T})$, the Borel probability measures on the one-dimensional torus $\mathbb{T}$, as long as the system is not uniquely ergodic. Finally, we show that unique ergodicity w.r.t. the fixed-point subalgebra of a skew-product extension amounts to the uniqueness of an invariant conditional expectation onto the fixed-point subalgebra, Comment: 28 pages
- Published
- 2024
43. Bayesian Binary Search
- Author
-
Singh, Vikash, Khanzadeh, Matthew, Davis, Vincent, Rush, Harrison, Rossi, Emanuele, Shrader, Jesse, and Lio, Pietro
- Subjects
Computer Science - Machine Learning - Abstract
We present Bayesian Binary Search (BBS), a novel probabilistic variant of the classical binary search/bisection algorithm. BBS leverages machine learning/statistical techniques to estimate the probability density of the search space and modifies the bisection step to split based on probability density rather than the traditional midpoint, allowing for the learned distribution of the search space to guide the search algorithm. Search space density estimation can flexibly be performed using supervised probabilistic machine learning techniques (e.g., Gaussian process regression, Bayesian neural networks, quantile regression) or unsupervised learning algorithms (e.g., Gaussian mixture models, kernel density estimation (KDE), maximum likelihood estimation (MLE)). We demonstrate significant efficiency gains of using BBS on both simulated data across a variety of distributions and in a real-world binary search use case of probing channel balances in the Bitcoin Lightning Network, for which we have deployed the BBS algorithm in a production setting.
- Published
- 2024
44. The Impact of the COVID-19 Pandemic on Women's Contribution to Public Code
- Author
-
Casanueva, Annalí, Rossi, Davide, Zacchiroli, Stefano, and Zimmermann, Théo
- Subjects
Computer Science - Software Engineering ,Computer Science - Computers and Society - Abstract
Despite its promise of openness and inclusiveness, the development of free and open source software (FOSS) remains significantly unbalanced in terms of gender representation among contributors. To assist open source project maintainers and communities in addressing this imbalance, it is crucial to understand the causes of this inequality.In this study, we aim to establish how the COVID-19 pandemic has influenced the ability of women to contribute to public code. To do so, we use the Software Heritage archive, which holds the largest dataset of commits to public code, and the difference in differences (DID) methodology from econometrics that enables the derivation of causality from historical data.Our findings show that the COVID-19 pandemic has disproportionately impacted women's ability to contribute to the development of public code, relatively to men. Further, our observations of specific contributor subgroups indicate that COVID-19 particularly affected women hobbyists, identified using contribution patterns and email address domains., Comment: Empirical Software Engineering, In press
- Published
- 2024
45. Multimodal Coherent Explanation Generation of Robot Failures
- Author
-
Pramanick, Pradip and Rossi, Silvia
- Subjects
Computer Science - Robotics ,Computer Science - Artificial Intelligence - Abstract
The explainability of a robot's actions is crucial to its acceptance in social spaces. Explaining why a robot fails to complete a given task is particularly important for non-expert users to be aware of the robot's capabilities and limitations. So far, research on explaining robot failures has only considered generating textual explanations, even though several studies have shown the benefits of multimodal ones. However, a simple combination of multiple modalities may lead to semantic incoherence between the information across different modalities - a problem that is not well-studied. An incoherent multimodal explanation can be difficult to understand, and it may even become inconsistent with what the robot and the human observe and how they perform reasoning with the observations. Such inconsistencies may lead to wrong conclusions about the robot's capabilities. In this paper, we introduce an approach to generate coherent multimodal explanations by checking the logical coherence of explanations from different modalities, followed by refinements as required. We propose a classification approach for coherence assessment, where we evaluate if an explanation logically follows another. Our experiments suggest that fine-tuning a neural network that was pre-trained to recognize textual entailment, performs well for coherence assessment of multimodal explanations. Code & data: https://pradippramanick.github.io/coherent-explain/.
- Published
- 2024
46. Physical properties of trans-Neptunian object (143707) 2003 UY117 derived from stellar occultation and photometric observations
- Author
-
Kretlow, M., Ortiz, J. L., Desmars, J., Morales, N., Rommel, F. L., Santos-Sanz, P., Vara-Lubiano, M., Fernández-Valenzuela, E., Alvarez-Candal, A., Duffard, R., Braga-Ribas, F., Sicardy, B., Castro-Tirado, A., Fernández-García, E. J., Sánchez, M., Sota, A., Assafin, M., Benedetti-Rossi, G., Boufleur, R., Camargo, J. I. B., Cikota, S., Gomes-Junior, A., Gómez-Limón, J. M., Kilic, Y., Lecacheux, J., Leiva, R., Marques-Oliveira, J., Morales, R., Morgado, B., Rizos, J. L., Roques, F., Souami, D., Vieira-Martins, R., Alarcon, M. R., Boninsegna, R., Çakır, O., Casarramona, F., Castellani, J. J., de la Cueva, I., Fişek, S., Guijarro, A., Haymes, T., Jehin, E., Kidd, S., Licandro, J., Maestre, J. L., Murgas, F., Pallé, E., Popescu, M., Pratt, A., Serra-Ricart, M., and Talbot, J. C.
- Subjects
Astrophysics - Earth and Planetary Astrophysics - Abstract
Trans-Neptunian objects (TNOs) are considered to be among the most primitive objects in our Solar System. Knowledge of their primary physical properties is essential for understanding their origin and the evolution of the outer Solar System. We predicted a stellar occultation by this TNO for 2020 October 23 UT and ran a specific campaign to investigate this event. We derived the projected profile shape and size from the occultation observations by means of an elliptical fit to the occultation chords. We also performed photometric observations of (143707) 2003 UY117 to obtain the absolute magnitude and the rotational period from the observed rotational light curve. Finally, we combined these results to derive the three-dimensional shape, volume-equivalent diameter, and geometric albedo for this TNO. From the stellar occultation, we obtained a projected ellipse with axes of $(282 \pm 18) \times (184 \pm 32)$ km. The area-equivalent diameter for this ellipse is $D_\textrm{eq,A} = 228 \pm 21$ km. From our photometric $R$ band observations, we derived an absolute magnitude of $H_V = 5.97 \pm 0.07$ mag using $V-R = 0.46 \pm 0.07$ mag, which was derived from a $V$ band subset of these data. The rotational light curve has a peak-to-valley amplitude of $\Delta m = 0.36 \pm 0.13$ mag. We find the most likely rotation period to be $P = 12.376 \pm 0.0033$ hours. By combining the occultation with the rotational light curve results and assuming a triaxial ellipsoid, we derived axes of $a \times b \times c = (332 \pm 24)$ km $\times$ $(216 \pm 24)$ km $\times$ $(180\substack{+28\\-24})$ km for this ellipsoid, and therefore a volume-equivalent diameter of $D_\textrm{eq,V} = 235 \pm 25$ km. Finally, the values for the absolute magnitude and for the area-equivalent diameter yield a geometric albedo of $p_V = 0.139 \pm 0.027$., Comment: 9 pages, 7 figures, accepted for publication in Astronomy and Astrophysics on Sept 13, 2024
- Published
- 2024
47. MCGM: Mask Conditional Text-to-Image Generative Model
- Author
-
Skaik, Rami, Rossi, Leonardo, Fontanini, Tomaso, and Prati, Andrea
- Subjects
Computer Science - Computer Vision and Pattern Recognition ,Computer Science - Artificial Intelligence - Abstract
Recent advancements in generative models have revolutionized the field of artificial intelligence, enabling the creation of highly-realistic and detailed images. In this study, we propose a novel Mask Conditional Text-to-Image Generative Model (MCGM) that leverages the power of conditional diffusion models to generate pictures with specific poses. Our model builds upon the success of the Break-a-scene [1] model in generating new scenes using a single image with multiple subjects and incorporates a mask embedding injection that allows the conditioning of the generation process. By introducing this additional level of control, MCGM offers a flexible and intuitive approach for generating specific poses for one or more subjects learned from a single image, empowering users to influence the output based on their requirements. Through extensive experimentation and evaluation, we demonstrate the effectiveness of our proposed model in generating high-quality images that meet predefined mask conditions and improving the current Break-a-scene generative model., Comment: 17 pages, 13 figures, presented at the 5th International Conference on Artificial Intelligence and Machine Learning (CAIML 2024)
- Published
- 2024
48. Reaction-diffusion model for a population structured in phenotype and space I -- Criterion for persistence
- Author
-
Boutillon, Nathanaël and Rossi, Luca
- Subjects
Mathematics - Analysis of PDEs ,Primary: 35K57, Secondary: 92D25, 35B40, 35J15, 35P15 - Abstract
We consider a reaction-diffusion model for a population structured in phenotype. We assume that the population lives in a heterogeneous periodic environment, so that a given phenotypic trait may be more or less fit according to the spatial location. The model features spatial mobility of individuals as well as mutation. We first prove the well-posedness of the model. Next, we derive a criterion for the persistence of the population which involves the generalised principal eigenvalue associated with the linearised elliptic operator. This notion allows us to handle the possible lack of coercivity of the operator. We then obtain a monotonicity result for the generalised principal eigenvalue, in terms of the frequency of spatial fluctuations of the environment and in terms of the spatial diffusivity. We deduce that the more heterogeneous is the environment, or the higher is the mobility of individuals, the harder is the persistence for the species. This work lays the mathematical foundation to investigate some other optimisation problems for the environment to make persistence as hard or as easy as possible, which will be addressed in the forthcoming companion paper., Comment: 28 pages
- Published
- 2024
49. Value Added Catalog of physical properties of more than 1.3 million galaxies from the DESI Survey
- Author
-
Siudek, M., Pucha, R., Mezcua, M., Juneau, S., Aguilar, J., Ahlen, S., Brooks, D., Circosta, C., Claybaugh, T., Cole, S., Dawson, K., de la Macorra, A., Dey, Arjun, Dey, Biprateep, Doel, P., Font-Ribera, A., Forero-Romero, J. E., Gaztañaga, E., Gontcho, S. Gontcho A, Gutierrez, G., Honscheid, K., Howlett, C., Ishak, M., Kehoe, R., Kirkby, D., Kisner, T., Kremin, A., Lambert, A., Landriau, M., Guillou, L. Le, Manera, M., Martini, P., Meisner, A., Miquel, R., Moustakas, J., Newman, J. A., Niz, G., Pan, Z., Percival, W. J., Poppett, C., Prada, F., Rossi, G., Saintonge, A., Sanchez, E., Schlegel, D., Scholte, D., Schubnell, M., Seo, H., Speranza, F., Sprayberry, D., Tarle, G., Weaver, B. A., and Zou, H.
- Subjects
Astrophysics - Astrophysics of Galaxies - Abstract
Aims. We present an extensive catalog of the physical properties of more than a million galaxies within the Dark Energy Spectroscopic Instrument (DESI), one of the largest spectroscopic surveys to date. Spanning over a full variety of target types, including emission line galaxies and luminous red galaxies as well as quasars, our survey encompasses an unprecedented range of spectroscopic redshifts, stretching from 0 to 6. Methods. The physical properties, such as stellar masses and star formation rates, are derived via the CIGALE spectral energy distribution (SED) fitting code accounting for the contribution coming from active galactic nuclei (AGN). Based on the modeling of the optical-mid-infrared (grz complemented by WISE photometry) SEDs, we study galaxy properties with respect to their location on the main sequence. Results. We revise the dependence of stellar mass estimates on model choices and availability of the WISE photometry. The WISE information is mandatory to minimize the misclassification of star-forming galaxies as AGN. The lack of WISE bands in SED fits leads to elevated AGN fractions for 68% of star-forming galaxies identified using emission line diagnostic diagram but does not significantly affect their stellar mass nor star formation estimates., Comment: resubmitted after addressing minor referee comments
- Published
- 2024
50. Buried Dirac points in Quantum Spin Hall Insulators: Implications for edge transport and Majorana Kramer Pairs
- Author
-
Cuozzo, Joseph J., Yu, Wenlong, Shi, Xiaoyan, Muhowski, Aaron J., Hawkins, Samuel D., Klem, John F., Rossi, Enrico, and Pan, Wei
- Subjects
Condensed Matter - Superconductivity ,Condensed Matter - Mesoscale and Nanoscale Physics - Abstract
For heterostructures formed by a quantum spin Hall insulator (QSHI) placed in proximity to a superconductor (SC), no external magnetic field is necessary to drive the system into a phase supporting topological superconductivity with Majorana zero energy states, making them very attractive for the realization of non-Abelian states and fault-tolerant qubits. Despite considerable work investigating QSHI edge states, there is still an open question about their resilience to large magnetic fields and the implication of such resilience for the formation of a quasi-1D topological superconducting state. In this work, we investigate the transport properties of helical edge states in a QSHI-SC junction formed by a InAs/GaSb (15nm/5nm) double quantum well and a superconducting tantalum (Ta) constriction. We observe a robust conductance plateau up to 2 T, signaling resilient edge state transport. Such resilience is consistent with the Dirac point for the edge states being buried in the bulk valence band. Using a modified Landauer-Buttiker analysis, we find that the conductance is consistent with 98% Andreev reflection probability owing to the high transparency of the InAs/GaSb-Ta interface. We further theoretically show that a buried Dirac point does not affect the robustness of the quasi-1D topological superconducting phase, and favors the hybridization of Majorana Kramer pairs and fermionic modes in the QSHI resulting in extended MKP states, highlighting the subtle role of buried Dirac points in probing MKPs., Comment: 14 pages, 10 figures, and 2 tables
- Published
- 2024
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.