1. Ion exchange synthesizes layered polymorphs of MgZrN$_2$ and MgHfN$_2$, two metastable semiconductors
- Author
-
Rom, Christopher L., Jankousky, Matthew, Phan, Maxwell Q., O'Donnell, Shaun, Regier, Corlyn, Neilson, James R., Stevanovic, Vladan, and Zakutayev, Andriy
- Subjects
Condensed Matter - Materials Science - Abstract
The synthesis of ternary nitrides is uniquely difficult, in large part because elemental N$_2$ is relatively inert. However, lithium reacts readily with other metals and N$_2$, making Li-M-N the most numerous sub-set of ternary nitrides. Here, we use Li$_2$ZrN$_2$, a ternary with a simple synthesis recipe, as a precursor for ion exchange reactions towards AZrN$_2$ (A = Mg, Fe, Cu, Zn). In situ synchrotron powder X-ray diffraction studies show that Li$^+$ and Mg$^{2+}$ undergo ion exchange topochemically, preserving the layers of octahedral [ZrN$_6$] to yield a metastable layered polymorph of MgZrN$_2$ (spacegroup $R\overline{3}m$) rather than the calculated ground state structure ($I41/amd$). UV-vis measurements show an optical absorption onset near 2.0 eV, consistent with the calculated bandgap for this polymorph. Our experimental attempts to extend this ion exchange method towards FeZrN$_2$, CuZrN$_2$, and ZnZrN$_2$ resulted in decomposition products (A + ZrN + 1/6 N$_2$), an outcome that our computational results explain via the higher metastability of these phases. We successfully extended this ion exchange method to other Li-M-N precursors by synthesizing MgHfN$_2$ from Li$_2$HfN$_2$. In addition to the discovery of metastable $R\overline{3}m$ MgZrN$_2$ and MgHfN$_2$, this work highlights the potential of the 63 unique Li-M-N phases as precursors to synthesize new ternary nitrides.
- Published
- 2024