1. IXPE View of BH XRBs during the First 2.5 Years of the Mission
- Author
-
Michal Dovčiak, Jakub Podgorný, Jiří Svoboda, James F. Steiner, Philip Kaaret, Henric Krawczynski, Adam Ingram, Vadim Kravtsov, Lorenzo Marra, Fabio Muleri, Javier A. García, Guglielmo Mastroserio, Romana Mikušincová, Ajay Ratheesh, and Nicole Rodriguez Cavero
- Subjects
X-ray polarisation ,high-energy processes ,black holes ,X-ray binaries ,Astronomy ,QB1-991 - Abstract
Accreting stellar-mass black holes represent unique laboratories for studying matter and radiation under the influence of extreme gravity. They are highly variable sources going through different accretion states, showing various components in their X-ray spectra from the thermal emission of the accretion disc dominating in the soft state to the up-scattered Comptonisation component from an X-ray corona in the hard state. X-ray polarisation measurements are particularly sensitive to the geometry of the X-ray scatterings and can thus constrain the orientation and relative positions of the innermost components of these systems. The IXPE mission has observed about a dozen stellar-mass black holes with masses up to 20 solar masses in X-ray binaries with different orientations and in various accretion states. The low-inclination sources in soft states have shown a low fraction of polarisation. On the other hand, several sources in soft and hard states have revealed X-ray polarisation higher than expected, which poses significant challenges for theoretical interpretation, with 4U 1630–47 being one of the most puzzling sources. IXPE has measured the spin of three black holes via the measurement of their polarisation properties in the soft emission state. In each of the three cases, the new results agree with the constraints from the spectral observations. The polarisation observations of the black hole X-ray transient Swift J1727.8–1613 across its entire outburst has revealed that the soft-state polarisation is much weaker than the hard-state polarisation. Remarkably, the observations furthermore show that the polarisation of the bright hard state and that of the 100 times less luminous dim hard state are identical within the accuracy of the measurement. For sources with a radio jet, the electric field polarisation tends to align with the radio jet, indicating the equatorial geometry of the X-ray corona, e.g., in the case of Cyg X–1. In the unique case of Cyg X–3, where the polarisation is perpendicular to the radio jet, the IXPE observations reveal the presence and geometry of obscuring material hiding this object from our direct view. The polarisation measurements acquired by the IXPE mission during its first 2.5 years have provided unprecedented insights into the geometry and physical processes of accreting stellar-mass black holes, challenging existing theoretical models and offering new avenues for understanding these extreme systems.
- Published
- 2024
- Full Text
- View/download PDF