7 results on '"Rodrigues, Manuel Angelo"'
Search Results
2. Estudos de fertilização de azoto, fósforo, potássio e boro em oliveira = Estudios de fertilización de nitrógeno, fósforo, potasio y boro en olivo = Fertilization studies of nitrogen, phosphorus, potassium and boron in olive trees
- Author
-
Rodrigues, Manuel Angelo Rosa, Rodrigues, Margarita María Pereira Arrobas, Ingenieria Agroforestal, Ferreira, Isabel Queiros Morais, Rodrigues, Manuel Angelo Rosa, Rodrigues, Margarita María Pereira Arrobas, Ingenieria Agroforestal, and Ferreira, Isabel Queiros Morais
- Abstract
Nitrogen is the element that generally most limits plant productivity in natural and agricultural ecosystems. The response to applied nitrogen mainly depends on the potential crop productivity and on the natural soil nitrogen availability. In Trás-os-Montes, Portugal, most soils display low or even very low phosphorus levels when determined by soil analysis. However, when the phosphorus status of the orchards is assessed by leaf analysis, the results are often found within the "adequate" range. The region’s soils often display high levels of potassium. However, there have been observed situations of visible symptoms of potassium deficiency in olive trees and in some situations already diagnosed by leaf analyzes. In the region, there is also a natural limitation of boron in the soil, being frequent the occurrence of boron deficiency symptoms in dicotyledonous species, such as in olive. Boron application in olive groves is currently a regular practice, although few studies with this nutrient had been done. Thus, the general goal of this work is to collect information that could help laboratories and producers to improve the fertilization programs for the macronutrients nitrogen, phosphorus and potassium and also for boron, the four elements that are most likely to cause nutritional disorders in the olive groves of the region of Trás-os-Montes. To study the olive tree response to the application of nitrogen, phosphorus, potassium or boron, two field trials (with the cultivar ‘Cobrançosa’) and seven pot experiments were installed. The first field trial (Field1) was established in a three-year-old olive grove in which a basal fertilization program with nitrogen, phosphorus, potassium and boron was established as the control treatment. The other four treatments consisted on removing each one of the nutrients. The fertilizers were applied manually at early April localized close to the trunk of the trees. Phosphorus and potassium were applied in areas of 16 (4 m x 4 m) m2 (
- Published
- 2019
3. Olive tree response to the severity of pruning
- Author
-
RODRIGUES, MANUEL ANGELO, primary, LOPES, JOÃO ILIDIO, additional, FERREIRA, ISABEL QUEIROS, additional, and ARROBAS, MARGARIDA, additional
- Published
- 2018
- Full Text
- View/download PDF
4. Effect of Soil Management on Olive Yield and Nutritional Status of Trees in Rainfed Orchards.
- Author
-
Rodrigues, Manuel Angelo, Lopes, Joao Ilidio, Pavao, Francisco Manuel, Cabanas, Jose Eduardo, and Arrobas, Margarida
- Subjects
- *
OLIVE , *CROP yields , *SOIL management , *NUTRITIONAL assessment , *TREE crops , *DRY farming , *ORCHARDS , *PLANT nutrients - Abstract
Studies on the effect of groundcover treatments on perennial tree crops have been common in recent decades. However, few have included leaf analysis as an aid to understand the effects of groundcover treatments on tree crop growth and yield, in particular in rainfed olive orchards. Field experiments took place in northeast Portugal, over the course of eight consecutive years, in two commercial orchards selected on the basis of their contrasting situation regarding the floor-management system before the trial started. An orchard located in Braganca, currently managed as a sheep-walk, received the following treatments: sheep-walk (SW), where the natural vegetation was managed with a flock of sheep; mechanical cultivation (MC), which consisted of two tillage trips per year in the spring; and glyphosate (Gly), where the herbicide was applied once during the first fortnight of April. Another orchard near Mirandela, currently managed by tillage, received the following treatments: mechanical cultivation (MC); glyphosate (Gly); and residual herbicide (RH), where an herbicide with a residual component was applied late in the winter. The trees that underwent Gly treatments produced the greatest tree crop growth and olive yield. The worst results were achieved with the SW and MC treatments in the Braganca and Mirandela experiments, respectively. Leaf nitrogen (N) and boron (B) concentrations were significantly higher and lower, respectively, in the treatments that caused the higher and lower olive yields in both experiments. In the Mirandela orchard, where the leaf potassium (K) concentrations were close to the lower limit of the adequate range, the leaf K levels followed the pattern registered for N and B. The results showed a strong link between tree crop nutritional status and tree crop growth and olive yield. The groundcover treatments that facilitate nutrient absorption by olive trees yielded more crops. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
5. Comparative Boron Nutritional Diagnosis for Olive Based on July and January Leaf Samplings.
- Author
-
Arrobas, Margarida Pereira, Lopes, Joao Ilidio, Pavao, Francisco Manuel, Cabanas, Jose Eduardo, and Rodrigues, Manuel Angelo
- Subjects
OLIVE ,BIENNIALS (Plants) ,FOLIAR diagnosis ,BORON in plant nutrition ,AGRICULTURAL experimentation - Abstract
In this work, diagnosis of boron (B) nutritional status based on leaf B concentrations was compared for the most common leaf-sampling times for olive trees, January and July. For this purpose, field experiments were conducted over 4 years (2003-2006) in two rainfed olive groves located in Mirandela and Braganca, northeastern Portugal. Leaf samples were collected in January and July and analyzed for B by standard procedures. Fruit harvest occurred in December of each year. The crops followed typical alternate fruiting cycles. During the 4 years of the study, mean olive yields in the Braganca orchard fluctuated, yielding 3.6, 28.1, 5.5, and 22.7 kg tree-1. Yield variation per individual tree was also great. In the Braganca orchard and in the 2004 harvest, yields ranged from 1.2 to 52.7 kg tree-1. Leaf B concentrations also varied greatly between individual trees. In the Braganca orchard in the July sampling of 2004, values for individual trees varied from 12.2 and 23.7 mg B kg-1. From a total of 16 scatterplots generated from the relationship between leaf B concentrations and olive yields, 10 significant linear relationships were established; six of them were related to July sampling dates and four were related to January dates. The number of significant linear relationships established between leaf B concentration and olive yield was used as a criterion of the accuracy of the B nutritional diagnosis, because this represented the lowest experimental variability. By using this criterion, the July sampling date proved as better for B nutritional diagnosis, although the difference from January sampling date was not sufficient to disregard this. Leaf B concentrations were consistently greater in July than in January. Averaged across the 4 years of the study in both orchards, the difference was 4.3 mg B kg-1. This difference should be taken into account in the interpretation of leaf analysis results when B levels are close to the deficient critical concentration. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
6. Estudos de fertilização de azoto, fósforo, potássio e boro em oliveira = Estudios de fertilización de nitrógeno, fósforo, potasio y boro en olivo = Fertilization studies of nitrogen, phosphorus, potassium and boron in olive trees
- Author
-
Isabel Queiros Morais Ferreira, Rodrigues, Manuel Angelo Rosa, Rodrigues, Margarita María Pereira Arrobas, Ingenieria Agroforestal, and Escuela de Ingeniería Agraria y Forestal
- Subjects
Horticulture ,Human fertilization ,Ingeniería agrícola ,chemistry ,Potassium ,chemistry.chemical_element ,food and beverages ,Química orgánica ,Agronomía ,Boron ,Nitrogen phosphorus ,BORO ,Olive trees - Abstract
235 Nitrogen is the element that generally most limits plant productivity in natural and agricultural ecosystems. The response to applied nitrogen mainly depends on the potential crop productivity and on the natural soil nitrogen availability. In Trás-os-Montes, Portugal, most soils display low or even very low phosphorus levels when determined by soil analysis. However, when the phosphorus status of the orchards is assessed by leaf analysis, the results are often found within the "adequate" range. The region’s soils often display high levels of potassium. However, there have been observed situations of visible symptoms of potassium deficiency in olive trees and in some situations already diagnosed by leaf analyzes. In the region, there is also a natural limitation of boron in the soil, being frequent the occurrence of boron deficiency symptoms in dicotyledonous species, such as in olive. Boron application in olive groves is currently a regular practice, although few studies with this nutrient had been done. Thus, the general goal of this work is to collect information that could help laboratories and producers to improve the fertilization programs for the macronutrients nitrogen, phosphorus and potassium and also for boron, the four elements that are most likely to cause nutritional disorders in the olive groves of the region of Trás-os-Montes. To study the olive tree response to the application of nitrogen, phosphorus, potassium or boron, two field trials (with the cultivar ‘Cobrançosa’) and seven pot experiments were installed. The first field trial (Field1) was established in a three-year-old olive grove in which a basal fertilization program with nitrogen, phosphorus, potassium and boron was established as the control treatment. The other four treatments consisted on removing each one of the nutrients. The fertilizers were applied manually at early April localized close to the trunk of the trees. Phosphorus and potassium were applied in areas of 16 (4 m x 4 m) m2 (2 m from the trunk for each quadrant) and nitrogen and boron in areas of 4 m2 (1 m from the trunk for each quadrant). Nitrogen, phosphorus, potassium and boron were applied, respectively, at the rates of 48, 70, 133 and 1.2 g tree-1 year-1. The fertilizers used were ammonium nitrate (34.5 %N), superphosphate (18 % P2O5), potassium chloride (60 % K2O) and borax (11 % B). The second field experiment (Field2) was established after of planting young olive trees specifically for this work. In this experiment, nitrogen, phosphorus, potassium and boron were applied annually, respectively, at the rates of 200, 175, 332 and 6 g per experimental unit (10 trees). The study of nitrogen included a pot experiment (PotN) with four nitrogen rates (0, 0.4, 0.8 and 1.6 g pot-1 year-1). Phosphorus was study from a first experiment (PotP1) in which four phosphorus rates (0, 0.35, 0.70 and 1.05 g pot-1 year-1) were used and from a second experiment (PotP2) in which two rates of phosphorus (0 and 1.05 g pot-1 year-1) were included in a randomized block design where four different soils act as blocks. Potassium was studied from a first pot experiment (PotK1) which includes three potassium rates (0, 0.66 and 1.33 g pot-1 year-1) and from a second experiment (PotK2) arranged as a factorial, with two potassium rates (0 and 0.66 kg pot-1 year-1), two water regimes (normal and stress) and two cultivars (‘Cobrançosa’ and ‘Arbequina’). Boron was also studied from two experiments, the first (PotB1) consisting of the application of boron to the soil [annual application of 0.29 g of borax (11 % B)] and as foliar spray [annual application of 0.04 mL of Tradebor 11 % B)] and the second (PotB2) consisting of the application of boron as a foliar spray [annual application of 0.04 mL of Tradebor (11 % B)] in only a few tagged branches of the plant. This second experiment involved the cultivars 'Cobrançosa' and ‘Arbequina’. Depending on the experiment, several determinations were performed, regarding the biometry of fruits, crop nutritional status, soil properties and olive yield in the first field trial. Whenever considered relevant, chlorophyll fluorescence and transient fluorescence based on the OJIP test were evaluated using the OS-30p+ fluorometer, as well as an index of sclerophylly, leaf tissue density (D), and two water status indices of the plant (relative water content, CRA, and saturation water content, CAS). The results of the first field trial, in which was possible to assess olive yield, showed a significant increases in olive yield only in one of the three years of study, probably because the reduced nitrogen removal by the young trees. In the Field2, nitrogen application significantly increased dry matter yield, leaf nitrogen concentration and nitrogen removal. The pot experiment showed a typical nitrogen response curve, where the production of biomass increases while the availability of nitrogen limits plant growth followed by a stabilization at a plateau or even decreasing when nitrogen is supplied at a high or excessive rate. The increase in nitrogen availability leads to an increase in the ratios between aerial biomass and roots and between leaves and stems. The results also showed that the leaves are a priority sink for nitrogen due to their content of chlorophyll. They also suggest that nitrogen could be taken up by the plant in luxury consumption. The experimental data stressed the difficulty in obtaining response in olive tree growth and yield to phosphorus application. However, in the PotP2, where four different soils were used, some of them with a very low pH, phosphorus application significantly increased total dry matter yield, phosphorus concentration in the tissues, and improved the photosynthetic activity of the leaves. Phosphorus enhanced root growth, showing the ability to accumulate in the root system when it is available in the soil, seeming to be able to buffer the supply of phosphorus to the shoot. In the field trials, potassium did not have a significant effect on tree’s growth and yield. Other parameters related to chlorophyll a fluorescence and leaf water status, also did not significantly vary with potassium application, which apparently reduces the importance of potassium fertilization in these soils. In pot experiments potassium application increased the shoot/root ratio and also the potassium concentration in the root proportionally more than that in the shoot, indicating that shoot is a priority sink for potassium and also that potassium accumulated in the root can act as a reserve for the plant when potassium uptake is reduced. Water stress reduced dry matter yield and potassium concentration in the roots. ‘Arbequina’ showed greater sensitivity to water stress than ‘Cobrançosa’, but produced more dry biomass under well irrigated conditions, possibly because ‘Arbequina’ is an early maturing crop. Boron application increased the nutrient concentration in all tissues but did not cause any relevant effect on the agronomic performance of the plant including olive yield. The results indicate that different sufficiency ranges should be used for samples collected in the summer, at endocarp sclerefication, and in the winter, in the resting period of the olive tree. In PotB1 tissue boron concentrations were significantly higher in the plants from the pots receiving boron to the soil in comparison to those receiving foliar boron, whereas the later showed significantly higher tissue boron concentrations than the plans of the control treatment. The results of PotB2 suggest that boron may have some mobility in the phloem, since after had been applied to the shoot, boron concentration in the root increased. However, the results also suggest that boron mobility in olive may be cultivar dependent. The younger leaves of ‘Arbequina’ showed lower boron concentration than older leaves after the later had been sprayed with boron, an aspect not observed with ‘Cobrançosa’.
- Published
- 2018
7. Free amino acids of tronchuda cabbage (Brassica oleracea L. Var. costata DC): influence of leaf position (internal or external) and collection time.
- Author
-
Oliveira AP, Pereira DM, Andrade PB, Valentão P, Sousa C, Pereira JA, Bento A, Rodrigues MA, Seabra RM, and Silva BM
- Subjects
- Amino Acids metabolism, Brassica metabolism, Chromatography, High Pressure Liquid, Plant Leaves metabolism, Spectrophotometry, Temperature, Amino Acids analysis, Brassica chemistry, Plant Leaves chemistry, Specimen Handling methods
- Abstract
The free amino acid profile of 18 samples of tronchuda cabbage ( Brassica oleracea L. var. costata DC) leaves, harvested at three different months, was determined by HPLC/UV-vis. The tronchuda cabbage leaves total free amino acid content varied from 3.3 to 14.4 g/kg fresh weight. Generally, arginine was the major compound, followed by proline, threonine, glutamine, cysteine, and glutamic acid. This study indicates that free amino acids are not similarly distributed: in external leaves, proline and arginine were the major free amino acids, while in internal ones, arginine was the main free amino acid, followed by threonine, glutamine, and cysteine. Significant differences were observed for valine, proline, arginine, leucine, cysteine, lysine, histidine, and tyrosine contents. The levels of some free amino acids were significantly affected by the collection period. In external leaves, this occurred with glutamic acid, serine, valine, leucine, cysteine, and ornithine contents, while in internal leaves, it occurred with aspartic acid, arginine, and total contents.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.