1. Influence of the Incorporation of Nd in ZnO Films Grown by the HFCVD Technique to Enhance Photoluminiscence Due to Defects
- Author
-
Marcos Palacios Bonilla, Godofredo García Salgado, Antonio Coyopol Solís, Román Romano Trujillo, Fabiola Gabriela Nieto Caballero, Enrique Rosendo Andrés, Crisóforo Morales Ruiz, Justo Miguel Gracia Jiménez, and Reina Galeazzi Isasmendi
- Subjects
HFCVD ,silicon ,ZnO-Nd ,sea urchin ,Crystallography ,QD901-999 - Abstract
In this work, optical–structural and morphological behavior when Nd is incorporated into ZnO is studied. ZnO and Nd-doped ZnO (ZnO-Nd) films were deposited at 900 °C on Silicon n-type substrates (100) by using the Hot Filament Chemical Vapor Deposition (HFCVD) technique. For this, pellets were made by from powders of ZnO(s) and a mixture of ZnO(s):Nd(OH)3(s). The weight percent of the mixture ZnO:Nd(OH)3 in the pellet is 1:3. The gaseous precursor generation was carried out by chemical decomposition of the pellets using atomic hydrogen which was produced by a tungsten filament at 2000 °C. For the ZnO film, diffraction planes (100), (002), (101), (102), (110), and (103) were found by XRD. For the ZnO-Nd film, its planes are displaced, indicating the incorporation of Nd into the ZnO. EDS was used to confirm the Nd in the ZnO-Nd film with an atomic concentration (at%) of Nd = 10.79. An improvement in photoluminescence is observed for the ZnO-Nd film; this improvement is attributed to an increase in oxygen vacancies due to the presence of Nd. The important thing about this study is that by the HFCVD method, ZnO-Nd films can be obtained easily and with very short times; in addition, some oxide compounds can be obtained individually as initial precursors, which reduces the cost compared to other techniques. Something interesting is that the incorporation of Nd into ZnO by this method has not yet been studied, and depending on the method used, the PL of ZnO with Nd can increase or decrease, and by the HFCVD method the PL of the ZnO film, when Nd is incorporated, increases more than 15 times compared to the ZnO film.
- Published
- 2024
- Full Text
- View/download PDF