14 results on '"Rodríguez-Yon, Yakelin"'
Search Results
2. Simulation of integrated anaerobic digestion-gasification systems using machine learning models
- Author
-
Ge, Yadong, Tao, Junyu, Wang, Zhi, Chen, Chao, Liang, Rui, Mu, Lan, Ruan, Haihua, Rodríguez Yon, Yakelin, Yan, Beibei, and Chen, Guanyi
- Published
- 2023
- Full Text
- View/download PDF
3. Propagación in vitro de una cepa cubana de Hongos Micorrízicos Arbusculares y su factible asociación a bacterias
- Author
-
Perera García, Sussy Saymara, Fernández Suárez, Kalyanne, Pérez Ortega, Eduardo José, Mujica Pérez, Yonaisy, Pérez-Pérez, Reneé, Rodríguez Yon, Yakelin, and Haesaert, Geert
- Published
- 2022
- Full Text
- View/download PDF
4. Development of a taxon-discriminating molecular marker to trace and quantify a mycorrhizal inoculum in roots and soils of agroecosystems
- Author
-
Rodríguez-Yon, Yakelin, Maistro-Patreze, Camila, Saggin-Junior, Orivaldo Jose, Rivera, Ramón Antonio, Quiñones, Madelaine, Haesaert, Geert, and van Tuinen, Diederik
- Published
- 2021
- Full Text
- View/download PDF
5. Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants
- Author
-
Perea Rojas, Yamel del Carmen, Arias, Rosa María, Medel Ortiz, Rosario, Trejo Aguilar, Dora, Heredia, Gabriela, and Rodríguez Yon, Yakelin
- Published
- 2019
- Full Text
- View/download PDF
6. Some physical, chemical and microbiological properties of an agricultural soil in Darien, Republic of Panama
- Author
-
Álvarez-González, Aquile, Martín-Alonso, Gloria M., Mejía-Franco, Luis C., López-Vdovenko, Evangelina, and Rodríguez-Yon, Yakelin
- Published
- 2021
7. Actividad anhidrasa carbónica en micorrizas arbusculares
- Author
-
Rodríguez Yon, Yakelin, Chiriboga Morocho, Romel, Concha Egas, Elmo G., and Lara Rodríguez, Regla M.
- Published
- 2016
- Full Text
- View/download PDF
8. Caracterización de proteínas del suelo relacionadas con las fracciones de glomalina en cafetales bajo sombra en Veracruz
- Author
-
Arias Mota, Rosa María, De la Cruz Elizondo, Yadeneyro, and Rodríguez Yon, Yakelin
- Subjects
agroecosystem ,spores ,arbuscular mycorrhizal fungi ,agroecosistema ,esporas ,hongos micorrízicos arbusculares - Abstract
RESUMEN Antecedentes: La estructura vegetal de los cafetales con sombra ha funcionado como nicho de la biota nativa. Entre esta biota destacan los hongos micorrízicos arbusculares que forman simbiosis con las plantas y liberan una glicoproteína llamada glomalina que contribuye a la reserva de carbono en los suelos. Objetivo: Caracterizar los niveles de las fracciones de proteínas del suelo relacionadas a glomalina total y fácilmente extraíble y analizar su relación con el número de esporas de los hongos micorrízicos arbusculares y con algunas características fisicoquímicas de los suelos cafetaleros. Métodos: Se analizaron suelos de cinco cafetales bajo sombra y se utilizaron diferentes métodos extractivos, seguido de la estimación de la concentración de proteínas para la determinación de glomalina y un conteo de esporas de los hongos micorrízicos arbusculares. Resultados y discusión: Los valores de glomalina fácilmente extraíble y total oscilaron entre 0.15-a 0.46 y 0.57-2.03 mg/kg respectivamente. La finca Jilotepec1 presentó los mayores valores de las dos fracciones de glomalina. Las regresiones lineales revelaron una relación significativa positiva entre la glomalina total con la materia orgánica, con el carbono orgánico, con el nitrógeno y carbono total. Se observó una relación significativa negativa de la glomalina total con el fósforo disponible y la densidad aparente del suelo. No obstante que no se observó una relación significativa entre la glomalina con el número de esporas, se denota una tendencia, de tal manera que es factible utilizar la medición de glomalina para cuantificar la actividad de los hongos micorrízicos arbusculares en las fincas cafetaleras. ABSTRACT Background: The vegetal structure of coffee plantation under shadow has functioned as niche of native biota. Among this biota, its highlight arbuscular mycorrhizal fungi that form symbiosis with these plants and release a glycoprotein named glomalin which contributes to the carbon reserve in soils. Objective: To characterize the levels of the fractions of glomalin-related soil proteins and easy extractable and their relationship with the number of arbuscular mycorrhizal fungi spores and several physic-chemical characteristics of coffee soils. Methods: Soils of five coffee plantations under shadow with the same management were analyzed. Different extractive methods were used, followed by the protein-concentration estimation to determine glomalin and the arbuscular mycorrhizal fungi spores counting was achieved. Results and discussion: Easily extractable and total glomalin values ranged from 0.15-0.46 and 0.57-2.03 mg/kg, respectively. The Jilotepec1 coffee plantation presented the highest values of the two glomalin fractions. Linear regressions revealed a significant positive relationship between total glomalin with organic matter, organic carbon, and total nitrogen and carbon. A significant negative relationship of total glomalin with soil available phosphorus and soil bulk density. Although a significant relationship between glomalin and the number of spores was not observed, a trend is denoted, in such a way that glomalin can be used to quantify the activity of arbuscular mycorrhizal fungi in coffee plantations., {"references":["SADER. Obtenido https://www.gob.mx/agricultura","Moguel P, Toledo VM. Biodiversity conservation and traditional coffee systems of Mexico. Biol Conserv 1999; 13:11-21.","Cerdán CR, Rebolledo MC, Soto G, Rapidel B, Sinclair FL. Local knowledge of impacts of tree cover on ecosystem services in smallholder coffee production systems. Agric Syst 2012; 110:119-130. doi:10.1016/j.agsy.2012.03.014","Chait G. Café en Colombia: servicios ecosistémicos, conservación de la biodiversidad. Sistemas agroforestales, funciones productivas, socioeconómicas y ambientales. Turrialba: CATIE 2015; 349-364.","Villarreyna R, Avelino J, Cerda R. Adaptación basada en ecosistemas: efecto de los árboles de sombra sobre servicios ecosistémicos en cafetales. Agron Mesoam 2020; 31(2): 499-516. doi:10.15517/am.v31i2.37591","Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K. Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología, A.C. e Instituto de Nacional de Ecología (INE-SEMARNAT): México 2008.","Heredia A, Arias RM. Hongos saprobios y endomicorrizógenos en suelos. In: Manson RH, Hernández-Ortiz V, Gallina S, Mehltreter K, Eds. Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación; 2008; 193-212.","Arias RM, Heredia-Abarca G, Sosa VJ, Fuentes-Ramírez LE. Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor Syst 2012; 85(1):179-193. https://doi.org/10.1007/s10457-011-9414-3","Camargo-Ricalde SL, Montaño NM, De la Rosa-Mera CJ, Montaño ASA Micorrizas: una gran unión debajo del suelo 2012; Revista Digital Universitaria 13(7). http://www.revista.unam.mx/vol.13/num7/art72/index.html\"","Saha R, Mondal B, Naskar B. AMF inoculation changes, the root development pattern of plants at early stage of colonization. Int J Bio-resource Environ Agric Sci 2014; 1:43-47.","Zou YN, Srivastava AK, Wu QS. Glomalin: A potential soil conditioner for perennial fruits. Int J Agric Biol 2016; 18: 293-297.","Martinez LB, Pugnaire FI. Interacciones entre las comunidades de hongos formadores de micorrizas arbusculares y de plantas. Algunos ejemplos en los ecosistemas semiáridos. Ecosistemas 2009; 18(2): 44-54.","Yao Q, Zhu HH. Arbuscular mycorrhizal fungi: A belowground regulator of plant diversity in grasslands and the hidden mechanisms. In: Runas J, Dahlgren T, Eds. Grassland Biodiversity-Habitat Types, Ecological Processes and Environmental Impacts New York: Nova Science Publisher; 2010;1-14.","Smith S, Read DA. Mycorrhizal symbiosis, Academic Press 2010.","Fisher JB, Jayachandran DK. Arbuscular mycorrhizal fungi enchance seedling growth in two endangered plant species from South Florida. Int J Plant Sci 2002; 163:559-566. https://doi.org/10.1086/340428.","Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between (micro) aggregates, soil biota and soil organic matter dynamics. Soil Tillage Res 2004; 79:7-31. https://doi.org/10.1016/j.still.2004.03.008.","Gao W, Wang P, Wu Q-S. Functions and application of glomalin-related soil proteins: a review. Sains Malays 2019; 48(1): 111–9. DOI:10.17576/jsm-2019-4801-13","Lozano Sánchez JD, Armbrecht I, Montoya Lerma J. Hongos formadores de micorrizas arbusculares y su efecto sobre la estructura de los suelos en fincas con manejos agroecológicos e intensivos. Acta Agron 2015; 64(4): 289-296.","Wright S, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 1996; 161: 575-586.","Ryan MG, Graham JH. Is there a role for arbuscular mycorrhizal fungi in production agriculture?. Plant Soil 2002; 244: 263-271. https://doi.org/10.1023/A:1020207631893.","Morell F, Hernández A, Borges Y, Marentes FL. La actividad de los hongos micorrízicos arbusculares en la estructura del suelo. Cult Trop 2009; 30(4):00-00.","Rillig MC, Wright SF, Nichols KA, Schmidt WF, Torn MS. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil 2001; 233:167-177. https://doi.org/10.1023/A:1010364221169.","Rillig MC, Maestre FT, Lamit LJ. Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil Biol Biochem 2003; 35:1257-1260. https://doi.org/10.1016/S0038-0717(03)00185-8","Cornejo P, Meier S, Borie G, Rillig MC, Borie F. Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 2008; 15: 406(1-2): 154-60. doi: 10.1016/j.scitotenv.2008.07.045.","Gerdemann JW, Nicolson TH. Spore of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 1963; 46: 234-44.","Wrigth SF, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil 1998; 198(1): 97-107.","Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72(1-2): 248-54.","StatSoft, Inc. Statistica para Windows v. 10.0. Data analysis software system. Tulsa. [cd-Rom] 2017.","NORMA Oficial Mexicana NOM-021-SSA1-2021, Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto al monóxido de carbono (CO). Valores normados para la concentración de monóxido de carbono (CO) en el aire ambiente, como medida de protección a la salud de la población.","Cogo FD, Saggin Júnior OJ, Guimarães PTG, Siqueira JO, Carneiro MAC. High rates of agricultural gypsum affect the arbuscular mycorrhiza fungal community and coffee yield. Bragantia 2020; 79: 612-622.","Rillig MC, Wright SF, Shaw MR, Field CB. Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos 2002; 97: 52-58. https://doi.org/10.1034/j.1600-0706.2002.970105.x.","Lutgen ER, Muir-Clairmont D, Graham J, Rillig MC. Seasonality of arbuscular mycorrhizal hyphae and glomalin in a western Montana grassland. Plant and Soil 2003; 257(1): 71-83. https://doi.org/10.1023/A:1026224209597.","Nichols KA, Wright SF. Comparison of glomalin and humic acid in eight native US soils. Soil Sci 2005; 170: 985-997. doi: 10.1097/01.ss.0000198618.06975.3c.","Batten KM, Six J, Scow KM, Rillig MC. Plant invasion of native grassland on serpentine soils has no major effects upon selected physical and biological properties. Soil Biol Biochem 2005; 37(12): 2277-2282. https://doi.org/10.1016/j.soilbio.2005.04.005","Treseder KK, Turner KM. Glomalin in ecosystems. Soil Sci Soc Am J 2007; 71: 1257-1266. https://doi.org/10.2136/sssaj2006.0377.","Wright SF, Anderson RL. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Soil Biol Biochem 2000; 31: 249-253. https://doi.org/10.1007/s003740050653","Knorr MA, Boerner REJ, Rillig MC. Glomalin content of forest soils in relation to fire frequency and landscape position. Mycorrhiza 2003; 13: 205-210. https://doi.org/10.1007/s00572-002-0218-1.","Steinberg PD, Rillig MC. Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin. Soil Biol Biochem 2003; 35: 191-194. https://doi.org/10.1016/S0038-0717(02)00249-3","Rillig MC, Wright SF, Kimball BA, Pinter PJ, Wall GW, Ottman MJ, Leavitt SW. Elevated carbon dioxide and irrigation effects on water stable aggregates in a sorghum field: A possible role for arbuscular mycorrhizal fungi. Glob Change Biol 2001; 7: 333-337. https://doi.org/10.1046/j.1365-2486.2001.00404.x.","Lovelock CE, Wright SF, Nichols KA. Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: An example from a tropical rain forest soil. Soil Biol Biochem 2004; 36: 1009-1012. https://doi.org/10.1016/j.soilbio.2004.02.010.","Rodríguez-Yon Y, Chiriboga-Morocho R, Concha-Egas TG, de León-Lima DP. Caracterización de las fracciones de glomalina en suelos Ferralíticos Rojos con diferente uso. Cultivos Tropicales 2020; 41(4):e04","González–Chávez MC, Gutiérrez MC, Wright S. (2004). Hongos micorrízico arbusculares en la agregación del suelo y su estabilidad, Terra Latinoam 2004; 22: 507-214.","Purin S, Rillig MC. The arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a new hypothesis for its function. Pedobiologia 2007; 51(2): 123-130. doi:10.1016/j.pedobi.2007.03.002","Wright SF, Upadhyaya A. Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal traps. Mycorrhiza 1999; 8(5): 283-285.","Prasad M, Chaudhary M, Ramakrishnan S, Mahawer SK. Glomalin: a miracle protein for soil sustainability. Indian Farmer 2018; 5(9): 1092–100.","Gomathy M, Sabarinathan KG, Sivasankari-Devi T, Pandiyarajan P. Arbuscular mycorrhizal fungi and glomalin-super glue. Int J Curr Microbiol Appl Sci 2018; 7(7): 2853–7. DOI:10.20546/ijcmas.2018.707.334","De la Cruz-Elizondo, Y, Fontalvo-Buelvas JC. Biología del suelo. CÓDICE/ Taller Editorial/Suma Textual: México 2019.","Gallardo LJF. La materia orgánica del suelo. Residuos orgánicos, humus, compostaje y captura de carbono. Sociedad Iberiamericana de Física y Química Ambiental. Jáser Proyectos Editoriales/Nueva Graficesa: España 2016.","Zhong Z, Wang W, Wang Q, Wu Y, Wang H, Pei Z. Glomalin amount and compositional variation, and their associations with soil properties in farmland, northeastern China. J Plant Nutr Soil Sci 2017; 180:563-575. DOI: 10.1002/jpln.201600579.","Báez-Pérez A, González-Chávez MC, Etchevers-Barra JD, Prat C, Hidalgo-Moreno C. Glomalin and carbon sequestration in cultivated tepetates. Agrociencia 2010; 44(5): 517–29.","Bird SB, Herrick JE, Wander MM, Wright SF. Spatial heterogeneity of aggregate stability and soil carbon in semi–arid rangeland. Environ Poll 2002; 116: 445–455. DOI: 10.1016/s0269-7491(01)00222-6","Rillig MC, Ramsey PW, Morris S, Paul EA. Glomalin, an arbuscular–mycorrhizal fungal soil protein, responds to land–use change. Plant Soil 2003; 253:293-299. https://doi.org/10.1023/A:1024807820579.","Morales A, Castillo CG, Rubio R, Godoy R, Rouanet JL, Borie F. Niveles de glomalina en suelos de dos ecosistemas del sur de Chile. RC Suelo Nutr Veg 2005; 5(1): 37-45. http://dx.doi.org/10.4067/S0717-92002008000100002","Holtz EWF, Giuffré L, Ciarlo E, Cortinez AG. Glomalin and Its relationship with inoculation, fertilization and soils with different sand proportion. J Agric Ext Rural Dev 2018; 11(2): 24-32. DOI:10.9790/2380-1102022432"]}
- Published
- 2022
- Full Text
- View/download PDF
9. In vitro propagation of a cuban Arbuscular Mycorrhizal Fungal strain and factible bacteria's association.
- Author
-
Perera García, Sussy Saymara, Fernández Suárez, Kalyanne, Pérez Ortega, Eduardo José, Mujica Pérez, Yonaisy, Pérez-Pérez, Reneé, Rodríguez Yon, Yakelin, and Haesaert, Geert
- Subjects
SOIL biology ,SCIENTIFIC literature ,BOTANY ,MOLECULAR biology ,PLANT colonization ,CARROTS - Published
- 2022
- Full Text
- View/download PDF
10. Caracterización de las fracciones de glomalina en suelos Ferralíticos Rojos con diferente uso.
- Author
-
Rodríguez-Yon, Yakelin, Chiriboga-Morocho, Romel, Concha-Egas, Telmo Gilberto, and de León-Lima, Daniel Ponce
- Abstract
Los hongos micorrizógenos arbusculares (HMA) establecen simbiosis con la mayoría de las plantas. Los mismos producen y liberan al suelo una glicoproteína denominada glomalina favoreciendo la formación de agregados estables en agua y mejoran la estructura de los suelos. El objetivo del presente trabajo fue caracterizar varios suelos Ferralíticos Rojos de la Llanura Roja de La Habana, con diferente uso, mediante algunas propiedades químicas (materia orgánica, pH, P, Ca, C, N) y biológicas, así como establecer correlaciones entre ambos tipos de variables. Las variables biológicas fueron el número de esporas de HMA y los contenidos de proteínas del suelo relacionadas a glomalina (total y fácilmente extraíble). Para esto se utilizaron diferentes métodos extractivos, seguido de la estimación de la concentración de proteínas o del conteo de esporas totales. Los resultados revelaron diferencias en las variables determinadas relacionadas a los cultivos presentes y al manejo del suelo. En general, los bosques mostraron valores superiores en las fracciones de glomalina, seguidos por los cultivos de caña (Saccharum officinarum) y pasto, mientras que los valores inferiores correspondieron a los suelos cultivados con papa (Solanum tuberosum), constituyendo estas variables mejores indicadores de la calidad del suelo que el número de esporas de HMA, dada su correlación con algunas variables químicas del suelo como la materia orgánica, C, N, pH y Ca. Se sugieren investigaciones futuras para dilucidar los resultados obtenidos, principalmente en cuanto al uso de la glomalina como indicador biológico de la degradación/ rehabilitación de los suelos según el ecosistema en estudio. [ABSTRACT FROM AUTHOR]
- Published
- 2020
11. Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants
- Author
-
Perea Rojas, Yamel del Carmen, primary, Arias, Rosa María, additional, Medel Ortiz, Rosario, additional, Trejo Aguilar, Dora, additional, Heredia, Gabriela, additional, and Rodríguez Yon, Yakelin, additional
- Published
- 2018
- Full Text
- View/download PDF
12. ESTUDIO COMPARATIVO DEL COMPORTAMIENTO DE SEIS CEPAS DE HONGOS MICORRÍZICOS ARBUSCULARES EN SU INTERACCIÓN CON EL TOMATE (Lycopersicon esculentum M. var “Amalia”)
- Author
-
Rodríguez Yon, Yakelin, primary, Pons, Blanca de la Noval, additional, Fernández Martín, Félix, additional, and Rodríguez Hernández, Y Pedro, additional
- Published
- 2016
- Full Text
- View/download PDF
13. ESTUDIO COMPARATIVO DEL COMPORTAMIENTO DE SEIS CEPAS DE HONGOS MICORRÍZICOS ARBUSCULARES EN SU INTERACCIÓN CON EL TOMATE (Lycopersicon esculentum M. var "Amalia").
- Author
-
Rodríguez Yon, Yakelin, De La Noval Pons, Blanca, Fernández Martín, Félix, and Rodríguez Hernández, Pedro
- Subjects
- *
MYCORRHIZAL fungi , *BIOFERTILIZERS , *BIOMARKERS - Abstract
Due to ecological and economical importance of arbuscular mycorrhizal fungi (AMF), in Cuba and others countries, there are programs for their introduction as a biofertilizers. The present work aimed to do a comparative study of six AMF strains, in their interaction with tomato seedlings "Amalia" variety, through fungal, agronomics and biochemical indicators with the aim to evaluate the colonization pattern differences of the different strains and select the best strain for this crop under the studied conditions. The AMF strains studied were Glomus fasciculatum, G. clarum, G. mosseae, Glomus sp.1, G. intrarradices y Acaulospora scrobiculata. At 18 and 32 days after seed germination, height, fresh and dry mass (aerial, radical and total) and radical specific activity of chitinase, β-1,3-glucanase and phenylalanine ammonia lyase (PAL); as well as fungal variables of colonization (%) and visual density (%) at 32 days. In general, a positive effect of inoculation on tomato seedlings expressed in agronomic and fungal indicators studied was found. Enzymatic activities showed different responses in tomato seedlings according to AMF strains, being G. fasciculatum the most effective strain for this interaction under the studied conditions. [ABSTRACT FROM AUTHOR]
- Published
- 2004
14. Algunas propiedades físicas, químicas y microbiológicas de un suelo agrícola en Darién, República de Panamá.
- Author
-
Álvarez-González, Aquile, Martín-Alonso, Gloria M., Mejía-Franco, Luis C., López-Vdovenko, Evangelina, and Rodríguez-Yon, Yakelin
- Abstract
Para cualquier estudio de suelos siempre es necesario una previa descripción del perfil, en el que se observa su morfología y se presentan una serie de propiedades que son el resultado de la formación del suelo y de la influencia antropogénica. Tomando en consideración esta premisa se realizó la descripción del perfil de un suelo de una finca de Yaviza, Panamá y se determinaron algunas de sus propiedades físicas, químicas y microbiológicas. El suelo se clasificó como Gleysol vértico, debido a las características de diagnóstico encontradas: propiedades gléyicas a menos de 50 cm de profundidad y propiedades vérticas, tiene textura arcillosa, no estaba compactado y el contenido de materia orgánica y las reservas de carbono orgánico del suelo fueron bajas. El pH fue ácido en todo el perfil; sin embargo, la capacidad de intercambio catiónico efectiva osciló entre alta y media, con predominio de los iones Ca2+ y Mg2+ y un elevado porcentaje de saturación por bases. Excepto la relación Ca/Mg, que osciló entre 2 y 6, las demás relaciones internutrientes estuvieron fuera de rango. Las concentraciones de microelementos y de aluminio cambiable fueron bajas o medias. Al analizar la abundancia relativa de microorganismos se encontró que los filos más abundantes fueron Actinobacteria, Proteobacteria, Firmicutes y Acidobacteria, todos del dominio Bacteria y del Reino Fungi se observó el predominio del filo Ascomycota, seguido de Basidiomycota y Rozellomycota. Es necesario corregir el desequilibrio entre los nutrientes y chequear la evolución de estas propiedades durante la explotación agrícola del área en estudio. [ABSTRACT FROM AUTHOR]
- Published
- 2021
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.