100 results on '"Rosell, Mireia"'
Search Results
2. Docking approaches for modeling multi-molecular assemblies
- Author
-
Rosell, Mireia and Fernández-Recio, Juan
- Published
- 2020
- Full Text
- View/download PDF
3. Docking-based identification of small-molecule binding sites at protein-protein interfaces
- Author
-
Rosell, Mireia and Fernández-Recio, Juan
- Published
- 2020
- Full Text
- View/download PDF
4. Modeling of Protein Complexes and Molecular Assemblies with pyDock
- Author
-
Rosell, Mireia, primary, Rodríguez-Lumbreras, Luis Angel, additional, and Fernández-Recio, Juan, additional
- Published
- 2020
- Full Text
- View/download PDF
5. Structural Prediction of Protein–Protein Interactions by Docking: Application to Biomedical Problems
- Author
-
Barradas-Bautista, Didier, primary, Rosell, Mireia, additional, Pallara, Chiara, additional, and Fernández-Recio, Juan, additional
- Published
- 2018
- Full Text
- View/download PDF
6. Open-Source Portuguese–Spanish Machine Translation
- Author
-
Armentano-Oller, Carme, Carrasco, Rafael C., Corbí-Bellot, Antonio M., Forcada, Mikel L., Ginestí-Rosell, Mireia, Ortiz-Rojas, Sergio, Pérez-Ortiz, Juan Antonio, Ramírez-Sánchez, Gema, Sánchez-Martínez, Felipe, Scalco, Miriam A., Hutchison, David, Series editor, Kanade, Takeo, Series editor, Kittler, Josef, Series editor, Kleinberg, Jon M., Series editor, Mattern, Friedemann, Series editor, Mitchell, John C., Series editor, Naor, Moni, Series editor, Nierstrasz, Oscar, Series editor, Pandu Rangan, C., Series editor, Steffen, Bernhard, Series editor, Sudan, Madhu, Series editor, Terzopoulos, Demetri, Series editor, Tygar, Dough, Series editor, Vardi, Moshe Y., Series editor, Weikum, Gerhard, Series editor, Carbonell, Jaime G., editor, Siekmann, Jörg, editor, Vieira, Renata, editor, Quaresma, Paulo, editor, Nunes, Maria das Graças Volpe, editor, Mamede, Nuno J., editor, Oliveira, Cláudia, editor, and Dias, Maria Carmelita, editor
- Published
- 2006
- Full Text
- View/download PDF
7. Apertium: a free/open-source platform for rule-based machine translation
- Author
-
Forcada, Mikel L., Ginestí-Rosell, Mireia, Nordfalk, Jacob, O'Regan, Jim, Ortiz-Rojas, Sergio, Pérez-Ortiz, Juan Antonio, Sánchez-Martínez, Felipe, Ramírez-Sánchez, Gema, and Tyers, Francis M.
- Published
- 2011
8. PirePred: An Accurate Online Consensus Tool to Interpret Newborn Screening–Related Genetic Variants in Structural Context
- Author
-
Interreg POCTEFA, Ministerio de Economía y Competitividad (España), Gobierno de Aragón, Galano-Frutos, Juan J., García-Cebollada, Helena, López, Alfonso, Rosell, Mireia, Cruz, Xavier de la, Fernández-Recio, Juan, Sancho, Javier, Interreg POCTEFA, Ministerio de Economía y Competitividad (España), Gobierno de Aragón, Galano-Frutos, Juan J., García-Cebollada, Helena, López, Alfonso, Rosell, Mireia, Cruz, Xavier de la, Fernández-Recio, Juan, and Sancho, Javier
- Abstract
PirePred is a genetic interpretation tool used for a variety of medical conditions investigated in newborn screening programs. The PirePred server retrieves, analyzes, and displays in real time genetic and structural data on 58 genes/proteins associated with medical conditions frequently investigated in the newborn. PirePred analyzes the predictions generated by 15 pathogenicity predictors and applies an optimized majority vote algorithm to classify any possible nonsynonymous single-nucleotide variant as pathogenic, benign, or of uncertain significance. PirePred predictions for variants of clear clinical significance are better than those of any of the individual predictors considered (based on accuracy, sensitivity, and negative predictive value) or are among the best ones (for positive predictive value and Matthews correlation coefficient). PirePred predictions also outperform the comparable in silico predictions offered as supporting evidence, according to American College of Medical Genetics and Genomics guidelines, by VarSome and Franklin. Also, PirePred has very high prediction coverage. To facilitate the molecular interpretation of the missense, nonsense, and frameshift variants in ClinVar, the changing amino acid residue is displayed in its structural context, which is analyzed to provide functional clues. PirePred is an accurate, robust, and easy-to-use tool for clinicians involved in neonatal screening programs and for researchers of related diseases. The server is freely accessible and provides a user-friendly gateway into the structural/functional consequences of genetic variants at the protein level.
- Published
- 2022
9. PirePred
- Author
-
Galano-Frutos, Juan José, primary, García-Cebollada, Helena, additional, López, Alfonso, additional, Rosell, Mireia, additional, de la Cruz, Xavier, additional, Fernández-Recio, Juan, additional, and Sancho, Javier, additional
- Published
- 2022
- Full Text
- View/download PDF
10. PirePred: An Accurate Online Consensus Tool to Interpret Newborn Screening–Related Genetic Variants in Structural Context
- Author
-
Galano-Frutos, Juan J., García-Cebollada, Helena, López, Alfonso, Rosell, Mireia, Cruz, Xavier de la, Fernández-Recio, Juan, Sancho, Javier, Interreg POCTEFA, Ministerio de Economía y Competitividad (España), and Gobierno de Aragón
- Abstract
PirePred is a genetic interpretation tool used for a variety of medical conditions investigated in newborn screening programs. The PirePred server retrieves, analyzes, and displays in real time genetic and structural data on 58 genes/proteins associated with medical conditions frequently investigated in the newborn. PirePred analyzes the predictions generated by 15 pathogenicity predictors and applies an optimized majority vote algorithm to classify any possible nonsynonymous single-nucleotide variant as pathogenic, benign, or of uncertain significance. PirePred predictions for variants of clear clinical significance are better than those of any of the individual predictors considered (based on accuracy, sensitivity, and negative predictive value) or are among the best ones (for positive predictive value and Matthews correlation coefficient). PirePred predictions also outperform the comparable in silico predictions offered as supporting evidence, according to American College of Medical Genetics and Genomics guidelines, by VarSome and Franklin. Also, PirePred has very high prediction coverage. To facilitate the molecular interpretation of the missense, nonsense, and frameshift variants in ClinVar, the changing amino acid residue is displayed in its structural context, which is analyzed to provide functional clues. PirePred is an accurate, robust, and easy-to-use tool for clinicians involved in neonatal screening programs and for researchers of related diseases. The server is freely accessible and provides a user-friendly gateway into the structural/functional consequences of genetic variants at the protein level., Supported by 2014–2020 Interreg V-A Spain-France-Andorra (POCTEFA) grant EFA086/15, Mineco grant PID2019-107293GB-I00, and Gobierno de Aragón grants E45_17R and LMP30_18. H.G.-C. is the recipient of an FPU16/04232 doctoral contract from MCIN.
- Published
- 2022
11. Prediction of protein assemblies, the next frontier: The CASP14‐CAPRI experiment
- Author
-
Lensink, Marc F., primary, Brysbaert, Guillaume, additional, Mauri, Théo, additional, Nadzirin, Nurul, additional, Velankar, Sameer, additional, Chaleil, Raphael A. G., additional, Clarence, Tereza, additional, Bates, Paul A., additional, Kong, Ren, additional, Liu, Bin, additional, Yang, Guangbo, additional, Liu, Ming, additional, Shi, Hang, additional, Lu, Xufeng, additional, Chang, Shan, additional, Roy, Raj S., additional, Quadir, Farhan, additional, Liu, Jian, additional, Cheng, Jianlin, additional, Antoniak, Anna, additional, Czaplewski, Cezary, additional, Giełdoń, Artur, additional, Kogut, Mateusz, additional, Lipska, Agnieszka G., additional, Liwo, Adam, additional, Lubecka, Emilia A., additional, Maszota‐Zieleniak, Martyna, additional, Sieradzan, Adam K., additional, Ślusarz, Rafał, additional, Wesołowski, Patryk A., additional, Zięba, Karolina, additional, Del Carpio Muñoz, Carlos A., additional, Ichiishi, Eiichiro, additional, Harmalkar, Ameya, additional, Gray, Jeffrey J., additional, Bonvin, Alexandre M. J. J., additional, Ambrosetti, Francesco, additional, Vargas Honorato, Rodrigo, additional, Jandova, Zuzana, additional, Jiménez‐García, Brian, additional, Koukos, Panagiotis I., additional, Van Keulen, Siri, additional, Van Noort, Charlotte W., additional, Réau, Manon, additional, Roel‐Touris, Jorge, additional, Kotelnikov, Sergei, additional, Padhorny, Dzmitry, additional, Porter, Kathryn A., additional, Alekseenko, Andrey, additional, Ignatov, Mikhail, additional, Desta, Israel, additional, Ashizawa, Ryota, additional, Sun, Zhuyezi, additional, Ghani, Usman, additional, Hashemi, Nasser, additional, Vajda, Sandor, additional, Kozakov, Dima, additional, Rosell, Mireia, additional, Rodríguez‐Lumbreras, Luis A., additional, Fernandez‐Recio, Juan, additional, Karczynska, Agnieszka, additional, Grudinin, Sergei, additional, Yan, Yumeng, additional, Li, Hao, additional, Lin, Peicong, additional, Huang, Sheng‐You, additional, Christoffer, Charles, additional, Terashi, Genki, additional, Verburgt, Jacob, additional, Sarkar, Daipayan, additional, Aderinwale, Tunde, additional, Wang, Xiao, additional, Kihara, Daisuke, additional, Nakamura, Tsukasa, additional, Hanazono, Yuya, additional, Gowthaman, Ragul, additional, Guest, Johnathan D., additional, Yin, Rui, additional, Taherzadeh, Ghazaleh, additional, Pierce, Brian G., additional, Barradas‐Bautista, Didier, additional, Cao, Zhen, additional, Cavallo, Luigi, additional, Oliva, Romina, additional, Sun, Yuanfei, additional, Zhu, Shaowen, additional, Shen, Yang, additional, Park, Taeyong, additional, Woo, Hyeonuk, additional, Yang, Jinsol, additional, Kwon, Sohee, additional, Won, Jonghun, additional, Seok, Chaok, additional, Kiyota, Yasuomi, additional, Kobayashi, Shinpei, additional, Harada, Yoshiki, additional, Takeda‐Shitaka, Mayuko, additional, Kundrotas, Petras J., additional, Singh, Amar, additional, Vakser, Ilya A., additional, Dapkūnas, Justas, additional, Olechnovič, Kliment, additional, Venclovas, Česlovas, additional, Duan, Rui, additional, Qiu, Liming, additional, Xu, Xianjin, additional, Zhang, Shuang, additional, Zou, Xiaoqin, additional, and Wodak, Shoshana J., additional
- Published
- 2021
- Full Text
- View/download PDF
12. The pyDock interface scoring functions
- Author
-
Rodríguez-Lumbreras, Luis A., Rosell, Mireia, Romero-Durana, Miguel, and Fernández-Recio, Juan
- Abstract
Trabajo presentado en el 3D-Bioinformatics 2020 Annual Workshop, celebrado online del 24 al 26 de noviembre de 2020, We describe here the application of pyDock [1] methodology for the scoring of protein-protein interfaces, which can be relevant for the Activity II of the ELIXIR 3D-BioInfo Community "Open resources for sharing, integrating and benchmarking software tools for modelling the proteome in 3D". A major goal of this 3D-BioInfo activity is the application of computational tools for the identification of physiological dimer interfaces and the correct description of functional oligomerization states of proteins and protein assemblies. Indeed, this is an important problem that needs to be targeted before attempting more ambitious structural interactomics projects, such as the structure- and docking-based impact of interface mutations in genes related to diseases detected by newborn screening programs [2]. The capabilities of pyDock for the scoring of modelled assemblies, as recently shown in the recent CASP13-CAPRI and 7th CAPRI rounds, prompted us to explore its application to the characterization of biologically relevant assembly modes. The scoring function of pyDock is composed of electrostatics, desolvation, and van der Waals energy terms (the latter weighted by 10%). This combination was optimized for the scoring of poses from ab initio docking, and seems also suitable for models generated by template-based docking. Here we will apply this function to the proposed benchmark of dimer interfaces, and we will also discuss the performance of each individual pyDock energy term and their different combinations on the discrimination of physiological and non-physiological dimer interfaces. In addition, pyDock binding energy can be easily partitioned per residue, as implemented in the pyDockEneRes web server (https://life.bsc.es/pid/pydockeneres/) [3], which can provide additional information to further characterize the benchmark of dimer interfaces. [1] Cheng TM, Blundell TL, Fernandez-Recio J (2007) Proteins 68, 503¿515. [2] Navío D, Rosell M, Aguirre J, de la Cruz X, Fernánde-Recio J (2019) Int J Mol Sci 20, 1583. [3] Romero-Durana M, Jiménez-García B, Fernández-Recio J (2020) Bioinformatics 36, 2284-2285.
- Published
- 2020
13. Structural Consequences of Disease-Related Mutations for Protein-Protein Interactions
- Author
-
Rosell, Mireia and Fernández-Recio, Juan
- Subjects
Single amino acid variants ,Binding affinity change ,Structural bioinformatics ,Protein–protein interactions ,Computational docking ,Interface prediction - Abstract
Mutation of a single amino acid in a protein often has consequences on the interaction with other proteins, which may affect other interaction networks and pathways and ultimately lead to pathological phenotypes. A detailed structural analysis of these altered protein–protein complexes is essential to interpret the impact of a given mutation at the molecular level, which may facilitate intervention with therapeutic purposes. Given current limitations in the structural coverage of the human interactome, computational docking is emerging as a complementary source of information. Structural analysis can help to locate a given mutation at a protein–protein interface, but further characterisation of its impact on binding affinity is needed for a full interpretation. The integration of computational docking methods and energy‐based descriptors is facilitating the characterisation of an increasing number of disease‐related mutations, thus improving our understanding of the consequences of such mutations at the phenotypic level.
- Published
- 2020
14. Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment
- Author
-
Lensink, Marc F., Brysbaert, Guillaume, Mauri, Théo, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphael A.G., Clarence, Tereza, Bates, Paul A., Kong, Ren, Liu, Bin, Yang, Guangbo, Liu, Ming, Shi, Hang, Lu, Xufeng, Chang, Shan, Roy, Raj S., Quadir, Farhan, Liu, Jian, Cheng, Jianlin, Antoniak, Anna, Czaplewski, Cezary, Giełdoń, Artur, Kogut, Mateusz, Lipska, Agnieszka G., Liwo, Adam, Lubecka, Emilia A., Maszota-Zieleniak, Martyna, Sieradzan, Adam K., Ślusarz, Rafał, Wesołowski, Patryk A., Zięba, Karolina, Del Carpio Muñoz, Carlos A., Ichiishi, Eiichiro, Harmalkar, Ameya, Gray, Jeffrey J., Bonvin, Alexandre M.J.J., Ambrosetti, Francesco, Vargas Honorato, Rodrigo, Jandova, Zuzana, Jiménez-García, Brian, Koukos, Panagiotis I., Van Keulen, Siri, Van Noort, Charlotte W., Réau, Manon, Roel-Touris, Jorge, Kotelnikov, Sergei, Padhorny, Dzmitry, Porter, Kathryn A., Alekseenko, Andrey, Ignatov, Mikhail, Desta, Israel, Ashizawa, Ryota, Sun, Zhuyezi, Ghani, Usman, Hashemi, Nasser, Vajda, Sandor, Kozakov, Dima, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Fernandez-Recio, Juan, Karczynska, Agnieszka, Grudinin, Sergei, Yan, Yumeng, Li, Hao, Lin, Peicong, Huang, Sheng You, Christoffer, Charles, Terashi, Genki, Verburgt, Jacob, Sarkar, Daipayan, Aderinwale, Tunde, Wang, Xiao, Kihara, Daisuke, Nakamura, Tsukasa, Hanazono, Yuya, Gowthaman, Ragul, Guest, Johnathan D., Yin, Rui, Taherzadeh, Ghazaleh, Pierce, Brian G., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Sun, Yuanfei, Zhu, Shaowen, Shen, Yang, Park, Taeyong, Woo, Hyeonuk, Yang, Jinsol, Kwon, Sohee, Won, Jonghun, Seok, Chaok, Kiyota, Yasuomi, Kobayashi, Shinpei, Harada, Yoshiki, Takeda-Shitaka, Mayuko, Kundrotas, Petras J., Singh, Amar, Vakser, Ilya A., Dapkūnas, Justas, Olechnovič, Kliment, Venclovas, Česlovas, Duan, Rui, Qiu, Liming, Xu, Xianjin, Zhang, Shuang, Zou, Xiaoqin, Wodak, Shoshana J., Lensink, Marc F., Brysbaert, Guillaume, Mauri, Théo, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphael A.G., Clarence, Tereza, Bates, Paul A., Kong, Ren, Liu, Bin, Yang, Guangbo, Liu, Ming, Shi, Hang, Lu, Xufeng, Chang, Shan, Roy, Raj S., Quadir, Farhan, Liu, Jian, Cheng, Jianlin, Antoniak, Anna, Czaplewski, Cezary, Giełdoń, Artur, Kogut, Mateusz, Lipska, Agnieszka G., Liwo, Adam, Lubecka, Emilia A., Maszota-Zieleniak, Martyna, Sieradzan, Adam K., Ślusarz, Rafał, Wesołowski, Patryk A., Zięba, Karolina, Del Carpio Muñoz, Carlos A., Ichiishi, Eiichiro, Harmalkar, Ameya, Gray, Jeffrey J., Bonvin, Alexandre M.J.J., Ambrosetti, Francesco, Vargas Honorato, Rodrigo, Jandova, Zuzana, Jiménez-García, Brian, Koukos, Panagiotis I., Van Keulen, Siri, Van Noort, Charlotte W., Réau, Manon, Roel-Touris, Jorge, Kotelnikov, Sergei, Padhorny, Dzmitry, Porter, Kathryn A., Alekseenko, Andrey, Ignatov, Mikhail, Desta, Israel, Ashizawa, Ryota, Sun, Zhuyezi, Ghani, Usman, Hashemi, Nasser, Vajda, Sandor, Kozakov, Dima, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Fernandez-Recio, Juan, Karczynska, Agnieszka, Grudinin, Sergei, Yan, Yumeng, Li, Hao, Lin, Peicong, Huang, Sheng You, Christoffer, Charles, Terashi, Genki, Verburgt, Jacob, Sarkar, Daipayan, Aderinwale, Tunde, Wang, Xiao, Kihara, Daisuke, Nakamura, Tsukasa, Hanazono, Yuya, Gowthaman, Ragul, Guest, Johnathan D., Yin, Rui, Taherzadeh, Ghazaleh, Pierce, Brian G., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Sun, Yuanfei, Zhu, Shaowen, Shen, Yang, Park, Taeyong, Woo, Hyeonuk, Yang, Jinsol, Kwon, Sohee, Won, Jonghun, Seok, Chaok, Kiyota, Yasuomi, Kobayashi, Shinpei, Harada, Yoshiki, Takeda-Shitaka, Mayuko, Kundrotas, Petras J., Singh, Amar, Vakser, Ilya A., Dapkūnas, Justas, Olechnovič, Kliment, Venclovas, Česlovas, Duan, Rui, Qiu, Liming, Xu, Xianjin, Zhang, Shuang, Zou, Xiaoqin, and Wodak, Shoshana J.
- Abstract
We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70–75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70–80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.
- Published
- 2021
15. Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment
- Author
-
Sub NMR Spectroscopy, Sub Overig UiLOTS, Sub Mathematics Education, NMR Spectroscopy, Lensink, Marc F., Brysbaert, Guillaume, Mauri, Théo, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphael A.G., Clarence, Tereza, Bates, Paul A., Kong, Ren, Liu, Bin, Yang, Guangbo, Liu, Ming, Shi, Hang, Lu, Xufeng, Chang, Shan, Roy, Raj S., Quadir, Farhan, Liu, Jian, Cheng, Jianlin, Antoniak, Anna, Czaplewski, Cezary, Giełdoń, Artur, Kogut, Mateusz, Lipska, Agnieszka G., Liwo, Adam, Lubecka, Emilia A., Maszota-Zieleniak, Martyna, Sieradzan, Adam K., Ślusarz, Rafał, Wesołowski, Patryk A., Zięba, Karolina, Del Carpio Muñoz, Carlos A., Ichiishi, Eiichiro, Harmalkar, Ameya, Gray, Jeffrey J., Bonvin, Alexandre M.J.J., Ambrosetti, Francesco, Vargas Honorato, Rodrigo, Jandova, Zuzana, Jiménez-García, Brian, Koukos, Panagiotis I., Van Keulen, Siri, Van Noort, Charlotte W., Réau, Manon, Roel-Touris, Jorge, Kotelnikov, Sergei, Padhorny, Dzmitry, Porter, Kathryn A., Alekseenko, Andrey, Ignatov, Mikhail, Desta, Israel, Ashizawa, Ryota, Sun, Zhuyezi, Ghani, Usman, Hashemi, Nasser, Vajda, Sandor, Kozakov, Dima, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Fernandez-Recio, Juan, Karczynska, Agnieszka, Grudinin, Sergei, Yan, Yumeng, Li, Hao, Lin, Peicong, Huang, Sheng You, Christoffer, Charles, Terashi, Genki, Verburgt, Jacob, Sarkar, Daipayan, Aderinwale, Tunde, Wang, Xiao, Kihara, Daisuke, Nakamura, Tsukasa, Hanazono, Yuya, Gowthaman, Ragul, Guest, Johnathan D., Yin, Rui, Taherzadeh, Ghazaleh, Pierce, Brian G., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Sun, Yuanfei, Zhu, Shaowen, Shen, Yang, Park, Taeyong, Woo, Hyeonuk, Yang, Jinsol, Kwon, Sohee, Won, Jonghun, Seok, Chaok, Kiyota, Yasuomi, Kobayashi, Shinpei, Harada, Yoshiki, Takeda-Shitaka, Mayuko, Kundrotas, Petras J., Singh, Amar, Vakser, Ilya A., Dapkūnas, Justas, Olechnovič, Kliment, Venclovas, Česlovas, Duan, Rui, Qiu, Liming, Xu, Xianjin, Zhang, Shuang, Zou, Xiaoqin, Wodak, Shoshana J., Sub NMR Spectroscopy, Sub Overig UiLOTS, Sub Mathematics Education, NMR Spectroscopy, Lensink, Marc F., Brysbaert, Guillaume, Mauri, Théo, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphael A.G., Clarence, Tereza, Bates, Paul A., Kong, Ren, Liu, Bin, Yang, Guangbo, Liu, Ming, Shi, Hang, Lu, Xufeng, Chang, Shan, Roy, Raj S., Quadir, Farhan, Liu, Jian, Cheng, Jianlin, Antoniak, Anna, Czaplewski, Cezary, Giełdoń, Artur, Kogut, Mateusz, Lipska, Agnieszka G., Liwo, Adam, Lubecka, Emilia A., Maszota-Zieleniak, Martyna, Sieradzan, Adam K., Ślusarz, Rafał, Wesołowski, Patryk A., Zięba, Karolina, Del Carpio Muñoz, Carlos A., Ichiishi, Eiichiro, Harmalkar, Ameya, Gray, Jeffrey J., Bonvin, Alexandre M.J.J., Ambrosetti, Francesco, Vargas Honorato, Rodrigo, Jandova, Zuzana, Jiménez-García, Brian, Koukos, Panagiotis I., Van Keulen, Siri, Van Noort, Charlotte W., Réau, Manon, Roel-Touris, Jorge, Kotelnikov, Sergei, Padhorny, Dzmitry, Porter, Kathryn A., Alekseenko, Andrey, Ignatov, Mikhail, Desta, Israel, Ashizawa, Ryota, Sun, Zhuyezi, Ghani, Usman, Hashemi, Nasser, Vajda, Sandor, Kozakov, Dima, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Fernandez-Recio, Juan, Karczynska, Agnieszka, Grudinin, Sergei, Yan, Yumeng, Li, Hao, Lin, Peicong, Huang, Sheng You, Christoffer, Charles, Terashi, Genki, Verburgt, Jacob, Sarkar, Daipayan, Aderinwale, Tunde, Wang, Xiao, Kihara, Daisuke, Nakamura, Tsukasa, Hanazono, Yuya, Gowthaman, Ragul, Guest, Johnathan D., Yin, Rui, Taherzadeh, Ghazaleh, Pierce, Brian G., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Sun, Yuanfei, Zhu, Shaowen, Shen, Yang, Park, Taeyong, Woo, Hyeonuk, Yang, Jinsol, Kwon, Sohee, Won, Jonghun, Seok, Chaok, Kiyota, Yasuomi, Kobayashi, Shinpei, Harada, Yoshiki, Takeda-Shitaka, Mayuko, Kundrotas, Petras J., Singh, Amar, Vakser, Ilya A., Dapkūnas, Justas, Olechnovič, Kliment, Venclovas, Česlovas, Duan, Rui, Qiu, Liming, Xu, Xianjin, Zhang, Shuang, Zou, Xiaoqin, and Wodak, Shoshana J.
- Published
- 2021
16. Prediction of protein assemblies, the next frontier: The CASP14-CAPRI experiment
- Author
-
Cancer Research UK, Department of Energy and Climate Change (UK), European Commission, Institut National de Recherche en Informatique et en Automatique (France), Medical Research Council (UK), Japan Society for the Promotion of Science, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), National Institute of General Medical Sciences (US), National Institutes of Health (US), National Natural Science Foundation of China, National Science Foundation (US), Lensink, Marc F., Brysbaert, Guillaume, Mauri, Théo, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphaël A. G., Clarence, Tereza, Bates, Paul A., Kong, Ren, Liu, Bin, Yang, Guangbo, Liu, Ming, Shi, Hang, Lu, Xufeng, Chang, Xang, Roy, Raj S., Quadir, Farhan, Liu, Jian, Cheng, Jianlin, Antoniak, Anna, Czaplewski, Cezary, Giełdón, Artur, Kogut, Mateusz, Lipska, Agnieszka, Liwo, Adam, Lubecka, Emilia, Maszota-Zieleniak, Martyna, Sieradzan, Adam K., Ślusarz, Rafał, Wesołowski, Patryk A., Zięba, Karolina, Carpio Muñoz, Carlos A. del, Ichiishi, Eiichiro, Harmalkar, Ameya, Gray, Jeffrey J., Bonvin, Alexandre M. J. J., Ambrosetti, Francesco, Vargas Honorato, Rodrigo, Jandova, Zuzana, Jiménez-García, Brian, Koukos, Panagiotis I., Keulen, Siri van, Noort, Charlotte W. van, Réau, Manon, Roel-Touris, Jorge, Kotelnikov, Sergey, Padhorny, Dzmitry, Porter, Kathryn, Alekseenko, Andrey, Ignatov, Mikhail, Desta, Israel, Ashizawa, Ryota, Sun, Zhuyezi, Ghani, Usman, Hashemi, Nasser, Vajda, Sandor, Kozakov, Dima, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Fernández-Recio, Juan, Karczynska, Agnieszka, Grudinin, Sergei, Yan, Yumeng, Li, Hao, Lin, Peicong, Huang, Sheng-You, Christoffer, Charles, Terashi, Genki, Verburgt, Jacob, Sarkar, Daipayan, Aderinwale, Tunde, Wang, Xiao, Kihara, Daisuke, Nakamura, Tsukasa, Hanazono, Huya, Gowthaman, Ragul, Guest, Johnathan D., Yin, Rui, Taherzadeh, Ghazaleh, Pierce, Brian G., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Sun, Yuanfei, Zhu, Shaowen, Shen, Yang, Park, Taeyong, Woo, Hyeonuk, Yang, Jinsol, Kwon, Sohee, Won, Jonghun, Seok, Chaok, Kiyota, Yasuomi, Kobayashi, Shinpei, Harada, Yoshiki, Takeda-Shitaka, Mayuko, Kundrotas, Petras J., Singh, Amar, Vakser, Ilya A., Dapkunas, Justas, Olechnovic, Kliment, Venclovas, Česlovas, Duan, Rui, Qiu, Liming, Xu, Xianjin, Zhang, Shuang, Zou, Xiaoqin, Wodak, Shoshana J., Cancer Research UK, Department of Energy and Climate Change (UK), European Commission, Institut National de Recherche en Informatique et en Automatique (France), Medical Research Council (UK), Japan Society for the Promotion of Science, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), National Institute of General Medical Sciences (US), National Institutes of Health (US), National Natural Science Foundation of China, National Science Foundation (US), Lensink, Marc F., Brysbaert, Guillaume, Mauri, Théo, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphaël A. G., Clarence, Tereza, Bates, Paul A., Kong, Ren, Liu, Bin, Yang, Guangbo, Liu, Ming, Shi, Hang, Lu, Xufeng, Chang, Xang, Roy, Raj S., Quadir, Farhan, Liu, Jian, Cheng, Jianlin, Antoniak, Anna, Czaplewski, Cezary, Giełdón, Artur, Kogut, Mateusz, Lipska, Agnieszka, Liwo, Adam, Lubecka, Emilia, Maszota-Zieleniak, Martyna, Sieradzan, Adam K., Ślusarz, Rafał, Wesołowski, Patryk A., Zięba, Karolina, Carpio Muñoz, Carlos A. del, Ichiishi, Eiichiro, Harmalkar, Ameya, Gray, Jeffrey J., Bonvin, Alexandre M. J. J., Ambrosetti, Francesco, Vargas Honorato, Rodrigo, Jandova, Zuzana, Jiménez-García, Brian, Koukos, Panagiotis I., Keulen, Siri van, Noort, Charlotte W. van, Réau, Manon, Roel-Touris, Jorge, Kotelnikov, Sergey, Padhorny, Dzmitry, Porter, Kathryn, Alekseenko, Andrey, Ignatov, Mikhail, Desta, Israel, Ashizawa, Ryota, Sun, Zhuyezi, Ghani, Usman, Hashemi, Nasser, Vajda, Sandor, Kozakov, Dima, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Fernández-Recio, Juan, Karczynska, Agnieszka, Grudinin, Sergei, Yan, Yumeng, Li, Hao, Lin, Peicong, Huang, Sheng-You, Christoffer, Charles, Terashi, Genki, Verburgt, Jacob, Sarkar, Daipayan, Aderinwale, Tunde, Wang, Xiao, Kihara, Daisuke, Nakamura, Tsukasa, Hanazono, Huya, Gowthaman, Ragul, Guest, Johnathan D., Yin, Rui, Taherzadeh, Ghazaleh, Pierce, Brian G., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Sun, Yuanfei, Zhu, Shaowen, Shen, Yang, Park, Taeyong, Woo, Hyeonuk, Yang, Jinsol, Kwon, Sohee, Won, Jonghun, Seok, Chaok, Kiyota, Yasuomi, Kobayashi, Shinpei, Harada, Yoshiki, Takeda-Shitaka, Mayuko, Kundrotas, Petras J., Singh, Amar, Vakser, Ilya A., Dapkunas, Justas, Olechnovic, Kliment, Venclovas, Česlovas, Duan, Rui, Qiu, Liming, Xu, Xianjin, Zhang, Shuang, Zou, Xiaoqin, and Wodak, Shoshana J.
- Abstract
We present the results for CAPRI Round 50, the fourth joint CASP-CAPRI protein assembly prediction challenge. The Round comprised a total of twelve targets, including six dimers, three trimers, and three higher-order oligomers. Four of these were easy targets, for which good structural templates were available either for the full assembly, or for the main interfaces (of the higher-order oligomers). Eight were difficult targets for which only distantly related templates were found for the individual subunits. Twenty-five CAPRI groups including eight automatic servers submitted ~1250 models per target. Twenty groups including six servers participated in the CAPRI scoring challenge submitted ~190 models per target. The accuracy of the predicted models was evaluated using the classical CAPRI criteria. The prediction performance was measured by a weighted scoring scheme that takes into account the number of models of acceptable quality or higher submitted by each group as part of their five top-ranking models. Compared to the previous CASP-CAPRI challenge, top performing groups submitted such models for a larger fraction (70–75%) of the targets in this Round, but fewer of these models were of high accuracy. Scorer groups achieved stronger performance with more groups submitting correct models for 70–80% of the targets or achieving high accuracy predictions. Servers performed less well in general, except for the MDOCKPP and LZERD servers, who performed on par with human groups. In addition to these results, major advances in methodology are discussed, providing an informative overview of where the prediction of protein assemblies currently stands.
- Published
- 2021
17. Structural Consequences of Disease‐Related Mutations for Protein–Protein Interactions
- Author
-
Rosell, Mireia, primary and Fernández‐Recio, Juan, additional
- Published
- 2020
- Full Text
- View/download PDF
18. Assembly prediction in CASP14 with pyDock ab initio docking and scoring
- Author
-
Rosell, Mireia, Rodríguez-Lumbreras, Luis A., and Fernández-Recio, Juan
- Abstract
Trabajo presentado en 14th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction CASP14, celebrado online entre los meses de mayo y septiembre de 2020, In the past 3rd common CASP-CAPRI Assembly Prediction challenge, our modeling approach, integrating ab initio docking, template-based modeling, distance-based restraints, low-resolution structural data and symmetry constraints, yielded excellent performance, ranking 2nd among CAPRI predictors, and 1st among CAPRI scorers1. Here we describe our participation in the CASP14 Assembly category, as part of the 4th common CASP-CAPRI Assembly Prediction challenge (CAPRI Round 50). We have participated as human predictors, human scorers, and server scorers, in all the 18 proposed targets, consisting in four hetero-dimers (A1B1), six homodimers (A2), two homo-trimers (A3), two homo-tetramers (A4), one hetero-nonamer (A3B3C3), one homo-20mer (A20), one hetero-27mer (A6B3C12D6), and one homo-240mer (A240).
- Published
- 2020
19. Docking-based identification of small-molecule binding sites at protein-protein interfaces
- Author
-
Barcelona Supercomputing Center, Rosell, Mireia, Fernández Recio, Juan, Barcelona Supercomputing Center, Rosell, Mireia, and Fernández Recio, Juan
- Abstract
Protein-protein interactions play an essential role in many biological processes, and their perturbation is a major cause of disease. The use of small molecules to modulate them is attracting increased attention, but protein interfaces generally do not have clear cavities for binding small compounds. A proposed strategy is to target interface hot-spot residues, but their identification through computational approaches usually require the complex structure, which is not often available. In this context, pyDock energy-based docking and scoring can predict hot-spots on the unbound proteins, thus not requiring the complex structure. Here, we have devised a new strategy to detect protein–protein inhibitor binding sites, based on the integration of molecular dynamics for the generation of transient cavities, and docking-based interface hot-spot prediction for the selection of the suitable cavities. This integrative approach has been validated on a test set formed by protein–protein complexes with known inhibitors for which complete structural data of unbound molecules and complexes is available. The results show that local conformational sampling with short molecular dynamics can generate transient cavities similar to the known inhibitor binding sites, and that docking simulations can identify the best cavities with similar predictive accuracy as when knowing the real interface. In a few cases, these predicted pockets are shown to be suitable for protein–ligand docking. The proposed strategy will be useful for many protein–protein complexes for which there is no available structure, as long as the the unbound proteins do not deviate dramatically from the bound conformations., This research was funded by the EU European Regional Development Fund (ERDF) through the Program Interreg V-A Spain-France-Andorra POCTEFA (grant PIREPRED), and by the Spanish Ministry of Science and Innovation (grant PID2019-110167RB-I00). M.R. is recipient of an FPI fellowship from the Severo Ochoa program., Peer Reviewed, Postprint (published version)
- Published
- 2020
20. Modeling of protein complexes and molecular assemblies with pyDock
- Author
-
Barcelona Supercomputing Center, Kihara, D., Rosell, Mireia, Rodríguez-Lumbreras, Luis Angel, Fernández-Recio, Juan, Barcelona Supercomputing Center, Kihara, D., Rosell, Mireia, Rodríguez-Lumbreras, Luis Angel, and Fernández-Recio, Juan
- Abstract
The study of the 3D structural details of protein interactions is essential to understand biomolecular functions at the molecular level. In this context, the limited availability of experimental structures of protein–protein complexes at atomic resolution is propelling the development of computational docking methods that aim to complement the current structural coverage of protein interactions. One of these docking approaches is pyDock, which uses van der Waals, electrostatics, and desolvation energy to score docking poses generated by a variety of sampling methods, typically FTDock or ZDOCK. The method has shown a consistently good prediction performance in community-wide assessment experiments like CAPRI or CASP, and has provided biological insights and insightful interpretation of experiments by modeling many biomolecular interactions of biomedical and biotechnological interest. Here, we describe in detail how to perform structural modeling of protein assemblies with pyDock, and the application of its modules to different biomolecular recognition phenomena, such as modeling of binding mode, interface, and hot-spot prediction, use of restraints based on experimental data, inclusion of low-resolution structural data, binding affinity estimation, or modeling of homo- and hetero-oligomeric assemblies., This work was supported by the Spanish Ministry of Science (grant BIO2016-79930-R)., Peer Reviewed, Postprint (author's final draft)
- Published
- 2020
21. Integrative modeling of protein-protein interactions with pyDock for the new docking challenges
- Author
-
Ministerio de Economía y Competitividad (España), European Commission, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Romero-Durana, Miguel, Jiménez-García, Brian, Díaz, Lucía, Fernández-Recio, Juan, Ministerio de Economía y Competitividad (España), European Commission, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Romero-Durana, Miguel, Jiménez-García, Brian, Díaz, Lucía, and Fernández-Recio, Juan
- Abstract
The seventh CAPRI edition imposed new challenges to the modeling of protein-protein complexes, such as multimeric oligomerization, protein-peptide, and protein-oligosaccharide interactions. Many of the proposed targets needed the efficient integration of rigid-body docking, template-based modeling, flexible optimization, multiparametric scoring, and experimental restraints. This was especially relevant for the multimolecular assemblies proposed in the CASP12-CAPRI37 and CASP13-CAPRI46 joint rounds, which were described and evaluated elsewhere. Focusing on the purely CAPRI targets of this edition (rounds 38-45), we have participated in all 17 assessed targets (considering heteromeric and homomeric interfaces in T125 as two separate targets) both as predictors and as scorers, by using integrative modeling based on our docking and scoring approaches: pyDock, IRaPPA, and LightDock. In the protein-protein and protein-peptide targets, we have also participated with our webserver (pyDockWeb). On these 17 CAPRI targets, we submitted acceptable models (or better) within our top 10 models for 10 targets as predictors, 13 targets as scorers, and 4 targets as servers. In summary, our participation in this CAPRI edition confirmed the capabilities of pyDock for the scoring of docking models, increasingly used within the context of integrative modeling of protein interactions and multimeric assemblies.
- Published
- 2020
22. Application of computational docking to the characterization and modulation of protein-protein interactions of biomedical interest
- Author
-
Fernández-Recio, Juan, Rosell, Mireia, Fernández-Recio, Juan, and Rosell, Mireia
- Abstract
The study of the 3D structural details of protein interactions is essential to understand biomolecular functions at the molecular level. In this context, the limited availability of experimental structures of protein-protein complexes at atomic resolution is propelling the development of computational docking methods that aim to complement the current structural coverage of protein interactions. One of these docking approaches is pyDock, which uses van der Waals, electrostatics, and desolvation energy to score docking poses generated by a variety of sampling methods, typically FTDock or ZDOCK. The method has shown a consistently good prediction performance in community-wide assessment experiments like CAPRI or CASP, and has provided biological insights and insightful interpretation of experiments by modeling many biomolecular interactions of biomedical and biotechnological interest. Here, we describe our approach using pyDock for the structural modeling of protein assemblies and the application of its modules to different biomolecular recognition phenomena, such as modeling of binding mode, interface, and hot-spot prediction, use of restraints based on experimental data, the inclusion of lowresolution structural data, binding affinity estimation, or modeling of homo- and heterooligomeric assemblies. The integration of template-based and ab initio docking approaches is emerging as the optimal strategy for modeling protein complexes and multi-molecular assemblies. We will review the new methodological advances on ab initio docking and integrative modeling. The seventh CAPRI edition imposed new challenges to the modeling of protein-protein complexes, such as multimeric oligomerization, protein-peptide, and proteinoligosaccharide interactions. Many of the proposed targets needed the efficient integration of rigid-body docking, template-based modeling, flexible optimization, multi-parametric scoring, and experimental restraints. This was especially relevant for the multi
- Published
- 2020
23. Modeling of Protein Complexes and Molecular Assemblies with pyDock
- Author
-
Ministerio de Economía y Competitividad (España), Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Fernández-Recio, Juan, Ministerio de Economía y Competitividad (España), Rosell, Mireia, Rodríguez-Lumbreras, Luis A., and Fernández-Recio, Juan
- Abstract
The study of the 3D structural details of protein interactions is essential to understand biomolecular functions at the molecular level. In this context, the limited availability of experimental structures of protein–protein complexes at atomic resolution is propelling the development of computational docking methods that aim to complement the current structural coverage of protein interactions. One of these docking approaches is pyDock, which uses van der Waals, electrostatics, and desolvation energy to score docking poses generated by a variety of sampling methods, typically FTDock or ZDOCK. The method has shown a consistently good prediction performance in community-wide assessment experiments like CAPRI or CASP, and has provided biological insights and insightful interpretation of experiments by modeling many biomolecular interactions of biomedical and biotechnological interest. Here, we describe in detail how to perform structural modeling of protein assemblies with pyDock, and the application of its modules to different biomolecular recognition phenomena, such as modeling of binding mode, interface, and hot-spot prediction, use of restraints based on experimental data, inclusion of low-resolution structural data, binding affinity estimation, or modeling of homo- and hetero-oligomeric assemblies.
- Published
- 2020
24. Docking-based identification of small-molecule binding sites at protein-protein interfaces
- Author
-
European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Rosell, Mireia, Fernández-Recio, Juan, European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Agencia Estatal de Investigación (España), Rosell, Mireia, and Fernández-Recio, Juan
- Abstract
Protein-protein interactions play an essential role in many biological processes, and their perturbation is a major cause of disease. The use of small molecules to modulate them is attracting increased attention, but protein interfaces generally do not have clear cavities for binding small compounds. A proposed strategy is to target interface hot-spot residues, but their identification through computational approaches usually require the complex structure, which is not often available. In this context, pyDock energy-based docking and scoring can predict hot-spots on the unbound proteins, thus not requiring the complex structure. Here, we have devised a new strategy to detect protein–protein inhibitor binding sites, based on the integration of molecular dynamics for the generation of transient cavities, and docking-based interface hot-spot prediction for the selection of the suitable cavities. This integrative approach has been validated on a test set formed by protein–protein complexes with known inhibitors for which complete structural data of unbound molecules and complexes is available. The results show that local conformational sampling with short molecular dynamics can generate transient cavities similar to the known inhibitor binding sites, and that docking simulations can identify the best cavities with similar predictive accuracy as when knowing the real interface. In a few cases, these predicted pockets are shown to be suitable for protein–ligand docking. The proposed strategy will be useful for many protein–protein complexes for which there is no available structure, as long as the the unbound proteins do not deviate dramatically from the bound conformations.
- Published
- 2020
25. Docking approaches for modeling multi-molecular assemblies
- Author
-
Ministerio de Economía y Competitividad (España), European Commission, Rosell, Mireia, Fernández-Recio, Juan, Ministerio de Economía y Competitividad (España), European Commission, Rosell, Mireia, and Fernández-Recio, Juan
- Abstract
Computational docking approaches aim to overcome the limited availability of experimental structural data on protein–protein interactions, which are key in biology. The field is rapidly moving from the traditional docking methodologies for modeling of binary complexes to more integrative approaches using template-based, data-driven modeling of multi-molecular assemblies. We will review here the predictive capabilities of current docking methods in blind conditions, based on the results from the most recent community-wide blind experiments. Integration of template-based and ab initio docking approaches is emerging as the optimal strategy for modeling protein complexes and multimolecular assemblies. We will also review the new methodological advances on ab initio docking and integrative modeling.
- Published
- 2020
26. Chapter Seven - Structural Prediction of Protein–Protein Interactions by Docking: Application to Biomedical Problems
- Author
-
Barradas-Bautista, Didier, Rosell, Mireia, Pallara, Chiara, and Fernández-Recio, Juan
- Published
- 2018
- Full Text
- View/download PDF
27. Characteritzation of pathological mutations affecting protein-protein interactions for drug discovery
- Author
-
Rosell, Mireia and Fernández-Recio, Juan
- Subjects
Informàtica::Aplicacions de la informàtica::Bioinformàtica [Àrees temàtiques de la UPC] ,Hot-spots ,Binding effect ,Bioinformàtica ,Bioinformatics ,High performance computing ,Structural variants ,Informàtica::Arquitectura de computadors [Àrees temàtiques de la UPC] ,Càlcul intensiu (Informàtica) ,Protein-protein docking - Published
- 2018
28. Integrative modeling of protein‐protein interactions with pyDock for the new docking challenges
- Author
-
Rosell, Mireia, primary, Rodríguez‐Lumbreras, Luis A., additional, Romero‐Durana, Miguel, additional, Jiménez‐García, Brian, additional, Díaz, Lucía, additional, and Fernández‐Recio, Juan, additional
- Published
- 2019
- Full Text
- View/download PDF
29. Blind prediction of homo‐ and hetero‐protein complexes: The CASP13‐CAPRI experiment
- Author
-
Lensink, Marc F., primary, Brysbaert, Guillaume, additional, Nadzirin, Nurul, additional, Velankar, Sameer, additional, Chaleil, Raphaël A. G., additional, Gerguri, Tereza, additional, Bates, Paul A., additional, Laine, Elodie, additional, Carbone, Alessandra, additional, Grudinin, Sergei, additional, Kong, Ren, additional, Liu, Ran‐Ran, additional, Xu, Xi‐Ming, additional, Shi, Hang, additional, Chang, Shan, additional, Eisenstein, Miriam, additional, Karczynska, Agnieszka, additional, Czaplewski, Cezary, additional, Lubecka, Emilia, additional, Lipska, Agnieszka, additional, Krupa, Paweł, additional, Mozolewska, Magdalena, additional, Golon, Łukasz, additional, Samsonov, Sergey, additional, Liwo, Adam, additional, Crivelli, Silvia, additional, Pagès, Guillaume, additional, Karasikov, Mikhail, additional, Kadukova, Maria, additional, Yan, Yumeng, additional, Huang, Sheng‐You, additional, Rosell, Mireia, additional, Rodríguez‐Lumbreras, Luis A., additional, Romero‐Durana, Miguel, additional, Díaz‐Bueno, Lucía, additional, Fernandez‐Recio, Juan, additional, Christoffer, Charles, additional, Terashi, Genki, additional, Shin, Woong‐Hee, additional, Aderinwale, Tunde, additional, Maddhuri Venkata Subraman, Sai Raghavendra, additional, Kihara, Daisuke, additional, Kozakov, Dima, additional, Vajda, Sandor, additional, Porter, Kathryn, additional, Padhorny, Dzmitry, additional, Desta, Israel, additional, Beglov, Dmitri, additional, Ignatov, Mikhail, additional, Kotelnikov, Sergey, additional, Moal, Iain H., additional, Ritchie, David W., additional, Chauvot de Beauchêne, Isaure, additional, Maigret, Bernard, additional, Devignes, Marie‐Dominique, additional, Ruiz Echartea, Maria E., additional, Barradas‐Bautista, Didier, additional, Cao, Zhen, additional, Cavallo, Luigi, additional, Oliva, Romina, additional, Cao, Yue, additional, Shen, Yang, additional, Baek, Minkyung, additional, Park, Taeyong, additional, Woo, Hyeonuk, additional, Seok, Chaok, additional, Braitbard, Merav, additional, Bitton, Lirane, additional, Scheidman‐Duhovny, Dina, additional, Dapkūnas, Justas, additional, Olechnovič, Kliment, additional, Venclovas, Česlovas, additional, Kundrotas, Petras J., additional, Belkin, Saveliy, additional, Chakravarty, Devlina, additional, Badal, Varsha D., additional, Vakser, Ilya A., additional, Vreven, Thom, additional, Vangaveti, Sweta, additional, Borrman, Tyler, additional, Weng, Zhiping, additional, Guest, Johnathan D., additional, Gowthaman, Ragul, additional, Pierce, Brian G., additional, Xu, Xianjin, additional, Duan, Rui, additional, Qiu, Liming, additional, Hou, Jie, additional, Ryan Merideth, Benjamin, additional, Ma, Zhiwei, additional, Cheng, Jianlin, additional, Zou, Xiaoqin, additional, Koukos, Panagiotis I., additional, Roel‐Touris, Jorge, additional, Ambrosetti, Francesco, additional, Geng, Cunliang, additional, Schaarschmidt, Jörg, additional, Trellet, Mikael E., additional, Melquiond, Adrien S. J., additional, Xue, Li, additional, Jiménez‐García, Brian, additional, van Noort, Charlotte W., additional, Honorato, Rodrigo V., additional, Bonvin, Alexandre M. J. J., additional, and Wodak, Shoshana J., additional
- Published
- 2019
- Full Text
- View/download PDF
30. Structural and Computational Characterization of Disease-Related Mutations Involved in Protein-Protein Interfaces
- Author
-
Navío, Dàmaris, primary, Rosell, Mireia, additional, Aguirre, Josu, additional, de la Cruz, Xavier, additional, and Fernández-Recio, Juan, additional
- Published
- 2019
- Full Text
- View/download PDF
31. Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment
- Author
-
Agence Nationale de la Recherche (France), Cancer Research UK, European Commission, Medical Research Council (UK), National Institutes of Health (US), National Natural Science Foundation of China, National Research Foundation of Korea, National Science Foundation (US), Ministerio de Economía y Competitividad (España), Università degli Studi di Napoli PARTHENOPE, Wellcome Trust, Lensink, Marc F., Brysbaert, Guillaume, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphaël A. G., Gerguri, Tereza, Bates, Paul A., Laine, Elodie, Carbone, Alessandra, Grudinin, Sergei, Kong, Ren, Weng, Zhiping, Guest, Johnathan D., Gowthaman, Ragul, Pierce, Brian G., Xu, Xianjin, Duan, Rui, Qiu, Liming, Hou, Jie, Merideth, Benjamin Ryan, Ma, Zhiwei, Cheng, Jianlin, Zou, Xiaoqin, Koukos, Panagiotis I., Roel-Touris, Jorge, Ambrosetti, Francesco, Geng, Cunliang, Schaarschmidt, Jörg, Trellet, Mikael E., Melquiond, Adrien S. J., Xue, Li, Jiménez-García, Brian, Noort, Charlotte W. van, Honorato, Rodrigo V., Bonvin, A. M. J. J., Wodak, Shoshana J., Liu, Ran-Ran, Xu, Xi-Ming, Shi, Hang, Chang, Shan, Eisenstein, Miriam, Karczynska, Agnieszka, Czaplewski, Cezary, Emilia Lubecka, Emilia, Lipska, Agnieszka, Krupa, Paweł, Mozolewska, Magdalena, Golon, Łukasz, Samsonov, Sergey, Liwo, Adam, Crivelli, Silvia, Pagès, Guillaume, Karasikov, Mikhaill, Kadukova, Maria, Yan, Yumeng, Huang, Sheng-You, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Romero-Durana, Miguel, Díaz-Bueno, Lucía, Fernández-Recio, Juan, Christoffer, Charles, Terashi, Genki, Shin, Woong-Hee, Aderinwale, Tunde, Venkata Subraman, Sai Raghavendra Maddhuri, Kihara, Daisuke, Kozakov, Dima, Vajda, Sandor, Porter, Kathryn, Padhorny, Dzmitry, Desta, Israel, Beglov, Dmitri, Ignatov, Mikhail, Kotelnikov, Sergey, Moal, Iain H., Ritchie, David W., Chauvot de Beauchêne, Isaure, Maigret, Bernard, Devignes, Marie-Dominique, Ruiz Echartea, Maria E., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Cao, Yue, Shen, Yang, Baek, Minkyung, Park, Taeyong, Woo, Hyeonuk, Seok, Chaok, Braitbard, Merav, Bitton, Lirane, Scheidman-Duhovny, Dina, Dapkunas, Justas, Olechnovic, Kliment, Venclovas, Česlovas, Kundrotas, Petras J., Belkin, Saveliy, Chakravarty, Devlina, Badal, Varsha D., Vakser, Ilya A., Vreven, Thom, Vangaveti, Sweta, Borrman, Tyler, Agence Nationale de la Recherche (France), Cancer Research UK, European Commission, Medical Research Council (UK), National Institutes of Health (US), National Natural Science Foundation of China, National Research Foundation of Korea, National Science Foundation (US), Ministerio de Economía y Competitividad (España), Università degli Studi di Napoli PARTHENOPE, Wellcome Trust, Lensink, Marc F., Brysbaert, Guillaume, Nadzirin, Nurul, Velankar, Sameer, Chaleil, Raphaël A. G., Gerguri, Tereza, Bates, Paul A., Laine, Elodie, Carbone, Alessandra, Grudinin, Sergei, Kong, Ren, Weng, Zhiping, Guest, Johnathan D., Gowthaman, Ragul, Pierce, Brian G., Xu, Xianjin, Duan, Rui, Qiu, Liming, Hou, Jie, Merideth, Benjamin Ryan, Ma, Zhiwei, Cheng, Jianlin, Zou, Xiaoqin, Koukos, Panagiotis I., Roel-Touris, Jorge, Ambrosetti, Francesco, Geng, Cunliang, Schaarschmidt, Jörg, Trellet, Mikael E., Melquiond, Adrien S. J., Xue, Li, Jiménez-García, Brian, Noort, Charlotte W. van, Honorato, Rodrigo V., Bonvin, A. M. J. J., Wodak, Shoshana J., Liu, Ran-Ran, Xu, Xi-Ming, Shi, Hang, Chang, Shan, Eisenstein, Miriam, Karczynska, Agnieszka, Czaplewski, Cezary, Emilia Lubecka, Emilia, Lipska, Agnieszka, Krupa, Paweł, Mozolewska, Magdalena, Golon, Łukasz, Samsonov, Sergey, Liwo, Adam, Crivelli, Silvia, Pagès, Guillaume, Karasikov, Mikhaill, Kadukova, Maria, Yan, Yumeng, Huang, Sheng-You, Rosell, Mireia, Rodríguez-Lumbreras, Luis A., Romero-Durana, Miguel, Díaz-Bueno, Lucía, Fernández-Recio, Juan, Christoffer, Charles, Terashi, Genki, Shin, Woong-Hee, Aderinwale, Tunde, Venkata Subraman, Sai Raghavendra Maddhuri, Kihara, Daisuke, Kozakov, Dima, Vajda, Sandor, Porter, Kathryn, Padhorny, Dzmitry, Desta, Israel, Beglov, Dmitri, Ignatov, Mikhail, Kotelnikov, Sergey, Moal, Iain H., Ritchie, David W., Chauvot de Beauchêne, Isaure, Maigret, Bernard, Devignes, Marie-Dominique, Ruiz Echartea, Maria E., Barradas-Bautista, Didier, Cao, Zhen, Cavallo, Luigi, Oliva, Romina, Cao, Yue, Shen, Yang, Baek, Minkyung, Park, Taeyong, Woo, Hyeonuk, Seok, Chaok, Braitbard, Merav, Bitton, Lirane, Scheidman-Duhovny, Dina, Dapkunas, Justas, Olechnovic, Kliment, Venclovas, Česlovas, Kundrotas, Petras J., Belkin, Saveliy, Chakravarty, Devlina, Badal, Varsha D., Vakser, Ilya A., Vreven, Thom, Vangaveti, Sweta, and Borrman, Tyler
- Abstract
We present the results for CAPRI Round 46, the third joint CASP‐CAPRI protein assembly prediction challenge. The Round comprised a total of 20 targets including 14 homo‐oligomers and 6 heterocomplexes. Eight of the homo‐oligomer targets and one heterodimer comprised proteins that could be readily modeled using templates from the Protein Data Bank, often available for the full assembly. The remaining 11 targets comprised 5 homodimers, 3 heterodimers, and two higher‐order assemblies. These were more difficult to model, as their prediction mainly involved “ab‐initio” docking of subunit models derived from distantly related templates. A total of ~30 CAPRI groups, including 9 automatic servers, submitted on average ~2000 models per target. About 17 groups participated in the CAPRI scoring rounds, offered for most targets, submitting ~170 models per target. The prediction performance, measured by the fraction of models of acceptable quality or higher submitted across all predictors groups, was very good to excellent for the nine easy targets. Poorer performance was achieved by predictors for the 11 difficult targets, with medium and high quality models submitted for only 3 of these targets. A similar performance “gap” was displayed by scorer groups, highlighting yet again the unmet challenge of modeling the conformational changes of the protein components that occur upon binding or that must be accounted for in template‐based modeling. Our analysis also indicates that residues in binding interfaces were less well predicted in this set of targets than in previous Rounds, providing useful insights for directions of future improvements.
- Published
- 2019
32. Structural and Computational Characterization of Disease-Related Mutations Involved in Protein-Protein Interfaces
- Author
-
Consejo Superior de Investigaciones Científicas (España), European Commission, Ministerio de Economía y Competitividad (España), Interreg POCTEFA, Navío, Dàmaris, Rosell, Mireia, Aguirre, Josu, Cruz, Xavier de la, Fernández-Recio, Juan, Consejo Superior de Investigaciones Científicas (España), European Commission, Ministerio de Economía y Competitividad (España), Interreg POCTEFA, Navío, Dàmaris, Rosell, Mireia, Aguirre, Josu, Cruz, Xavier de la, and Fernández-Recio, Juan
- Abstract
One of the known potential effects of disease-causing amino acid substitutions in proteins is to modulate protein-protein interactions (PPIs). To interpret such variants at the molecular level and to obtain useful information for prediction purposes, it is important to determine whether they are located at protein-protein interfaces, which are composed of two main regions, core and rim, with different evolutionary conservation and physicochemical properties. Here we have performed a structural, energetics and computational analysis of interactions between proteins hosting mutations related to diseases detected in newborn screening. Interface residues were classified as core or rim, showing that the core residues contribute the most to the binding free energy of the PPI. Disease-causing variants are more likely to occur at the interface core region rather than at the interface rim (p < 0.0001). In contrast, neutral variants are more often found at the interface rim or at the non-interacting surface rather than at the interface core region. We also found that arginine, tryptophan, and tyrosine are over-represented among mutated residues leading to disease. These results can enhance our understanding of disease at molecular level and thus contribute towards personalized medicine by helping clinicians to provide adequate diagnosis and treatments.
- Published
- 2019
33. Structural Prediction of Protein¿Protein Interactions by Docking: Application to Biomedical Problems
- Author
-
Barradas-Bautista, Didier, Rosell, Mireia, Pallara, Chiara, Fernández-Recio, Juan, Ministerio de Economía y Competitividad (España), Consejo Nacional de Ciencia y Tecnología (México), and Fundación Severo Ochoa
- Subjects
Hot-spot residues ,Drug discovery ,Protein–protein interactions ,Pathological mutations ,Complex structure ,Computational docking ,Edgetic effect ,Interface prediction - Abstract
A huge amount of genetic information is available thanks to the recent advances in sequencing technologies and the larger computational capabilities, but the interpretation of such genetic data at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but are specifically interacting with other proteins and biomolecules, forming intricate interaction networks that are essential for the majority of cell processes and pathological conditions. Thus, characterizing such interaction networks is an important step in understanding how information flows from gene to phenotype. Indeed, structural characterization of protein–protein interactions at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to drug discovery. However, despite the advances of experimental structural determination, the number of interactions for which there is available structural data is still very small. In this context, a complementary approach is computational modeling of protein interactions by docking, which is usually composed of two major phases: (i) sampling of the possible binding modes between the interacting molecules and (ii) scoring for the identification of the correct orientations. In addition, prediction of interface and hot-spot residues is very useful in order to guide and interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects of the interaction. Computational docking is already being applied to specific biomedical problems within the context of personalized medicine, for instance, helping to interpret pathological mutations involved in protein–protein interactions, or providing modeled structural data for drug discovery targeting protein–protein interactions. Spanish Ministry of Economy grant number BIO2016-79960-R; D.B.B. is supported by a predoctoral fellowship from CONACyT; M.R. is supported by an FPI fellowship from the Severo Ochoa program. We are grateful to the Joint BSC-CRG-IRB Programme in Computational Biology.
- Published
- 2018
34. Docking-based tools for discovery of protein-protein modulators and Influence of protein flexibility on Virtual Screening (V.S)
- Author
-
Rosell, Mireia and Iglesias, Jelisa
- Subjects
Informàtica::Aplicacions de la informàtica::Bioinformàtica [Àrees temàtiques de la UPC] ,Bioinformàtica ,Bioinformatics ,High performance computing ,Càlcul intensiu (Informàtica) ,Informàtica::Arquitectura de computadors [Àrees temàtiques de la UPC] - Published
- 2018
35. La traducció automàtica en la pràctica: aplicacions, dificultats i estratègies de desenvolupament
- Author
-
Ginestí Rosell, Mireia and Forcada Zubizarreta, Mikel L.
- Subjects
sistema Apertium ,lcsh:Language and Literature ,lcsh:Philology. Linguistics ,UNESCO::CIENCIAS DE LAS ARTES Y LAS LETRAS ,traducció automàtica ,Lingüística ,teconologia lingüística ,lcsh:P1-1091 ,Filologías ,CIENCIAS DE LAS ARTES Y LAS LETRAS [UNESCO] ,lcsh:P - Abstract
En aquest article es descriuen els sistemes de traducció automàtica, les seves aplicacions actuals i les principals dificultats que ha d’afrontar aquesta tecnologia lingüística. Es presenta el sistema Apertium, una plataforma de traducció automàtica de codi obert sobre la qual s’han construït diversos traductors automàtics entre diferents parells d’idiomes, en els quals està inclòs el català. Basant-se en l’experiència dels autors, es descriuen algunes tensions que es donen en el desenvolupament de les dades lingüístiques d’un traductor automàtic i les solucions de compromís a què cal arribar per a construir sistemes útils.
- Published
- 2014
36. Integrative modeling of protein‐protein interactions with pyDock for the new docking challenges.
- Author
-
Rosell, Mireia, Rodríguez‐Lumbreras, Luis A., Romero‐Durana, Miguel, Jiménez‐García, Brian, Díaz, Lucía, and Fernández‐Recio, Juan
- Abstract
The seventh CAPRI edition imposed new challenges to the modeling of protein‐protein complexes, such as multimeric oligomerization, protein‐peptide, and protein‐oligosaccharide interactions. Many of the proposed targets needed the efficient integration of rigid‐body docking, template‐based modeling, flexible optimization, multiparametric scoring, and experimental restraints. This was especially relevant for the multimolecular assemblies proposed in the CASP12‐CAPRI37 and CASP13‐CAPRI46 joint rounds, which were described and evaluated elsewhere. Focusing on the purely CAPRI targets of this edition (rounds 38‐45), we have participated in all 17 assessed targets (considering heteromeric and homomeric interfaces in T125 as two separate targets) both as predictors and as scorers, by using integrative modeling based on our docking and scoring approaches: pyDock, IRaPPA, and LightDock. In the protein‐protein and protein‐peptide targets, we have also participated with our webserver (pyDockWeb). On these 17 CAPRI targets, we submitted acceptable models (or better) within our top 10 models for 10 targets as predictors, 13 targets as scorers, and 4 targets as servers. In summary, our participation in this CAPRI edition confirmed the capabilities of pyDock for the scoring of docking models, increasingly used within the context of integrative modeling of protein interactions and multimeric assemblies. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
37. Hot-spot analysis for drug discovery targeting protein-protein interactions
- Author
-
Barcelona Supercomputing Center, Rosell, Mireia, Fernández-Recio, Juan, Barcelona Supercomputing Center, Rosell, Mireia, and Fernández-Recio, Juan
- Abstract
Introduction: Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis., This work has been funded by grants BIO2016-79930-R and SEV-2015-0493 from the Spanish Ministry of Economy, Industry and Competitiveness, and grant EFA086/15 from EU Interreg V POCTEFA. M Rosell is supported by an FPI fellowship from the Severo Ochoa program. The authors are grateful for the support of the the Joint BSC-CRG-IRB Programme in Computational Biology., Peer Reviewed, Postprint (author's final draft)
- Published
- 2018
38. Structural Prediction of Protein¿Protein Interactions by Docking: Application to Biomedical Problems
- Author
-
Ministerio de Economía y Competitividad (España), Consejo Nacional de Ciencia y Tecnología (México), Fundación Severo Ochoa, Barradas-Bautista, Didier, Rosell, Mireia, Pallara, Chiara, Fernández-Recio, Juan, Ministerio de Economía y Competitividad (España), Consejo Nacional de Ciencia y Tecnología (México), Fundación Severo Ochoa, Barradas-Bautista, Didier, Rosell, Mireia, Pallara, Chiara, and Fernández-Recio, Juan
- Abstract
A huge amount of genetic information is available thanks to the recent advances in sequencing technologies and the larger computational capabilities, but the interpretation of such genetic data at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but are specifically interacting with other proteins and biomolecules, forming intricate interaction networks that are essential for the majority of cell processes and pathological conditions. Thus, characterizing such interaction networks is an important step in understanding how information flows from gene to phenotype. Indeed, structural characterization of protein–protein interactions at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to drug discovery. However, despite the advances of experimental structural determination, the number of interactions for which there is available structural data is still very small. In this context, a complementary approach is computational modeling of protein interactions by docking, which is usually composed of two major phases: (i) sampling of the possible binding modes between the interacting molecules and (ii) scoring for the identification of the correct orientations. In addition, prediction of interface and hot-spot residues is very useful in order to guide and interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects of the interaction. Computational docking is already being applied to specific biomedical problems within the context of personalized medicine, for instance, helping to interpret pathological mutations involved in protein–protein interactions, or providing modeled structural data for drug discovery targeting protein–protein interactions.
- Published
- 2018
39. Hot-spot analysis for drug discovery targeting protein-protein interactions
- Author
-
Ministerio de Economía, Industria y Competitividad (España), European Commission, Rosell, Mireia, Fernández-Recio, Juan, Ministerio de Economía, Industria y Competitividad (España), European Commission, Rosell, Mireia, and Fernández-Recio, Juan
- Abstract
[Introduction] Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions., [Areas covered] In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions., [Expert opinion] A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis
- Published
- 2018
40. Structural Prediction of Protein–Protein Interactions by Docking: Application to Biomedical Problems
- Author
-
Barcelona Supercomputing Center, Barradas-Bautista, Didier, Rosell, Mireia, Pallara, Chiara, Fernández-Recio, Juan, Barcelona Supercomputing Center, Barradas-Bautista, Didier, Rosell, Mireia, Pallara, Chiara, and Fernández-Recio, Juan
- Abstract
A huge amount of genetic information is available thanks to the recent advances in sequencing technologies and the larger computational capabilities, but the interpretation of such genetic data at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but are specifically interacting with other proteins and biomolecules, forming intricate interaction networks that are essential for the majority of cell processes and pathological conditions. Thus, characterizing such interaction networks is an important step in understanding how information flows from gene to phenotype. Indeed, structural characterization of protein–protein interactions at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to drug discovery. However, despite the advances of experimental structural determination, the number of interactions for which there is available structural data is still very small. In this context, a complementary approach is computational modeling of protein interactions by docking, which is usually composed of two major phases: (i) sampling of the possible binding modes between the interacting molecules and (ii) scoring for the identification of the correct orientations. In addition, prediction of interface and hot-spot residues is very useful in order to guide and interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects of the interaction. Computational docking is already being applied to specific biomedical problems within the context of personalized medicine, for instance, helping to interpret pathological mutations involved in protein–protein interactions, or providing modeled structural data for drug discovery targeting protein–protein interactions., Spanish Ministry of Economy grant number BIO2016-79960-R; D.B.B. is supported by a predoctoral fellowship from CONACyT; M.R. is supported by an FPI fellowship from the Severo Ochoa program. We are grateful to the Joint BSC-CRG-IRB Programme in Computational Biology., Peer Reviewed, Postprint (author's final draft)
- Published
- 2018
41. Hot-spot analysis for drug discovery targeting protein-protein interactions
- Author
-
Rosell, Mireia, primary and Fernández-Recio, Juan, additional
- Published
- 2018
- Full Text
- View/download PDF
42. Characteritzation of protein-protein interfaces and identification of transient cavities for its modulation
- Author
-
Rosell, Mireia and Fernandez-Recio, Juan
- Subjects
PyDock ,Protein-protein interactions ,PPIs ,MD ,Normalized Interface Propensity ,NIP ,High performance computing ,Molecular dynamics ,Informàtica::Arquitectura de computadors [Àrees temàtiques de la UPC] ,Interaccions proteïna-proteïna ,Càlcul intensiu (Informàtica) ,Enginyeria química::Química orgànica::Bioquímica [Àrees temàtiques de la UPC] - Abstract
Protein-protein interactions (PPIs) play an essential role in many biological processes, including disease conditions. Strategies to modulate PPIs with small molecules have therefore attracted increasing interest over the last few years, where successful PPI inhibitors have been reported into transient cavities from previously flat PPIfs. Recent studies emphasize on hot-spots (those residues contribute for most of the energy of binding) as promising targets for the modulation of PPI. PyDock is the only computational method that uses docking to predict PPIfs and hot-spots (HS) residues. Using Normalized Interface Propensity (NIP) values derived from rigid-body protein docking simulation, we are able to predict the PPIfs and HS residues without any prior structural knowledge of the complex. We benchmarked the protocol in a small set of protein-protein complexes for which both structural data and PPI inhibitors are known. We present an approach aimed at identifying HS and transient pockets from predicted PPIfs in order to find potential small molecules capable of modulating PPIs. The method uses pyDock to identify PPIfs and HS and molecular dynamics (MD) techniques to describe the possible fluctuations of the interacting proteins in order to suggest transient pockets. Afterwards, we evaluated the validity of predicted HS and pockets for in silico drug design by using ligand docking. We present a strategy based on MD and NIP which allows to identify cavities as potentially good targets to bind inhibitors when there is no information at all about the protein-protein complex structure.
- Published
- 2015
43. Rehabilitació de l'extremitat superior en pacients amb ictus crònic mitjançant Realitat Virtual : revisió sistemàtica
- Author
-
Jolis Rosell, Mireia, Pradell Grané, Marta, Universitat Autònoma de Barcelona. Facultat de Medicina, and Marco Navarro, Esther
- Subjects
Stroke ,Rehabilitació ,Fisioteràpia ,Realitat virtual ,Rehabilitation ,Ictus ,Virtual reality - Abstract
L'ictus representa una de les principals causes de discapacitat en l'adult, comportant una disminució del nivell d'independència de la persona i la qualitat de vida. La Realitat Virtual (RV) és una teràpia que utilitza la tecnologia per a simular un entorn real generat per un ordinador, permetent la interacció i immersió de la persona dins un ambient simulat, mentre es rep un feedback sensorial multimodal. L'objectiu d'aquesta revisió sistemàtica és comprovar l'evidència de la realitat virtual en la rehabilitació funcional de l'extremitat superior en pacients que han patit un ictus, en la fase crònica de la malaltia Stroke is one of the leading causes of disability in adults, decreasing independence levels and quality of life. Virtual Reality (VR) is a therapy that uses technology to simulate a real environment created by a computer, allowing interaction and immersion of the person into a virtual simulated environment, getting a sensorial and multimodal feedback. The aim of this systematic review is to check the evidence of the virtual reality therapy for the functional rehabilitation of the upper limb in chronic stroke patients.
- Published
- 2015
44. An Italian to Catalan RBMT system reusing data from existing language pairs
- Author
-
Toral, Antonio, Ginestí-Rosell, Mireia, Tyers, Francis, and International Workshop on Free/Open-Source Rule-Based Machine Translation (2nd : 2011 : Barcelona)
- Subjects
construït automàticament ,Programari lliure ,italiano-catalán ,automatically built ,Computational linguistics ,Open source software ,Italian to Catalan ,Traducció automàtica ,Software libre ,Traducción automática ,construido automáticamente ,Lingüística computacional ,Rules based machine translation ,RBMT ,language pairs ,italià-català ,Machine translating - Abstract
This paper presents an Italian to Catalan RBMT system automatically built by combining the linguistic data of the existing pairs Spanish-Catalan and Spanish-Italian. A lightweight manual postprocessing is carried out in order to fix inconsistencies in the automatically derived dictionaries and to add very frequent words that are missing according to a corpus analysis. The system is evaluated on the KDE4 corpus and outperforms Google Translate by approximately ten absolute points in terms of both TER and GTM. Aquest article presenta un sistema de traducció automàtica basat en regles de l'italià al català construït automàticament combinant les dades lingüístiques dels parells espanyol-català i espanyol-italià existents. Es duu a terme un postprocessament manual superficial per a corregir incoherències en els diccionaris derivats automàticament i per a afegir-hi paraules molt freqüents que no hi són d'acord amb una anàlisi del corpus. El sistema s'avalua en el corpus KDE4 i supera Google Translate aproximadament per deu punts absoluts tant pel que fa al TER (índex d'edició de traducció) com pel que fa al GTM (mètode de traducció gramàtica). Este artículo presenta un sistema de traducción automática basado en reglas del italiano al catalán construido mediante la combinación de datos lingüísticos de los pares existentes español-catalán y español-italiano. Se lleva a cabo un postprocesamiento manual superficial para corregir incoherencias en los diccionarios derivados automáticamente y para añadir palabras muy frecuentes que no están en ellos según un análisis del corpus. El sistema se evalúa en el corpus KDE4 y supera a Google Translate aproximadamente por diez puntos absolutos tanto por lo que respecta al TER (índice de edición de traducción) como por lo que respecta al GTM (método de traducción gramática).
- Published
- 2010
45. Joint efforts to further develop and incorporate Apertium into the document management flow at Universitat Oberta de Catalunya
- Author
-
Villarejo Muñoz, Luis, Ortiz Rojas, Sergio, and Ginestí Rosell, Mireia
- Subjects
Document management flow ,Universitat Oberta de Catalunya ,Lenguajes y Sistemas Informáticos ,Machine translation ,Apertium - Abstract
This article describes the needs of UOC regarding translation and how these needs are satisfied by Prompsit further developing a free rule-based machine translation system: Apertium. We initially describe the general framework regarding linguistic needs inside UOC. Then, section 2 introduces Apertium and outlines the development scenario that Prompsit executed. After that, section 3 outlines the specific needs of UOC and why Apertium was chosen as the machine translation engine. Then, section 4 describes some of the features specially developed in this project. Section 5 explains how the linguistic data was improved to increase the quality of the output in Catalan and Spanish. And, finally, we draw conclusions and outline further work originating from the project.
- Published
- 2009
46. Development of a free Basque to Spanish machine translation system
- Author
-
Ginestí Rosell, Mireia, Ramírez Sánchez, Gema, Ortiz Rojas, Sergio, Tyers, Francis M., Forcada, Mikel L., Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos, and Transducens
- Subjects
Lengua española ,Lengua vasca ,Basque language ,Lenguajes y Sistemas Informáticos ,Traducción automática ,Spanish language ,Software libre o de código fuente abierto ,Machine translation ,Free/open-source software - Abstract
Este artículo presenta un sistema de traducción automática libre (de código abierto) basado en reglas entre euskera y castellano, construido sobre la plataforma de traducción automática Apertium y pensado para la asimilación, es decir, como ayuda a la comprensión de textos escritos en euskera. Se describe el desarrollo y la situación actual y se muestra una evaluación de la calidad de las traducciones. This paper presents a free (or open-source) rule-based machine translation system between Basque and Spanish, based on the Apertium machine translation platform aimed at assimilation, that is, as a help for the understanding of texts written in Basque. The development process and current status are described and an evaluation is given of the utility of the output. Development was supported and funded by Prompsit Language Engineering S.L. and the Universitat d’Alacant.
- Published
- 2009
47. Desarrollo de un sistema libre de traducción automática del euskera al castellano
- Author
-
Ginestí Rosell, Mireia, Ramírez Sánchez, Gema, Ortiz Rojas, Sergio, Tyers, Francis M., Forcada, Mikel L., Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos, and Transducens
- Subjects
Lengua española ,Lengua vasca ,Basque language ,Lenguajes y Sistemas Informáticos ,Traducción automática ,Spanish language ,Software libre o de código fuente abierto ,Machine translation ,Free/open-source software - Abstract
Este artículo presenta un sistema de traducción automática libre (de código abierto) basado en reglas entre euskera y castellano, construido sobre la plataforma de traducción automática Apertium y pensado para la asimilación, es decir, como ayuda a la comprensión de textos escritos en euskera. Se describe el desarrollo y la situación actual y se muestra una evaluación de la calidad de las traducciones. This paper presents a free (or open-source) rule-based machine translation system between Basque and Spanish, based on the Apertium machine translation platform aimed at assimilation, that is, as a help for the understanding of texts written in Basque. The development process and current status are described and an evaluation is given of the utility of the output. Development was supported and funded by Prompsit Language Engineering S.L. and the Universitat d’Alacant.
- Published
- 2009
48. Apertium, una plataforma de código abierto para el desarrollo de sistemas de traducción automática
- Author
-
Armentano Oller, Carme, Corbí Bellot, Antonio Miguel, Forcada, Mikel L., Ginestí Rosell, Mireia, Montava Belda, Marco A., Ortiz Rojas, Sergio, Pérez-Ortiz, Juan Antonio, Ramírez Sánchez, Gema, Sánchez-Martínez, Felipe, Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos, and Transducens
- Subjects
Traducción automática de código abierto ,Datos lingüísticos de código abierto ,Lenguajes y Sistemas Informáticos ,Procesamiento del lenguaje natural ,Apertium - Abstract
Uno de los principales retos de la informática para las próximas décadas es el desarrollo de sistemas capaces de procesar eficazmente el lenguaje natural (o lenguaje humano). Dentro de este campo, los sistemas de traducción automática, encargados de traducir un texto escrito en un idioma a una versión equivalente en otro idioma, reciben especial atención dado, por ejemplo, el carácter multilingüe de sociedades como la europea. La automatización de dicho proceso es particularmente compleja porque los programas han de enfrentarse a características del lenguaje natural, como la ambigüedad, cuyo tratamiento algorítmico no es factible, de modo que una mera aproximación o automatización parcial del proceso ya se considera un éxito. Los programas de traducción automática han sido tradicionalmente sistemas cerrados, pero en los últimos tiempos la tendencia marcada por el software libre ha llegado también a este campo. En este artículo describimos Apertium, apertium.org, una plataforma avanzada de código abierto, con licencia GNU GPL, que, gracias al desacoplamiento que ofrece entre datos y programas permite desarrollar cómodamente nuevos traductores automáticos. La plataforma Apertium ha sido desarrollada por el grupo de investigación Transducens de la Universitat d’Alacant en el marco de varios proyectos de colaboración con universidades y empresas de España en los que, además de los programas que conforman el motor de traducción, se han confeccionado datos lingüísticos abiertos para la traducción automática catalán–español, gallego–español, portugués–español, francés–catalán, inglés–catalán y occitano–catalán. Tanto la plataforma en la que se integra el motor de traducción como los datos para estos pares de lenguas están disponibles para su descarga en sf.net/projects/apertium/ y para su evaluación en línea en xixona.dlsi.ua.es/prototype/. Este trabajo ha sido parcialmente subvencionado por el Ministerio de Industria, Comercio y Turismo a través de los proyectos FIT-340101-2004-3, FIT-340001-2005-2 y FIT-350401-2006-5, por el Ministerio de Educación y Ciencia a través de los proyectos TIC2003-08681-C02-01 y TIN2006-15071-C03-01, y por la Generalitat de Catalunya a través del proyecto DURSI1-05I. Felipe Sánchez-Martínez disfruta de la ayuda para la formación de personal investigador BES-2004-4711, financiada por el Fondo Social Europeo y el Ministerio de Educación y Ciencia.
- Published
- 2007
49. An open-source shallow-transfer machine translation toolbox: consequences of its release and availability
- Author
-
Armentano Oller, Carme, Corbí Bellot, Antonio Miguel, Forcada, Mikel L., Ginestí Rosell, Mireia, Bonev, Boyan, Ortiz Rojas, Sergio, Pérez-Ortiz, Juan Antonio, Ramírez Sánchez, Gema, Sánchez-Martínez, Felipe, Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos, Transducens, and Laboratorio de Investigación en Visión Móvil (MVRLab)
- Subjects
Open-source ,Lenguajes y Sistemas Informáticos ,Machine translation ,Shallow-transfer - Abstract
By the time Machine Translation Summit X is held in September 2005, our group will have released an open-source machine translation toolbox as part of a large government-funded project involving four universities and three linguistic technology companies from Spain. The machine translation toolbox, which will most likely be released under a GPL-like license includes (a) the open-source engine itself, a modular shallow-transfer machine translation engine suitable for related languages and largely based upon that of systems we have already developed, such as interNOSTRUM for Spanish—Catalan and Traductor Universia for Spanish—Portuguese, (b) extensive documentation (including document type declarations) specifying the XML format of all linguistic (dictionaries, rules) and document format management files, (c) compilers converting these data into the high-speed (tens of thousands of words a second) format used by the engine, and (d) pilot linguistic data for Spanish—Catalan and Spanish—Galician and format management specifications for the HTML, RTF and plain text formats. After describing very briefly this toolbox, this paper aims at exploring possible consequences of the availability of this architecture, including the community-driven development of machine translation systems for languages lacking this kind of linguistic technology. The development of the toolbox is funded by project FIT-340101-2004-3 (Spanish Ministry of Industry, Commerce and Tourism).
- Published
- 2005
50. Apertium: a free/open-source platform for rule-based machine translation
- Author
-
Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos, Forcada, Mikel L., Ginestí Rosell, Mireia, Nordfalk, Jacob, O'Regan, Jim, Ortiz Rojas, Sergio, Pérez-Ortiz, Juan Antonio, Sánchez-Martínez, Felipe, Ramírez Sánchez, Gema, Tyers, Francis M., Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos, Forcada, Mikel L., Ginestí Rosell, Mireia, Nordfalk, Jacob, O'Regan, Jim, Ortiz Rojas, Sergio, Pérez-Ortiz, Juan Antonio, Sánchez-Martínez, Felipe, Ramírez Sánchez, Gema, and Tyers, Francis M.
- Abstract
Apertium is a free/open-source platform for rule-based machine translation. It is being widely used to build machine translation systems for a variety of language pairs, especially in those cases (mainly with related-language pairs) where shallow transfer suffices to produce good quality translations, although it has also proven useful in assimilation scenarios with more distant pairs involved. This article summarises the Apertium platform: the translation engine, the encoding of linguistic data, and the tools developed around the platform. The present limitations of the platform and the challenges posed for the coming years are also discussed. Finally, evaluation results for some of the most active language pairs are presented. An appendix describes Apertium as a free/open-source project.
- Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.