1. Assessing the interplay between off-target promiscuity, cytotoxicity, and tolerability in rodents to improve the safety profile of novel anti-malarial plasmepsin X inhibitors.
- Author
-
Gerets HHJ, Delaunois A, Cardenas A, Class R, Fleurance R, de Haro T, Laleu B, Lowe MA, Rosseels ML, and Valentin JP
- Subjects
- Animals, Female, Guinea Pigs, Humans, Male, Rats, Cell Survival drug effects, Hep G2 Cells, Antimalarials toxicity, Aspartic Acid Endopeptidases antagonists & inhibitors, Aspartic Acid Endopeptidases metabolism
- Abstract
Within drug development, high off-target promiscuity as well as potent cytotoxicity, are associated with a high attrition rate. We investigated the safety profile of novel plasmepsin X (PMX) inhibitors for the treatment of malaria. In our screening cascade, a total of 249 PMX compounds were profiled in a panel of in vitro secondary pharmacology assays containing 44 targets (SafetyScreen44 panel) and in a cytotoxicity assay in HepG2 cells using ATP as an endpoint. Six of the lead compounds were subsequently tested in a 7-d rat toxicology study, and/or in a cardiovascular study in guinea pigs. Overall, compounds with high cytotoxicity in HepG2 cells correlated with high promiscuity (off-target hit rate >20%) in the SafetyScreen44 panel and were associated with poor tolerability in vivo (decedents, morbidity, adverse clinical signs, or severe cardiovascular effects). Some side effects observed in rats or guinea pigs could putatively be linked with hits in the secondary pharmacological profiling, such as the M1 or M2 muscarinic acetylcholine receptor, opioid µ and/or κ receptors or hERG/CaV1.2/Na+ channels, which were common to >50% the compounds tested in vivo. In summary, compounds showing high cytotoxicity and high promiscuity are likely to be poorly tolerated in vivo. However, such associations do not necessarily imply a causal relationship. Identifying the targets that cause these undesirable effects is key for early safety risk assessment. A tiered approach, based on a set of in vitro assays, helps selecting the compounds with highest likelihood of success to proceed to in vivo toxicology studies., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF