56 results on '"Romain, Abraham"'
Search Results
2. Understanding the Distributions of Benthic Foraminifera in the Adriatic Sea with Gradient Forest and Structural Equation Models
- Author
-
Masoud A. Rostami, Fabrizio Frontalini, Eric Armynot du Châtelet, Fabio Francescangeli, Maria Virginia Alves Martins, Rocco De Marco, Enrico Dinelli, Mario Tramontana, Lee A. Dyer, Romain Abraham, Viviane Bout-Roumazeilles, Marion Delattre, and Federico Spagnoli
- Subjects
depth ,machine learning ,ecology ,benthic communities ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
In the last three decades, benthic foraminiferal ecology has been intensively investigated to improve the potential application of these marine organisms as proxies of the effects of climate change and other global change phenomena. It is still challenging to define the most important factors affecting foraminiferal communities and derived faunistic parameters. In this study, we examined the abiotic-biotic relationships of foraminiferal communities in the central-southern area of the Adriatic Sea using modern machine learning techniques. We combined gradient forest (Gf) and structural equation modeling (SEM) to test hypotheses about determinants of benthic foraminiferal assemblages. These approaches helped determine the relative effect of sizes of different environmental variables responsible for shaping living foraminiferal distributions. Four major faunal turnovers (at 13–28 m, 29–58 m, 59–215 m, and >215 m) were identified along a large bathymetric gradient (13–703 m water depth) that reflected the classical bathymetric distribution of benthic communities. Sand and organic matter (OM) contents were identified as the most relevant factors influencing the distribution of foraminifera either along the entire depth gradient or at selected bathymetric ranges. The SEM supported causal hypotheses that focused the factors that shaped assemblages at each bathymetric range, and the most notable causal relationships were direct effects of depth and indirect effects of the Gf-identified environmental parameters (i.e., sand, pollution load Index–PLI, organic matter–OM and total nitrogen–N) on foraminifera infauna and diversity. These results are relevant to understanding the basic ecology and conservation of foraminiferal communities.
- Published
- 2023
- Full Text
- View/download PDF
3. The contrasting origins of glauconite in the shallow marine environment highlight this mineral as a marker of paleoenvironmental conditions
- Author
-
Nicolas Tribovillard, Viviane Bout-Roumazeilles, Romain Abraham, Sandra Ventalon, Marion Delattre, and François Baudin
- Subjects
General Earth and Planetary Sciences ,General Environmental Science - Published
- 2022
4. Sphere recognition for foams composite materials images.
- Author
-
Amaury Walbron, Sylvain Chupin, Maïtine Bergounioux, Romain Abraham, and D. Rochais
- Published
- 2015
- Full Text
- View/download PDF
5. Penalization of Galton–Watson processes
- Author
-
Romain Abraham and Pierre Debs
- Subjects
Statistics and Probability ,Galton watson ,Applied Mathematics ,010102 general mathematics ,Of the form ,Limiting ,01 natural sciences ,Combinatorics ,010104 statistics & probability ,Modeling and Simulation ,0101 mathematics ,Martingale (probability theory) ,Brownian motion ,Probability measure ,Mathematics - Abstract
We apply the penalization technique introduced by Roynette, Vallois, Yor for Brownian motion to Galton–Watson processes with a penalizing function of the form P ( x ) s x where P is a polynomial of degree p and s ∈ [ 0 , 1 ] . We prove that the limiting martingales obtained by this method are most of the time classical ones, except in the super-critical case for s = 1 (or s → 1 ) where we obtain new martingales. If we make a change of probability measure with this martingale, we obtain a multi-type Galton–Watson tree with p distinguished infinite spines.
- Published
- 2020
6. Sedimentary Structures and Morphodynamics of an Open-Coast Sandy Tidal Flat Environment. Example of the Hemmes D'Oye, North of France
- Author
-
Yvonne Battiau-Queney, Vincent Sipka, Olivier Cohen, Denis Marin, Sandra Ventalon, Romain Abraham, and françoise Duhamel
- Subjects
History ,Polymers and Plastics ,Business and International Management ,Industrial and Manufacturing Engineering - Published
- 2022
7. Syndepositional glauconite as a paleoenvironmental proxy - the lower Cenomanian Chalk of Cap Blanc Nez (N-France)
- Author
-
Romain Abraham, Nicolas Tribovillard, Marion Delattre, Viviane Bout-Roumazeilles, Oussenatou Nzié, Sandra Ventalon, Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG), Centre National de la Recherche Scientifique (CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Institut national des sciences de l'Univers (INSU - CNRS), and Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Nord])
- Subjects
010506 paleontology ,[SDV]Life Sciences [q-bio] ,Geochemistry ,Pellets ,engineering.material ,010502 geochemistry & geophysics ,01 natural sciences ,chemistry.chemical_compound ,Geochemistry and Petrology ,14. Life underwater ,Quartz ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,[PHYS]Physics [physics] ,Terrigenous sediment ,Geology ,Authigenic ,Calcium carbonate ,chemistry ,[SDU]Sciences of the Universe [physics] ,[SDE]Environmental Sciences ,engineering ,Cenomanian ,Clay minerals ,Glauconite - Abstract
At Cap Blanc Nez (Channel coast, France), the chalk of the Lower Cenomanian is very rich in glauconite. Glauconite is of authigenic origin and requires the mobilization of chemical elements for its growth: Si, Fe and K. If we already know thanks to elementary geochemistry (Ge/Si ratio) that the silica of the flint present in the chalk originates from the dissolution of sponges, is it the same for glauconite? This question only makes sense if glauconite is proved to be autochthonous and synsedimentary, and not reworked during the Cenomanian transgression. In addition, we wanted to know whether the study of the content of trace elements in glauconite could provide information on the conditions of authigenesis in glauconious chalk. The clay content of the chalk from the Lower Cenomanian has been examined and the green minerals were extracted from the rock to study their morphology, mineralogy, geochemistry (major & trace elements) and grain size. The chalk consists of calcium carbonate, smectite and true glauconite, in the form of pellets, sometimes with rare traces of quartz and some centimeter-scale phosphate gravel. The grain-size distribution of the glauconites varies from one sample to another and is always poorly sorted, which militates in favor of an autochthonous (not reworked) origin of these minerals. This origin is also suggested by the virtual absence of terrigenous minerals, except for smectite known for its potential for wide distribution in the marine environment. The geochemistry of the samples shows a very homogeneous composition of major and trace elements, with a K2O content greater than 8%. This characterizes these glauconites as being very evolved, which indicates a long authigenic formation time (> 100 ky) and therefore an extremely reduced or irregular sedimentation rate. Here, glauconites are very rich in germanium, which makes it impossible to identify a source of silica (unlike what is possible with flints). It cannot therefore be said that the silica results from the dissolution of sponges but this enrichment in Ge, coupled with that in vanadium and the absence of enrichment in molybdenum, indicates a slightly reducing deposition milieu (suboxic). Such conditions usually favor organic matter accumulation, but not here, due to protracted sedimentation hiatuses. Lastly, glauconite trapped relatively large amounts of Ge due to reducing conditions and long exposure time to seawater, which makes it a potential chronometer assessing the duration of authigenesis, and a possible compartment of the marine cycle of germanium.
- Published
- 2021
8. Storm-induced concentration of sulfurized, marine-origin, organic matter as a possible mechanism in the formation of petroleum source-rock
- Author
-
Marion Delattre, Jean-Noel Ferry, Hichem Koched, Nicolas Tribovillard, Thierry Adatte, Romain Abraham, François Baudin, Laboratoire d’Océanologie et de Géosciences (LOG) - UMR 8187 (LOG), Institut national des sciences de l'Univers (INSU - CNRS)-Université du Littoral Côte d'Opale (ULCO)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Nord]), Institut des Sciences de la Terre de Paris (iSTeP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Lausanne = University of Lausanne (UNIL), Université de Genève = University of Geneva (UNIGE), TOTAL S.A., and TOTAL FINA ELF
- Subjects
010504 meteorology & atmospheric sciences ,Boulonnais ,Stratigraphy ,Late Jurassic ,Geochemistry ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,engineering.material ,010502 geochemistry & geophysics ,Oceanography ,01 natural sciences ,Remobilization ,Sedimentary structures ,Sulfurized organic matter ,Organic matter ,0105 earth and related environmental sciences ,Horizon (geology) ,chemistry.chemical_classification ,Geology ,Anoxic waters ,Geophysics ,Source rock ,chemistry ,[SDU]Sciences of the Universe [physics] ,engineering ,Orange amorphous organic matter ,Economic Geology ,Sedimentary rock ,Pyrite ,Oil shale - Abstract
International audience; Black shales, though laminated, are not systematically synonymous with quiet conditions of deposition. A number of papers report about black shales yielding sedimentary structures echoing relatively high hydrodynamic conditions. Here we examine two sedimentary sequences pertaining to the Late Jurassic Argiles de Châtillon Formation of the Boulonnais area (Northernmost France), each of them including a meter-thick black-shale horizon. The two laminated black shales contain sulfurized (i.e., organic S-rich) organic matter, reaching a maximum of 9%. However, some differences set the two black shales apart. The lower one was deposited under calm, suboxic to anoxic, bottom-water conditions (the « classic » way); the upper black shale was deposited under oxic, agitated bottom-water conditions, not compatible with stable sulfidic conditions required for organic-matter sulfurization. The upper black shale experienced hydrodynamically-induced concentration of sulfurized, recalcitrant organic matter of marine origin. The sulfurized organic matter could be preserved and quantitatively accumulated owing to its non-putrescible nature, leading to the formation of a potential hydrocarbon source rock. The association of pyrite inclusions with sulfurized organic matter probably modified the hydrodynamic behavior of organic particles. The storm-induced remobilization and concentration of sulfurized organic matter implies that the “sulfurization factory” operated in proximal, shallow environments such as estuaries, mud flats or mangrove environments. Such a model is in agreement with findings from modern coastal/shelf environments (notably mangroves) and fully transposable to many other sedimentary situations of any geological time period.
- Published
- 2019
9. Hydroclimate and atmospheric circulation over North Africa through the last two climatic cycles reconstructed from dust deposited off West Africa
- Author
-
Serge Miska, Romain Abraham, Maxime Leblanc, Viviane Bout-Roumazeilles, Marion Delattre, Aloys Bory, Julius Nouet, Charlotte Skonieczny, and Bruno Malaizé
- Subjects
Geography ,Atmospheric circulation ,Climatology ,North africa ,West africa - Abstract
On glacial to interglacial time scales, northern Africa fluctuated between arid to hyperarid states and much wetter conditions called African Humid Periods (AHP). These AHP are characterized by a major transformation of the Saharan hydrological cycle, favoring the development of vast fluvial networks, tropical flora and fauna in a region previously hyperarid. In the present-day context of global warming, it is crucial to understand the environmental mechanisms and responses associated with these dramatic swings between two extreme climatic states in order to improve the climatic projections. Numerous studies have been focused on the last AHP, which occurred at the beginning of the Holocene and corresponds to a period when insolation - governed by precession – and obliquity both reached their maximum almost synchronously, thus complicating the distinction of their respective roles. The study of older AHP corresponding to different orbital configurations is likely to provide some answers. However, finding climatic archives allowing the reconstruction of past changes in the Saharan hydrological cycle on longer timescales remains challenging (e.g., discontinuity of continental archives, preservation of tracers…). In this study, we propose to circumvent this difficulty by studying the Saharan dust deposited in marine sediments of the northeastern Atlantic tropical ocean. In fact, past modifications of Saharan dust deposited off West Africa can provide precious information on changes in environmental conditions in their source areas (aridity, weathering), as well as on changes in the characteristics of their atmospheric transport (pathways and strength). Here, we present a unique high-resolution (1 sample/200yrs) multi-proxy characterization of the dust deposited continuously through the last 240ka - a period punctuated by eight AHP - in the marine core MD03-2705 (18°05N; 21°09W; 3085 mbsl) retrieved from a bathymetric dome, 300 meters above the surrounding seafloor. Considering this particular environmental setting, the terrigenous fraction in this record is assumed to be predominantly of eolian origin. We combine the 230Th-normalized dust flux1 together with grain-size distribution, clay mineralogy and geochemical compositions in order to explore changes in the Saharan hydroclimate and atmospheric circulation over North Africa on millennial to orbital timescales, with a particular focus on the mechanisms associated with the recurrence of the AHP.1Skonieczny et al., 2019 – Science Advances 5 (1) - eaav1887
- Published
- 2021
10. Some Properties of Stationary Continuous State Branching Processes
- Author
-
Romain Abraham, Jean-François Delmas, Hui He, Abraham, Romain, Institut Denis Poisson (IDP), Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique (CERMICS), Institut National de Recherche en Informatique et en Automatique (Inria)-École des Ponts ParisTech (ENPC), School of Mathematical Sciences [Beijing] (SMS), Beijing Normal University (BNU), Partially supported by NSFC (No. 11671041 and 11531001), Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO), and Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO)
- Subjects
Statistics and Probability ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,Ancestral process ,Population ,Markov process ,Quasi-stationary distribution ,01 natural sciences ,Branching (linguistics) ,010104 statistics & probability ,symbols.namesake ,Extant taxon ,Genealogical Tree ,Mathematics::Probability ,Fixed time ,MSC 2010 : 60J80, 60J27, 92D25 ,FOS: Mathematics ,Quantitative Biology::Populations and Evolution ,Statistical physics ,0101 mathematics ,education ,Branching process ,Mathematics ,education.field_of_study ,Applied Mathematics ,010102 general mathematics ,Probability (math.PR) ,State (functional analysis) ,Genealogical tree ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Continuous branching process with immigration ,Modeling and Simulation ,symbols ,Mathematics - Probability - Abstract
We consider the genealogical tree of a stationary continuous state branching process with immigration. For a sub-critical stable branching mechanism, we consider the genealogical tree of the extant population at some fixed time and prove that, up to a deterministic time-change, it is distributed as a continuous-time Galton-Watson process with immigration. We obtain similar results for a critical stable branching mechanism when only looking at immigrants arriving in some fixed time-interval. For a general sub-critical branching mechanism, we consider the number of individuals that give descendants in the extant population. The associated processes (forward or backward in time) are pure-death or pure-birth Markov processes, for which we compute the transition rates., Comment: 31 pages, 1 figure
- Published
- 2021
11. GLOBAL REGIME FOR GENERAL ADDITIVE FUNCTIONALS OF CONDITIONED BIENAYMÉ-GALTON-WATSON TREES
- Author
-
Romain Abraham, Jean-François Delmas, Michel Nassif, Institut Denis Poisson (IDP), Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique (CERMICS), Institut National de Recherche en Informatique et en Automatique (Inria)-École des Ponts ParisTech (ENPC), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO)
- Subjects
Statistics and Probability ,010102 general mathematics ,01 natural sciences ,Galton-Watson trees ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,Mathematics::Probability ,phase transition ,scaling limit ,0101 mathematics ,Statistics, Probability and Uncertainty ,additive functionals ,Analysis ,Mathematics - Probability ,Lévy trees - Abstract
International audience; We give an invariance principle for very general additive functionals of conditioned Bienaymé-Galton-Watson trees in the global regime when the offspring distribution lies in the domain of attraction of a stable distribution, the limit being an additive functional of a stable Lévy tree. This includes the case when the offspring distribution has finite variance (the Lévy tree being then the Brownian tree). We also describe, using an integral test, a phase transition for toll functions depending on the size and height.
- Published
- 2020
12. Automatic Choice of the Threshold of a Grain Filter via Galton–Watson Trees: Application to Granite Cracks Detection
- Author
-
Romain Abraham, Pierre Debs, Maïtine Bergounioux, Bergounioux, Maïtine, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), and Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
- Subjects
Statistics and Probability ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,Computer science ,Image processing ,02 engineering and technology ,Residual ,Impulse noise ,Image (mathematics) ,60J80,68U10, 94A12 ,0202 electrical engineering, electronic engineering, information engineering ,Preprocessor ,Computer vision ,Galton-Watson ,grain filter ,Galton watson ,business.industry ,Applied Mathematics ,Binary image ,020206 networking & telecommunications ,Filter (signal processing) ,Condensed Matter Physics ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV] ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,Modeling and Simulation ,cracks ,020201 artificial intelligence & image processing ,Geometry and Topology ,Computer Vision and Pattern Recognition ,Artificial intelligence ,business ,Algorithm - Abstract
International audience; The goal of this paper is the presentation of a post-processing method allowing to remove impulse noise in binary images, while preserving thin structures. We use a grain filter as in [5]. We propose a method to automatically determine the required threshold using Galton-Watson processes. We present numerical results and a complete analysis on a synthetic image. We end the numerical section considering a specific application to granite samples crack detection: here we deal with X-tomography images that have been binarized via preprocessing techniques and we want to remove residual impulse noise while keeping cracks and micro-cracks structure.
- Published
- 2017
13. Local limits of Galton–Watson trees conditioned on the number of protected nodes
- Author
-
Jean-François Delmas, Romain Abraham, and Aymen Bouaziz
- Subjects
Statistics and Probability ,Combinatorics ,Galton watson ,010104 statistics & probability ,010201 computation theory & mathematics ,General Mathematics ,0102 computer and information sciences ,0101 mathematics ,Statistics, Probability and Uncertainty ,01 natural sciences ,Vertex (geometry) ,Mathematics - Abstract
We consider a marking procedure of the vertices of a tree where each vertex is marked independently from the others with a probability that depends only on its out-degree. We prove that a critical Galton–Watson tree conditioned on having a large number of marked vertices converges in distribution to the associated size-biased tree. We then apply this result to give the limit in distribution of a critical Galton–Watson tree conditioned on having a large number of protected nodes.
- Published
- 2017
14. Critical Multi-type Galton–Watson Trees Conditioned to be Large
- Author
-
Hongsong Guo, Romain Abraham, Jean-François Delmas, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), Beijing Normal University (BNU), and ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014)
- Subjects
Statistics and Probability ,General Mathematics ,010102 general mathematics ,Type (model theory) ,Random walk ,01 natural sciences ,Local convergence ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Combinatorics ,010104 statistics & probability ,Tree (descriptive set theory) ,Mathematics::Probability ,Aperiodic graph ,Random tree ,Limit (mathematics) ,0101 mathematics ,Statistics, Probability and Uncertainty ,Mathematics ,Branching process - Abstract
International audience; Under minimal condition, we prove the local convergence of a critical multi-type Galton-Watson tree conditioned on having a large total progeny by types towards a multi-type Kesten's tree. We obtain the result by generalizing Neveu's strong ratio limit theorem for aperiodic random walks on Z^d .
- Published
- 2017
15. Variational methods for tomographic reconstruction with few views
- Author
-
Emmanuel Trélat, Romain Abraham, Guillaume Carlier, Maïtine Bergounioux, Isabelle Abraham, Erwan Le Pennec, Institut Denis Poisson (IDP), Université d'Orléans (UO)-Université de Tours-Centre National de la Recherche Scientifique (CNRS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL-Centre National de la Recherche Scientifique (CNRS), Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales (MOKAPLAN), Université Paris Dauphine-PSL-Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Control And GEometry (CaGE ), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jacques-Louis Lions (LJLL (UMR_7598)), Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU), Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Université d'Orléans (UO), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Inria de Paris, Bergounioux, Maïtine, Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, and Centre National de la Recherche Scientifique (CNRS)-Université de Tours (UT)-Université d'Orléans (UO)
- Subjects
Well-posed problem ,General Mathematics ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Spaces ,Variational model ,01 natural sciences ,Fractional order Hilbert ,Calculus ,Needlets ,0101 mathematics ,Variational analysis ,Mathematics ,Mathematics Subject Classification (2010). 49K40, 45Q05,65M32 ,Tomographic reconstruction ,010102 general mathematics ,Optimal ,Variational method ,[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC] ,Inverse problem ,Radon operator ,010101 applied mathematics ,transport ,Tomography ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] - Abstract
International audience; We deal with a severe ill posed problem, namely the reconstruction process of an image during tomography acquisition with (very) few views. We present different methods that we have been investigated during the past decade. They are based on variational analysis. This is a survey paper and we refer to the quoted papers for more details. Mathematics Subject Classification (2010). 49K40, 45Q05,65M32.
- Published
- 2018
16. Reversal property of the Brownian tree
- Author
-
Romain Abraham, Jean-François Delmas, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique (CERMICS), Institut National de Recherche en Informatique et en Automatique (Inria)-École des Ponts ParisTech (ENPC), ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Abraham, Romain, and Appel à projets générique - GRaphes et Arbres ALéatoires - - GRAAL2014 - ANR-14-CE25-0014 - Appel à projets générique - VALID
- Subjects
Statistics and Probability ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,Probability (math.PR) ,010102 general mathematics ,Branching points ,01 natural sciences ,Combinatorics ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,Mathematics::Probability ,FOS: Mathematics ,0101 mathematics ,Invariant (mathematics) ,Brownian tree ,Mathematics - Probability ,Brownian motion ,Mathematics - Abstract
We consider the Brownian tree introduced by Aldous and the associated Q-process which consists in an infinite spine on which are grafted independent Brownian trees. We present a reversal procedure on these trees that consists in looking at the tree downward from its top: the branching points becoming leaves and leaves becoming branching points. We prove that the distribution of the tree is invariant under this reversal procedure, which provides a better understanding of previous results from Bi and Delmas (2016)., Comment: This is the second version of the preprint arXiv:1612.03715 that has been splitted into two papers
- Published
- 2018
17. Asymptotic properties of expansive Galton-Watson trees
- Author
-
Romain Abraham, Jean-François Delmas, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), and ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014)
- Subjects
Statistics and Probability ,Martin boundary ,Distribution (number theory) ,media_common.quotation_subject ,Boundary (topology) ,01 natural sciences ,Renormalization ,Combinatorics ,010104 statistics & probability ,Tree (descriptive set theory) ,Mathematics::Probability ,FOS: Mathematics ,Limit (mathematics) ,0101 mathematics ,Mathematics ,media_common ,60J80 ,Conjecture ,Probability (math.PR) ,010102 general mathematics ,Infinity ,Exponential function ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,local limits ,60F15 ,Statistics, Probability and Uncertainty ,conditioned Galton-Watson trees ,Mathematics - Probability - Abstract
We consider a super-critical Galton-Watson tree $\tau $ whose non-degenerate offspring distribution has finite mean. We consider the random trees $\tau _n$ distributed as $\tau $ conditioned on the $n$-th generation, $Z_n$, to be of size $a_n\in{\mathbb N} $. We identify the possible local limits of $\tau _n$ as $n$ goes to infinity according to the growth rate of $a_n$. In the low regime, the local limit $\tau ^0$ is the Kesten tree, in the moderate regime the family of local limits, $\tau ^\theta $ for $\theta \in (0, +\infty )$, is distributed as $\tau $ conditionally on $\{W=\theta \}$, where $W$ is the (non-trivial) limit of the renormalization of $Z_n$. In the high regime, we prove the local convergence towards $\tau ^\infty $ in the Harris case (finite support of the offspring distribution) and we give a conjecture for the possible limit when the offspring distribution has some exponential moments. When the offspring distribution has a fat tail, the problem is open. The proof relies on the strong ratio theorem for Galton-Watson processes. Those latter results are new in the low regime and high regime, and they can be used to complete the description of the (space-time) Martin boundary of Galton-Watson processes. Eventually, we consider the continuity in distribution of the local limits $(\tau ^\theta , \theta \in [0, \infty ])$.
- Published
- 2017
18. Very fat geometric galton-watson trees
- Author
-
Romain Abraham, Jean-François Delmas, Aymen Bouaziz, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Institut préparatoire aux études scientifiques et techniques [La Marsa] (IPEST), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), and ANR-14-CE25-0014,GRAAL,GRaphes et Arbres ALéatoires(2014)
- Subjects
Statistics and Probability ,Sequence ,Probability (math.PR) ,010102 general mathematics ,Skeleton (category theory) ,01 natural sciences ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Combinatorics ,Branching (linguistics) ,010104 statistics & probability ,Distribution (mathematics) ,Random tree ,FOS: Mathematics ,Tree (set theory) ,Limit (mathematics) ,0101 mathematics ,Mathematics - Probability ,Mathematics ,Branching process - Abstract
Let τn be a random tree distributed as a Galton-Watson tree with geometric offspring distribution conditioned on {Zn = an} where Zn is the size of the nth generation and (an, n ∈ ℕ*) is a deterministic positive sequence. We study the local limit of these trees τn as n →∞ and observe three distinct regimes: if (an, n ∈ ℕ*) grows slowly, the limit consists in an infinite spine decorated with finite trees (which corresponds to the size-biased tree for critical or subcritical offspring distributions), in an intermediate regime, the limiting tree is composed of an infinite skeleton (that does not satisfy the branching property) still decorated with finite trees and, if the sequence (an, n ∈ ℕ*) increases rapidly, a condensation phenomenon appears and the root of the limiting tree has an infinite number of offspring.
- Published
- 2017
19. Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach
- Author
-
Maïtine Bergounioux, Guillaume Carlier, Romain Abraham, Isabelle Abraham, Département des Sciences de la Simulation et de l'Information (DSSI), DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Université Paris Dauphine-PSL, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Mathematical optimization ,Control and Optimization ,Tomographic reconstruction ,Interface (Java) ,Applied Mathematics ,010102 general mathematics ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,tomographic reconstruction ,49N45 ,02 engineering and technology ,Inverse problem ,01 natural sciences ,Variational method ,multi-marginal optimal transport ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,0101 mathematics ,Focus (optics) ,Algorithm ,Mathematics ,ComputingMethodologies_COMPUTERGRAPHICS - Abstract
19 pages; International audience; In this article, we focus on tomographic reconstruction. The problem is to determine the shape of the interior interface using a tomographic approach while very few X-ray radiographs are performed. We use a multi-marginal optimal transport approach. Preliminary numerical results are presented.
- Published
- 2017
20. Exit times for an increasing Lévy tree-valued process
- Author
-
Patrick Hoscheit, Romain Abraham, Jean-François Delmas, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), and ANR-08-BLAN-0190,A3,Arbres Aléatoires (continus) et Applications(2008)
- Subjects
Statistics and Probability ,Discrete mathematics ,Mathematical finance ,010102 general mathematics ,spine decomposition ,Process (computing) ,Structure (category theory) ,Grafting procedure ,Exit time ,tree-valued Markov process ,random point measure ,60G55, 60J25, 60J80 ,01 natural sciences ,Point process ,ascencion time ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,Joint probability distribution ,Jump ,Tree (set theory) ,0101 mathematics ,Statistics, Probability and Uncertainty ,Lévy tree ,Analysis ,Mathematics - Abstract
We give an explicit construction of the increasing tree-valued process introduced by Abraham and Delmas using a random point process of trees and a grafting procedure. This random point process will be used in companion papers to study record processes on Lévy trees. We use the Poissonian structure of the jumps of the increasing tree-valued process to describe its behavior at the first time the tree grows higher than a given height, using a spinal decomposition of the tree, similar to the classical Bismut and Williams decompositions. We also give the joint distribution of this exit time and the ascension time which corresponds to the first infinite jump of the tree-valued process.
- Published
- 2013
21. A Penalization Approach for Tomographic Reconstruction of Binary Axially Symmetric Objects
- Author
-
Emmanuel Trélat, Romain Abraham, Maïtine Bergounioux, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), and Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
- Subjects
Optimization ,Control and Optimization ,Tomographic reconstruction ,Applied Mathematics ,Binary image ,010102 general mathematics ,Mathematical analysis ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Binary number ,Space (mathematics) ,AMS 49J40, 65K10, 94A08 ,01 natural sciences ,010101 applied mathematics ,Variational method ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,Bounded variation ,Applied mathematics ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Uniqueness ,Tomography ,0101 mathematics ,Penalization ,Mathematics - Abstract
28 pages To appear in: Applied Math. Optim. (2008); International audience; We propose a variational method for tomographic reconstruction of blurred and noised binary images based on a penalization process of a minimization problem settled in the space of bounded variation functions. We prove existence and/or uniqueness results and derive a penalized optimality system. Numerical simulations are provided to demonstrate the relevance of the approach.
- Published
- 2008
22. Significant edges in the case of non-stationary Gaussian noise
- Author
-
Agnès Desolneux, Romain Abraham, S. Li-Thiao-Te, and I. Abraham
- Subjects
Mathematical analysis ,Geometry ,Image processing ,Iterative reconstruction ,Noise (electronics) ,Edge detection ,symbols.namesake ,Artificial Intelligence ,Gaussian noise ,Signal Processing ,symbols ,Computer Vision and Pattern Recognition ,Laplace operator ,Software ,Smoothing ,Statistical hypothesis testing ,Mathematics - Abstract
In this paper, we propose an edge detection technique based on some local smoothing of the image followed by a statistical hypothesis testing on the gradient. An edge point being defined as a zero-crossing of the Laplacian, it is said to be a significant edge point if the gradient at this point is larger than a threshold s(@e) defined by: if the image I is pure noise, then the probability of @[email protected]?I(x)@?>=s(@e) conditionally on @DI(x)=0 is less than @e. In other words, a significant edge is an edge which has a very low probability to be there because of noise. We will show that the threshold s(@e) can be explicitly computed in the case of a stationary Gaussian noise. In the images we are interested in, which are obtained by tomographic reconstruction from a radiograph, this method fails since the Gaussian noise is not stationary anymore. Nevertheless, we are still able to give the law of the gradient conditionally on the zero-crossing of the Laplacian, and thus compute the threshold s(@e). We will end this paper with some experiments and compare the results with those obtained with other edge detection methods.
- Published
- 2007
23. Sphere recognition for foams composite materials images
- Author
-
A. Walbron, Sylvain Chupin, Romain Abraham, Maïtine Bergounioux, and Denis Rochais
- Subjects
law ,business.industry ,Computation ,High density ,Computer vision ,SPHERES ,Artificial intelligence ,Image segmentation ,business ,Base (topology) ,Hough transform ,law.invention ,Mathematics - Abstract
This paper proposes a method to detect spheres in 3D images of high density materials. This method needs to be fast because of the high number of spheres in images as well as accurate. In order to do this, an algorithm based on centres detection is used, which permits to obtain results in a low computation time. However, we need to improve algorithm accuracy, and for that, a circular Hough Transform algorithm is used on planes, and a sphere verification technique are added to the base method. Finally, we obtain an algorithm which provides accurate results in a relatively low computation time.
- Published
- 2015
24. Pruning of CRT-sub-trees
- Author
-
Hui He, Romain Abraham, Jean Franҫois Delmas, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), Laboratory of Mathematics and Complex Systems, Beijing Normal University (BNU), and NSFC (No. 11126037, 11201030)
- Subjects
Statistics and Probability ,05C05, 60J80, 60J27 ,Girsanov transformation ,01 natural sciences ,Combinatorics ,010104 statistics & probability ,Mathematics::Probability ,Random tree ,FOS: Mathematics ,Pruning (decision trees) ,0101 mathematics ,Mathematics ,Branching process ,Galton-Watson process ,Applied Mathematics ,tree-valued process ,Probability (math.PR) ,010102 general mathematics ,Galton–Watson process ,Pruning ,branching process ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Distribution (mathematics) ,Modeling and Simulation ,CRT ,Tree (set theory) ,Mathematics - Probability ,random tree - Abstract
International audience; We study the pruning process developed by Abraham and Delmas (2012) on the discrete Galton-Watson sub-trees of the L\'{e}vy tree which are obtained by considering the minimal sub-tree connecting the root and leaves chosen uniformly at rate $\lambda$, see Duquesne and Le Gall (2002). The tree-valued process, as $\lambda$ increases, has been studied by Duquesne and Winkel (2007). Notice that we have a tree-valued process indexed by two parameters the pruning parameter $\theta$ and the intensity $\lambda$. Our main results are: construction and marginals of the pruning process, representation of the pruning process (forward in time that is as $\theta$ increases) and description of the growing process (backward in time that is as $\theta$ decreases) and distribution of the ascension time (or explosion time of the backward process) as well as the tree at the ascension time. A by-product of our result is that the super-critical L\'{e}vy trees independently introduced by Abraham and Delmas (2012) and Duquesne and Winkel (2007) coincide. This work is also related to the pruning of discrete Galton-Watson trees studied by Abraham, Delmas and He (2012).
- Published
- 2015
- Full Text
- View/download PDF
25. Solutions of Δu=4u 2 with Neumann’s conditions using the Brownian snake
- Author
-
Jean-François Delmas and Romain Abraham
- Subjects
Statistics and Probability ,Mathematical analysis ,Brownian excursion ,Measure (mathematics) ,Random measure ,Mathematics::Probability ,Reflected Brownian motion ,Probability theory ,Diffusion process ,Neumann boundary condition ,Statistics, Probability and Uncertainty ,Analysis ,Brownian motion ,Mathematics - Abstract
We consider a Brownian snake (W s ,s≥0) with underlying process a reflected Brownian motion in a bounded domain D. We construct a continuous additive functional (L s ,s≥0) of the Brownian snake which counts the time spent by the end points Ŵ s of the Brownian snake paths on ∂D. The random measure Z=∫δŴ sdL s is supported by ∂D. Then we represent the solution v of Δu=4u 2 in D with weak Neumann boundary condition φ≥0 by using exponential moment of (Z,φ) under the excursion measure of the Brownian snake. We then derive an integral equation for v. For small φ it is then possible to describe negative solution of Δu=4u 2 in D with weak Neumann boundary condition φ. In contrast to the exit measure of the Brownian snake out of D, the measure Z is more regular. In particular we show it is absolutely continuous with respect to the surface measure on ∂D for dimension 2 and 3.
- Published
- 2004
26. Some properties of the exit measure for super Brownian motion
- Author
-
Romain Abraham and Jean-François Delmas
- Subjects
Statistics and Probability ,Stochastic process ,Mathematical analysis ,Measure (mathematics) ,Upper and lower bounds ,Mathematics::Probability ,Hausdorff dimension ,Totally disconnected space ,Hausdorff measure ,Statistics, Probability and Uncertainty ,Analysis ,Brownian motion ,Mathematics ,Branching process - Abstract
We consider the exit measure of super Brownian motion with a stable branching mechanism of a smooth domain D of ℝ d . We derive lower bounds for the hitting probability of small balls for the exit measure and upper bounds in the critical dimension. This completes results given by Sheu [22] and generalizes the results of Abraham and Le Gall [2]. Because of the links between exits measure and partial differential equations, those results imply bounds on solutions of elliptic semi-linear PDE. We also give the Hausdorff dimension of the support of the exit measure and show it is totally disconnected in high dimension. Eventually we prove the exit measure is singular with respect to the surface measure on ∂D in the critical dimension. Our main tool is the subordinated Brownian snake introduced by Bertoin, Le Gall and Le Jan [4].
- Published
- 2002
27. 3D Image Segmentation and Cylinder Recognition for Composite Materials
- Author
-
Maïtine Bergounioux, Romain Abraham, Sylvain Chupin, Denis Rochais, and Amaury Walbron
- Subjects
Markov random field ,Computer science ,Segmentation-based object categorization ,Orientation (computer vision) ,business.industry ,Scale-space segmentation ,Pattern recognition ,Image segmentation ,Image texture ,Region growing ,Computer vision ,Artificial intelligence ,Range segmentation ,business - Abstract
The modelling of three-dimensional composite carbon fibers-resin materials for a multi-scale use requires the knowledge of the carbon fibers localization and orientation. We propose here a mathematical method exploiting tomographic data to determine carbon localization with a Markov Random Field (MRF) segmentation, identify carbon straight cylinders, and accurately determine fibers orientation.
- Published
- 2014
28. Reflecting Brownian snake and a Neumann–Dirichlet problem
- Author
-
Romain Abraham
- Subjects
Dirichlet problem ,Reflecting Brownian motion ,Statistics and Probability ,Geometric Brownian motion ,Partial differential equation ,Applied Mathematics ,Mathematical analysis ,Semi-linear partial differential equations ,Neumann problem ,Brownian excursion ,Weak formulation ,Reflected Brownian motion ,Diffusion process ,Modeling and Simulation ,Modelling and Simulation ,Neumann boundary condition ,Brownian snake ,Mathematics - Abstract
The paper deals with a path-valued Markov process: the reflecting Brownian snake. It is a particular case of the path-valued process previously introduced by Le Gall. Here the spatial motion is a reflecting Brownian motion in a domain D of R d . Using this probabilistic tool, we construct an explicit function v solution of an integral equation which is, under some hypotheses on the regularity of v , equivalent to a semi-linear partial differential equation in D with some mixed Neumann–Dirichlet conditions on the boundary. When the hypotheses on v are not satisfied, we prove that v is still solution of a weak formulation of the Neumann–Dirichlet problem.
- Published
- 2000
- Full Text
- View/download PDF
29. Local limits of conditioned Galton-Watson trees II: the condensation case
- Author
-
Romain Abraham, Jean-François Delmas, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), and École des Ponts ParisTech (ENPC)
- Subjects
Statistics and Probability ,60B10 ,01 natural sciences ,Combinatorics ,Set (abstract data type) ,010104 statistics & probability ,Random tree ,FOS: Mathematics ,Limit (mathematics) ,0101 mathematics ,Galton-Watson ,Branching process ,Mathematics ,Discrete mathematics ,60J80 ,60J80, 60B10 ,non-extinction ,010102 general mathematics ,Probability (math.PR) ,Local convergence ,branching process ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,condensation ,Node (circuits) ,Tree (set theory) ,Statistics, Probability and Uncertainty ,Focus (optics) ,random tree ,Mathematics - Probability - Abstract
International audience; We provide a complete picture of the local convergence of critical or subcritical Galton-Watson tree conditioned on having a large number of individuals with out-degree in a given set. The generic case, where the limit is a random tree with an infinite spine has been treated in a previous paper. We focus here on the non-generic case, where the limit is a random tree with a node with infinite out-degree. This case corresponds to the so-called condensation phenomenon.
- Published
- 2013
30. Local limits of conditioned Galton-Watson trees I: the infinite spine case
- Author
-
Jean-François Delmas, Romain Abraham, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), and École des Ponts ParisTech (ENPC)
- Subjects
Statistics and Probability ,Galton watson ,Discrete mathematics ,60J80 ,Distribution (number theory) ,Kesten's tree ,Probability (math.PR) ,Mathematical proof ,Combinatorics ,Set (abstract data type) ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Mathematics::Probability ,Convergence (routing) ,FOS: Mathematics ,Limit (mathematics) ,Tree (set theory) ,Conditioned Galton-Watson tree ,Statistics, Probability and Uncertainty ,Mathematics - Probability ,Mathematics - Abstract
International audience; We give a necessary and sufficient condition for the convergence in distribution of a conditioned Galton-Watson tree to Kesten's tree. This yields elementary proofs of Kesten's result as well as other known results on local limit of conditioned Galton-Watson trees. We then apply this condition to get new results, in the critical and sub-critical cases, on the limit in distribution of a Galton-Watson tree conditioned on having a large number of individuals with out-degree in a given set.
- Published
- 2013
31. The forest associated with the record process on a Lévy tree
- Author
-
Romain Abraham, Jean-François Delmas, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), and École des Ponts ParisTech (ENPC)
- Subjects
Statistics and Probability ,Tree rotation ,Discrete mathematics ,records ,K-ary tree ,Applied Mathematics ,010102 general mathematics ,Interval tree ,01 natural sciences ,Search tree ,Range tree ,Combinatorics ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,Tree (data structure) ,Tree structure ,60J80,60C05 ,continuum random tree ,Modeling and Simulation ,Pruning (decision trees) ,0101 mathematics ,Lévy tree ,cutting down a tree ,Mathematics - Probability ,Mathematics - Abstract
International audience; We perform a pruning procedure on a Lévy tree and instead of throwing away the removed sub-tree, we regraft it on a given branch (not related to the Lévy tree). We prove that the tree constructed by regrafting is distributed as the original Lévy tree, generalizing a result where only Aldous's tree is considered. As a consequence, we obtain that the quantity which represents in some sense the number of cuts needed to isolate the root of the tree, is distributed as the height of a leaf picked at random in the Lévy tree.
- Published
- 2013
32. A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces
- Author
-
Romain Abraham, Patrick Hoscheit, and Jean-François Delmas
- Subjects
Statistics and Probability ,Pure mathematics ,05C80 ,54E50 ,Space (mathematics) ,01 natural sciences ,Measure (mathematics) ,010104 statistics & probability ,Mathematics::Metric Geometry ,60B05 ,Locally compact space ,0101 mathematics ,Probability ,length space ,Mathematics ,010102 general mathematics ,Hausdorff space ,boundedly finite measure ,Probabilités ,Gromov-Hausdorff ,Prokhorov metric ,Levy tree ,Locally finite measure ,Metric space ,Metric (mathematics) ,Polish space ,Statistics, Probability and Uncertainty ,Lévy tree - Abstract
We present an extension of the Gromov-Hausdorff metric on the set of compact metric spaces: the Gromov-Hausdorff-Prokhorov metric on the set of compact metric spaces endowed with a finite measure. We then extend it to the non-compact case by describing a metric on the set of rooted complete locally compact length spaces endowed with a boundedly finite measure. We prove that this space with the extended Gromov-Hausdorff-Prokhorov metric is a Polish space. This generalization is needed to define Lévy trees, which are (possibly unbounded) random real trees endowed with a locally finite measure.[br/]
- Published
- 2013
33. On the connected components of the support of super Brownian motion and of its exit measure
- Author
-
Romain Abraham
- Subjects
Statistics and Probability ,Geometric Brownian motion ,Fractional Brownian motion ,Applied Mathematics ,Mathematical analysis ,Brownian excursion ,Heavy traffic approximation ,Mathematics::Probability ,Diffusion process ,Reflected Brownian motion ,Modeling and Simulation ,Modelling and Simulation ,Brownian snake ,Exit measure ,Super Brownian motion ,Martingale representation theorem ,Brownian motion ,Mathematics - Abstract
Tribe proved in a previous paper that a typical point of the support of super Brownian motion considered at a fixed time is a.s. disconnected from the others when the space dimension is greater than or equal to 3. We give here a simpler proof of this result based on Le Gall's Brownian snake. This proof can then be adapted in order to obtain an analogous result for the support of the exit measure of the super Brownian motion from a smooth domain of Rd when d is greater than or equal to 4.
- Published
- 1995
- Full Text
- View/download PDF
34. Pruning Galton-Watson Trees and Tree-valued Markov Processes
- Author
-
Jean-François Delmas, Romain Abraham, Hui He, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique (CERMICS), École des Ponts ParisTech (ENPC), School of Mathematical Sciences [Beijing] (SMS), Beijing Normal University (BNU), and ANR-08-BLAN-0190,A3,Arbres Aléatoires (continus) et Applications(2008)
- Subjects
Statistics and Probability ,Statistics::Theory ,05C05, 60J80, 60J27 ,Markov process ,Branching process ,01 natural sciences ,Combinatorics ,05C05 ,010104 statistics & probability ,Tree (descriptive set theory) ,symbols.namesake ,60J27 ,Mathematics::Probability ,FOS: Mathematics ,Pruning (decision trees) ,0101 mathematics ,Mathematics ,Galton watson ,60J80 ,Galton-Watson process ,Probability (math.PR) ,010102 general mathematics ,Pruning ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,ascension process ,symbols ,Galton–Watson process ,Statistics, Probability and Uncertainty ,Mathematics - Probability ,random tree - Abstract
Nous presentons une nouvelle procedure d’elagage d’arbres discrets en ajoutant des marques sur les noeuds de l’arbre. Cette procedure nous permet de definir un processus de Markov $\{\mathcal{G}(u)\}$ a valeurs arbres en elaguant un arbre de Galton–Watson. Nous definissons egalement de maniere analogue un processus $\{\mathcal{G}^{*}(u)\}$ en elaguant un arbre de Galton–Watson critique ou sous-critique conditionne a etre infini. Sous de faibles hypotheses sur la loi de reproduction, nous montrons que le processus $\{\mathcal{G}(u)\}$ arrete en son temps d’ascension admet une representation en terme du processus $\{\mathcal{G}^{*}(u)\}$. Un resultat similaire a ete obtenu par Aldous et Pitman (Ann. Inst. H. Poincare Probab. Statist. 34 (1998) 637–686) dans le cas particulier de lois de reproductions poissoniennes en considerant un elagage uniforme sur les branches de l’arbre.
- Published
- 2012
35. Sur la mesure de sortie du super mouvement brownien
- Author
-
Jean-François Le Gall and Romain Abraham
- Subjects
Statistics and Probability ,Lebesgue measure ,Hausdorff dimension ,Mathematical analysis ,Hausdorff measure ,Uniqueness ,Ball (mathematics) ,Statistics, Probability and Uncertainty ,Absolute continuity ,σ-finite measure ,Borel measure ,Analysis ,Mathematics - Abstract
We study some properties of the exit measure of super Brownian motion from a smooth domainD inR d . In particular, we give precise estimates for the probability that the exit measure gives a positive mass to a small ball on the boundary. As an application, we compute the Hausdorff dimension of the support of the exit measure. In dimension 2, we prove that the exit measure is absolutely continuous with respect to the Lebesgue measure on the boundary. In connection with Dynkin's work, our results give some information on the behavior of solutions of Δu=u 2 inD, and are related to the characterization of removable singularities at the boundary. As a consequence of our estimates, we give a sufficient condition for the uniqueness of the positive solution of Δu=u 2 inD that tends to ∞ on an open subsetO of ϖD and to 0 on the complement in ϖD of the closure ofO. Our proofs use the path-valued process studied in [L2, L3].
- Published
- 1994
36. Pruning a Lévy Continuum Random Tree
- Author
-
Guillaume Voisin, Jean-François Delmas, Romain Abraham, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique (CERMICS), Institut National de Recherche en Informatique et en Automatique (Inria)-École des Ponts ParisTech (ENPC), and Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Discrete mathematics ,60J80 ,010102 general mathematics ,Excursion ,01 natural sciences ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,Mathematics::Probability ,continuum random tree ,60J25 ,Random tree ,Lévy snake ,60G57 ,Markov property ,0101 mathematics ,Statistics, Probability and Uncertainty ,Martingale (probability theory) ,special Markov property ,Mathematics - Probability ,Mathematics - Abstract
International audience; Given a general critical or sub-critical branching mechanism, we define a pruning procedure of the associated Lévy continuum random tree. This pruning procedure is defined by adding some marks on the tree, using Lévy snake techniques. We then prove that the resulting sub-tree after pruning is still a Lévy continuum random tree. This last result is proved using the exploration process that codes the CRT, a special Markov property and martingale problems for exploration processes. We finally give the joint law under the excursion measure of the lengths of the excursions of the initial exploration process and the pruned one.
- Published
- 2010
37. Fragmentation associated with Levy processes using snake
- Author
-
Romain Abraham, Jean-François Delmas, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique (CERMICS), Institut National de Recherche en Informatique et en Automatique (Inria)-École des Ponts ParisTech (ENPC), and Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Poisson process ,01 natural sciences ,Lévy process ,Levy snake ,dislocation measure ,010104 statistics & probability ,symbols.namesake ,Probability theory ,Fragment (logic) ,Tree representation ,Mathematics::Probability ,Fragmentation ,stable processes ,Calculus ,Statistical physics ,0101 mathematics ,Mathematics ,Mathematical finance ,010102 general mathematics ,Fragmentation (computing) ,16. Peace & justice ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,symbols ,Markov property ,Statistics, Probability and Uncertainty ,special Markov property ,Analysis - Abstract
International audience; We consider the height process of a Levy process with no negative jumps, and its associated continuous tree representation. Using Levy snake tools developed by Duquesne and Le Gall, with an underlying Poisson process, we construct a fragmentation process, which in the stable case corresponds to the self-similar fragmentation described by Miermont. For the general fragmentation process we compute a family of dislocation measures as well as the law of the size of a tagged fragment. We also give a special Markov property for the snake which is interesting in itself.
- Published
- 2008
38. Strong convergence for urn models with reducible replacement policy
- Author
-
Jean-Stéphane Dhersin, Bernard Ycart, Romain Abraham, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Statistique et Modélisation Stochatisque (SMS), Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Mathématiques - Analyse, Probabilités, Modélisation - Orléans ( MAPMO ), Université d'Orléans ( UO ) -Centre National de la Recherche Scientifique ( CNRS ), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ), Statistique et Modélisation Stochatisque ( SMS ), Laboratoire Jean Kuntzmann ( LJK ), Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ) -Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Université Joseph Fourier - Grenoble 1 ( UJF ) -Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique ( CNRS ) -Université Grenoble Alpes ( UGA ), Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Université Joseph Fourier - Grenoble 1 (UJF)-Université Pierre Mendès France - Grenoble 2 (UPMF), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), and Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
- Subjects
Statistics and Probability ,Transient state ,Markov chain ,General Mathematics ,Stationary measures ,010102 general mathematics ,Random element ,01 natural sciences ,Dirichlet distribution ,Combinatorics ,strong convergence ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,symbols.namesake ,010104 statistics & probability ,MSC: 60F15 ,symbols ,Probability distribution ,Almost surely ,Ball (mathematics) ,0101 mathematics ,Statistics, Probability and Uncertainty ,[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR] ,Mathematics ,Urn model - Abstract
A multitype urn scheme with random replacements is considered. Each time a ball is picked, another ball is added, and its type is chosen according to the transition probabilities of a reducible Markov chain. The vector of frequencies is shown to converge almost surely to a random element of the set of stationary measures of the Markov chain. Its probability distribution is characterized as the solution to a fixed point problem. It is proved to be Dirichlet in the particular case of a single transient state to which no return is possible. This is no longer the case, however, as soon as returns to transient states are allowed.
- Published
- 2007
39. Feller property and infinitesimal generator of the exploration process
- Author
-
Jean-François Delmas, Romain Abraham, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique (CERMICS), Institut National de Recherche en Informatique et en Automatique (Inria)-École des Ponts ParisTech (ENPC), and Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,infinitesimal generator ,General Mathematics ,Markov process ,01 natural sciences ,Lévy process ,Levy snake ,measure-valued process ,010104 statistics & probability ,symbols.namesake ,Mathematics::Probability ,Random tree ,FOS: Mathematics ,Applied mathematics ,Infinitesimal generator ,0101 mathematics ,Mathematics ,Probability (math.PR) ,010102 general mathematics ,16. Peace & justice ,Exponential function ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Feller property ,60J35, 60J80, 60G57 ,symbols ,Exploration process ,Statistics, Probability and Uncertainty ,Martingale (probability theory) ,Mathematics - Probability - Abstract
A paraitre dans "Journal of Theoretical Probability"; International audience; We consider the exploration process associated to the continuous random tree (CRT) built using a Levy process with no negative jumps. This process has been studied by Duquesne, Le Gall and Le Jan. This measure-valued Markov process is a useful tool to study CRT as well as super-Brownian motion with general branching mechanism. In this paper we prove this process is Feller, and we compute its infinitesimal generator on exponential functionals and give the corresponding martingale.
- Published
- 2007
40. Changing the branching mechanism of a continuous state branching process using immigration
- Author
-
Jean-François Delmas, Romain Abraham, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique (CERMICS), Institut National de Recherche en Informatique et en Automatique (Inria)-École des Ponts ParisTech (ENPC), and Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,Continuous state branching processes ,Population ,Total population ,01 natural sciences ,Branching (linguistics) ,010104 statistics & probability ,Quadratic equation ,Mathematics::Probability ,60J25 ,FOS: Mathematics ,Applied mathematics ,Quantitative Biology::Populations and Evolution ,Immigration process ,60J85 ,0101 mathematics ,education ,Mathematics ,Branching process ,education.field_of_study ,60J80 ,010102 general mathematics ,Probability (math.PR) ,Multitype populations ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,Exponential formula ,60G55 ,Statistics, Probability and Uncertainty ,Mathematics - Probability ,Neutral mutation - Abstract
We consider an initial population whose size evolves according to a continuous state branching process. Then we add to this process an immigration (with the same branching mechanism as the initial population), in such a way that the immigration rate is proportional to the whole population size. We prove this continuous state branching process with immigration proportional to its own size is itself a continuous state branching process. By considering the immigration as the apparition of a new type, this construction is a natural way to model neutral mutation. It also provides in some sense a dual construction of the particular pruning at nodes of continuous state branching process introduced by the authors in a previous paper. For a critical or sub-critical quadratic branching mechanism, it is possible to explicitly compute some quantities of interest. For example, we compute the Laplace transform of the size of the initial population conditionally on the non-extinction of the whole population with immigration. We also derive the probability of simultaneous extinction of the initial population and the whole population with immigration.
- Published
- 2006
41. An active curve approach for tomographic reconstruction of binary radially symmetric objects
- Author
-
Maïtine Bergounioux, Romain Abraham, Isabelle Abraham, Département des Sciences de la Simulation et de l'Information (DSSI), DAM Île-de-France (DAM/DIF), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Springer, and Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)
- Subjects
FOS: Computer and information sciences ,Tomographic reconstruction ,Generalized inverse ,Computer Vision and Pattern Recognition (cs.CV) ,010102 general mathematics ,Mathematical analysis ,Computer Science - Computer Vision and Pattern Recognition ,Order (ring theory) ,Binary number ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Non local ,Object (computer science) ,01 natural sciences ,010101 applied mathematics ,Level set ,Optimization and Control (math.OC) ,FOS: Mathematics ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,0101 mathematics ,Mathematics - Optimization and Control ,Mathematics - Abstract
International audience; This paper deals with a method of tomographic reconstruction of radially symmetric objects from a single radiograph, in order to study the behavior of shocked material. The usual tomographic reconstruction algorithms such as generalized inverse or filtered back-projection cannot be applied here because data are very noisy and the inverse problem associated to single view tomographic reconstruction is highly unstable. In order to improve the reconstruction, we propose here to add some a priori assumptions on the looked after object. One of these assumptions is that the object is binary and consequently, the object may be described by the curves that separate the two materials. We present a model that lives in BV space and leads to a non local Hamilton-Jacobi equation, via a level set strategy. Numerical experiments are performed (using level sets methods) on synthetic objects.
- Published
- 2006
42. Asymptotics for the small fragments of the fragmentation at nodes
- Author
-
Romain Abraham, Jean-François Delmas, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Centre d'Enseignement et de Recherche en Mathématiques, Informatique et Calcul Scientifique (CERMICS), Institut National de Recherche en Informatique et en Automatique (Inria)-École des Ponts ParisTech (ENPC), and Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,010102 general mathematics ,Probability (math.PR) ,Fragmentation (computing) ,small fragments ,01 natural sciences ,MSC: 60J25, 60G57 ,Combinatorics ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,continuous random tree ,60J25, 60G57 ,local time ,Fragmentation ,Random tree ,FOS: Mathematics ,Lévy snake ,Limit (mathematics) ,0101 mathematics ,Nuclear Experiment ,Mathematics - Probability ,Mathematics - Abstract
International audience; We consider the fragmentation at nodes of the Lévy continuous random tree introduced in a previous paper. In this framework we compute the asymptotic for the number of small fragments at time $\theta$. This limit is increasing in $\theta$ and discontinuous. In the $\alpha$-stable case the fragmentation is self-similar with index $1/\alpha$, with $\alpha \in (1,2)$ and the results are close to those Bertoin obtained for general self-similar fragmentations but with an additional assumtion which is not fulfilled here.
- Published
- 2006
43. Forward-backward stochastic differential equations and PDE with gradient dependent second order coefficients
- Author
-
Romain Abraham, Olivier Riviere, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Mathématiques - Analyse, Probabilités, Modélisation - Orléans ( MAPMO ), Université d'Orléans ( UO ) -Centre National de la Recherche Scientifique ( CNRS ), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ), Abraham, Romain, and Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Statistics and Probability ,[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,Differential equation ,Mathematical analysis ,02 engineering and technology ,01 natural sciences ,Stochastic partial differential equation ,Examples of differential equations ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,symbols.namesake ,Stochastic differential equation ,Elliptic partial differential equation ,0202 electrical engineering, electronic engineering, information engineering ,Runge–Kutta method ,symbols ,020201 artificial intelligence & image processing ,0101 mathematics ,[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR] ,Mathematics ,Numerical partial differential equations ,Separable partial differential equation - Abstract
We consider a system of fully coupled forward-backward stochastic differential equations. First we generalize the results of Pardoux-Tang [7] concerning the regularity of the solutions with respect to initial conditions. Then, we prove that in some particular cases this system leads to a probabilistic representation of solutions of a second-order PDE whose second order coefficients depend on the gradient of the solution. We then give some examples in dimension 1 and dimension 2 for which the assumptions are easy to check.
- Published
- 2006
44. Representations of the Brownian snake with drift
- Author
-
Romain Abraham, Laurent Serlet, Graffigne, Christine, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Mathématiques - Analyse, Probabilités, Modélisation - Orléans ( MAPMO ), Université d'Orléans ( UO ) -Centre National de la Recherche Scientifique ( CNRS ), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ), Abraham, Romain, and Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[MATH.MATH-PR] Mathematics [math]/Probability [math.PR] ,Geometric Brownian motion ,Fractional Brownian motion ,Stochastic process ,010102 general mathematics ,Mathematical analysis ,Ornstein–Uhlenbeck process ,Brownian excursion ,01 natural sciences ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,010104 statistics & probability ,Mathematics::Probability ,Reflected Brownian motion ,Diffusion process ,Novikov's condition ,Statistical physics ,0101 mathematics ,[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR] ,Mathematics - Abstract
We consider a path-valued process which is a generalization of the classical Brownian snake introduced by Le Gall. More precisely we add a drift term b to the lifetime process, which may depends on...
- Published
- 2002
45. Poisson snake and fragmentation
- Author
-
Romain Abraham, Laurent Serlet, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Mathématiques - Analyse, Probabilités, Modélisation - Orléans ( MAPMO ), Université d'Orléans ( UO ) -Centre National de la Recherche Scientifique ( CNRS ), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), and Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Statistics and Probability ,coalescence ,Self-similarity ,Discrete Poisson equation ,Poisson process ,Mathematical proof ,Poisson distribution ,01 natural sciences ,010104 statistics & probability ,symbols.namesake ,Mathematics::Probability ,60J25 ,fragmentation ,Compound Poisson process ,Random tree ,Brownian snake ,Statistical physics ,0101 mathematics ,Brownian motion ,Mathematics ,Discrete mathematics ,self-similarity ,010102 general mathematics ,16. Peace & justice ,Path-valued process ,[MATH.MATH-PR]Mathematics [math]/Probability [math.PR] ,symbols ,60G57 ,Statistics, Probability and Uncertainty ,[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR] - Abstract
Our main object that we call the Poisson snake is a Brownian snake as introduced by Le Gall. This process has values which are trajectories of standard Poisson process stopped at some random finite lifetime with Brownian evolution. We use this Poisson snake to construct a self-similar fragmentation as introduced by Bertoin. A similar representation was given by Aldous and Pitman using the Continuum Random Tree. Whereas their proofs used approximation by discrete models, our representation allows continuous time arguments.
- Published
- 2002
46. Avoiding-Probabilities For Brownian Snakes and Super-Brownian Motion
- Author
-
Romain Abraham and Wendelin Werner
- Subjects
Statistics and Probability ,Multiplicative function ,Excursion ,Motion (geometry) ,Combinatorics ,60J25 ,60J45 ,Brownian snakes ,superprocesses ,non-linear differential equations ,Statistics, Probability and Uncertainty ,Super brownian motion ,Brownian motion ,Mathematics - Abstract
We investigate the asymptotic behaviour of the probability that a normalized $d$-dimensional Brownian snake (for instance when the life-time process is an excursion of height 1) avoids 0 when starting at distance $\varepsilon$ from the origin. In particular we show that when $\varepsilon$ tends to 0, this probability respectively behaves (up to multiplicative constants) like $\varepsilon^4$, $\varepsilon^{2\sqrt{2}}$ and $\varepsilon^{(\sqrt {17}-1)/2}$, when $d=1$, $d=2$ and $d=3$. Analogous results are derived for super-Brownian motion started from $\delta_x$ (conditioned to survive until some time) when the modulus of $x$ tends to 0.
- Published
- 1997
47. Un arbre aleatoire infini associe a l'excursion brownienne
- Author
-
Romain Abraham
- Subjects
media_common.quotation_subject ,Art ,media_common - Published
- 1992
48. Williams’ decomposition of the Lévy continuum random tree and simultaneous extinction probability for populations with neutral mutations
- Author
-
Romain Abraham and Jean-François Delmas
- Subjects
Statistics and Probability ,education.field_of_study ,Extinction probability ,Stochastic process ,Applied Mathematics ,Population size ,Population ,fungi ,Immigration ,Neutral mutation ,Continuous state branching process ,Williams’ decomposition ,Modelling and Simulation ,Modeling and Simulation ,Continuum random tree ,Random tree ,Statistics ,Probability distribution ,Statistical physics ,education ,Branching process ,Mathematics ,Probability of extinction - Abstract
We consider an initial Eve-population and a population of neutral mutants, such that the total population dies out in finite time. We describe the evolution of the Eve-population and the total population with continuous state branching processes, and the neutral mutation procedure can be seen as an immigration process with intensity proportional to the size of the population. First we establish a Williams’ decomposition of the genealogy of the total population given by a continuum random tree, according to the ancestral lineage of the last individual alive. This allows us to give a closed formula for the probability of simultaneous extinction of the Eve-population and the total population.
- Full Text
- View/download PDF
49. Marches aléatoires et arbres de Galton-Watson
- Author
-
Bouaziz, Aymen, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Université d'Orléans, Romain Abraham, and Mohamed Sifi
- Subjects
Arbres aléatoires ,Arbres de Galton-Watson ,Random trees ,Local limit ,Protected nodes ,Orthand ,Galton-Watson trees ,Limite locale ,[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Ramdom walks ,Fonctions harmoniques discrètes ,Marches aléatoires ,Noeuds protégés ,Discrete harmonic functions ,Orthant - Abstract
In this thesis we are interested in three types of problems: 1-Existence and uniqueness of a positive harmonic function associated with an inhomogeneous random walk confined in an orthant. 2-Study of convergence in distribution of critical Galton Watson trees conditioned to have a large enoughnumber of protected nodes. 3-Study of the convergence in distribution of Galton Watson trees conditioned to have a large generation.; Dans cette thèse nous nous sommes intéressés de trois types de problèmes : 1 -Existence et unicité d’une fonction harmonique strictement positive associée à une marche aléatoire inhomogène confinée dans un orthant. 2 -Etude de la convergence en loi des arbres de Galton Watson critiques conditionnés à avoir un nombre assez grand de noeuds protégés. 3 -Etude de la convergence en loi des arbres de Galton Watson conditionnés à avoir une génération anormalement grande.
- Published
- 2017
50. Analyse rapide d’images 3D de matériaux hétérogènes : identification de la structure des milieux et application à leur caractérisation multi-échelle
- Author
-
Walbron, Amaury, STAR, ABES, Mathématiques - Analyse, Probabilités, Modélisation - Orléans (MAPMO), Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Université d'Orléans, Romain Abraham, and Denis Rochais
- Subjects
[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM] ,Image processing ,Matériaux composites ,3D images ,[MATH.MATH-GM] Mathematics [math]/General Mathematics [math.GM] ,Composite materials ,Images 3D ,Traitement d’Image - Abstract
Digital simulation is a wide-spreading tool for composite materials design and choice. Indeed it allows to generate and test digitally various structures more easily and quickly than with real manufacturing and tests processes. A feedback is needed following the choice and the fabrication of a virtual material in order to simultaneously validate the simulation and the fabrication process. With this aim, models similar to generated virtual structures are obtained by digitization of manufacturing materials. The same simulation algorithms can then be applied and allow to verify the forecasts. This thesis is also about the modelling of composite materials from 3D images, in order to rediscover in them the original virtual material. Image processing methods are applied to images to extract material structure data, i.e. each constituent localization, and orientation if applicable. These knowledge theoretically allow to simulate thermal and mechanical behavior of structures constituted of studied material. However to accurately represent composites requires practically a very small discretization step. Therefore behavior simulation of a macroscopic structure needs too much discretization points, and then time and memory. Hence a part of this thesis focuses also on determination of equivalent homogeneous material problem, which allows, when resolved, to lighten calculation time for simulation algorithms., La simulation numérique est un outil de plus en plus utilisé pour la conception et le choix de matériaux composites. Celle-ci permet en effet de générer et tester numériquement des structures très diverses plus facilement et plus rapidement qu’avec des procédés de fabrication et de tests réels. Suite au choix d’un matériau virtuel et sa fabrication tangible, un retour sur expérience est nécessaire afin de valider simultanément la simulation et le procédé de fabrication. Pour cela, la numérisation des matériaux fabriqués permet de renvoyer une modélisation comparable aux structures virtuelles générées. Il devient possible d’appliquer les mêmes algorithmes de simulation et de vérifier les prévisions.Le sujet de cette thèse consiste donc en la modélisation de matériaux composites réels à partir d’images 3D, afin d’y retrouver le matériau virtuel originel. Des méthodes de traitement d’images sont appliquées aux images afin d’en extraire les informations sur la structure du matériau, c’est-à-dire la localisation de chaque constituant et, s’il y a lieu, de leurs orientations. Ces connaissances permettent théoriquement de simuler le comportement thermique et mécanique de structures constituées du matériau étudié.Cependant, en pratique, représenter fidèlement les composites demande de prendre une discrétisation très fine. Par conséquent, une structure macroscopique demande beaucoup trop de points de discrétisation et donc de temps de calcul et de mémoire pour simuler son comportement. Un aspect de la thèse consiste donc aussi en la détermination d’un matériau homogène équivalent, permettant d’alléger la charge de calcul pour les algorithmes de simulation.
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.