3,734 results on '"Roche, J."'
Search Results
2. The EMC Effect of Tritium and Helium-3 from the JLab MARATHON Experiment
- Author
-
Abrams, D., Albataineh, H., Aljawrneh, B. S., Alsalmi, S., Androic, D., Aniol, K., Armstrong, W., Arrington, J., Atac, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Beck, A., Bellini, V., Bhatt, H., Bhetuwal, D., Biswas, D., Blyth, D., Boeglin, W., Bulumulla, D., Butler, J., Camsonne, A., Carmignotto, M., Castellanos, J., Chen, J. -P., Cloët, I. C., Cohen, E. O., Covrig, S., Craycraft, K., Cruz-Torres, R., Dongwi, B., Duran, B., Dutta, D., Fomin, N., Fuchey, E., Gal, C., Gautam, T. N., Gilad, S., Gnanvo, K., Gogami, T., Gomez, J., Gu, C., Habarakada, A., Hague, T., Hansen, J. -O., Hattawy, M., Hauenstein, F., Higinbotham, D. W., Holt, R. J., Hughes, E. W., Hyde, C., Ibrahim, H., Jian, S., Joosten, S., Karki, A., Karki, B., Katramatou, A. T., Keith, C., Keppel, C., Khachatryan, M., Khachatryan, V., Khanal, A., Kievsky, A., King, D., King, P. M., Korover, I., Kulagin, S. A., Kumar, K. S., Kutz, T., Lashley-Colthirst, N., Li, S., Li, W., Liu, H., Liuti, S., Liyanage, N., Markowitz, P., McClellan, R. E., Meekins, D., Beck, S. Mey-Tal, Meziani, Z. -E., Michaels, R., Mihovilovic, M., Nelyubin, V., Nguyen, D., Nuruzzaman, Nycz, M., Obrecht, R., Olson, M., Owen, V. F., Pace, E., Pandey, B., Pandey, V., Paolone, M., Papadopoulou, A., Park, S., Paul, S., Petratos, G. G., Petti, R., Piasetzky, E., Pomatsalyuk, R., Premathilake, S., Puckett, A. J. R., Punjabi, V., Ransome, R. D., Rashad, M. N. H., Reimer, P. E., Riordan, S., Roche, J., Salmè, G., Santiesteban, N., Sawatzky, B., Scopetta, S., Schmidt, A., Schmookler, B., Segal, J., Segarra, E. P., Shahinyan, A., Širca, S., Sparveris, N., Su, T., Suleiman, R., Szumila-Vance, H., Tadepalli, A. S., Tang, L., Tireman, W., Tortorici, F., Urciuoli, G. M., Wojtsekhowski, B., Wood, S., Ye, Z. H., Ye, Z. Y., and Zhang, J.
- Subjects
Nuclear Experiment - Abstract
Measurements of the EMC effect in the tritium and helium-3 mirror nuclei are reported. The data were obtained by the MARATHON Jefferson Lab experiment, which performed deep inelastic electron scattering from deuterium and the three-body nuclei, using a cryogenic gas target system and the High Resolution Spectrometers of the Hall A Facility of the Lab. The data cover the Bjorken $x$ range from 0.20 to 0.83, corresponding to a squared four-momentum transfer $Q^2$ range from 2.7 to $11.9\gevsq$, and to an invariant mass $W$ of the final hadronic state greater than 1.84 GeV/${\it c}^2$. The tritium EMC effect measurement is the first of its kind. The MARATHON experimental results are compared to results from previous measurements by DESY-HERMES and JLab-Hall C experiments, as well as with few-body theoretical predictions., Comment: arXiv admin note: text overlap with arXiv:2104.05850
- Published
- 2024
3. Quasielastic $\overrightarrow{^{3}\mathrm{He}}(\overrightarrow{e},{e'})$ Asymmetry in the Threshold Region
- Author
-
Nycz, M., Armstrong, W., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Benesch, J., Bhatt, H., Bhetuwal, D., Biswas, D., Camsonne, A., Cates, G., Chen, J-P., Chen, J., Chen, M., Cotton, C., Dalton, M-M., Deltuva, A., Deur, A., Dhital, B., Duran, B., Dusa, S. C., Fernando, I., Fuchey, E., Gamage, B., Gao, H., Gaskell, D., Gautam, T., Gauthier, N., Golak, J., Hansen, J. -O., Hauenstein, F., Henry, W., Higinbotham, D. W., Huber, G., Jantzi, C., Jia, S., Jin, K., Jones, M., Joosten, S., Karki, A., Karki, B., Katugampola, S., Kay, S., Keppel, C., King, E., King, P., Korsch, W., Kumar, V., Li, R., Li, S., Li, W., Mack, D., Malace, S., Markowitz, P., Matter, J., McCaughan, M., Meziani, Z-E., Michaels, R., Mkrtchyan, A., Mkrtchyan, H., Morean, C., Nelyubin, V., Niculescu, G., Niculescu, M., Peng, C., Premathilake, S., Puckett, A., Rathnayake, A., Rehfuss, M., Reimer, P., Riley, G., Roblin, Y., Roche, J., Roy, M., Sauer, P. U., Scopeta, S., Satnik, M., Sawatzky, B., Seeds, S., Širca, S. S., Skibiński, R., Smith, G., Sparveris, N., Szumila-Vance, H., Tadepalli, A., Tadevosyan, V., Tian, Y., Usman, A., Voskanyan, H., Witala, H., Wood, S., Yale, B., Yero, C., Yoon, A., Zhang, J., Zhao, Z., Zheng, X., and Zhou, J.
- Subjects
Nuclear Experiment - Abstract
A measurement of the double-spin asymmetry from electron-$^{3}$He scattering in the threshold region of two- and three-body breakup of $^{3}$He was performed at Jefferson Lab, for Q$^{2}$ values of 0.1 and 0.2 (GeV/$c$)$^{2}$. The results of this measurement serve as a stringent test of our understanding of few-body systems. When compared with calculations from plane wave impulse approximation and Faddeev theory, we found that the Faddeev calculations, which use modern nuclear potentials and prescriptions for meson-exchange currents, demonstrate an overall good agreement with data.
- Published
- 2024
4. Inclusive studies of two- and three-nucleon short-range correlations in $^3$H and $^3$He
- Author
-
Li, S., Santiesteban, S. N., Arrington, J., Cruz-Torres, R., Kurbany, L., Abrams, D., Alsalmi, S., Androic, D., Aniol, K., Averett, T., Gayoso, C. Ayerbe, Bane, J., Barcus, S., Barrow, J., Beck, A., Bellini, V., Bhatt, H., Bhetuwal, D., Biswas, D., Bulumulla, D., Camsonne, A., Castellanos, J., Chen, J., Chen, J-P., Chrisman, D., Christy, M. E., Clarke, C., Covrig, S., Craycraft, K., Day, D., Dutta, D., Fuchey, E., Gal, C., Garibaldi, F., Gautam, T. N., Gogami, T., Gomez, J., Guéye, P., Habarakada, A., Hague, T. J., Hansen, J. O., Hauenstein, F., Henry, W., Higinbotham, D. W., Holt, R. J., Hyde, C., Itabashi, K., Kaneta, M., Karki, A., Katramatou, A. T., Keppel, C. E., Khachatryan, M., Khachatryan, V., King, P. M., Korover, I., Kutz, T., Lashley-Colthirst, N., Li, W. B., Liu, H., Liyanage, N., Long, E., Mammei, J., Markowitz, P., McClellan, R. E., Meddi, F., Meekins, D., Beck, S. Mey-Tal, Michaels, R., Mihovilovič, M., Moyer, A., Nagao, S., Nelyubin, V., Nguyen, D., Nycz, M., Olson, M., Ou, L., Owen, V., Palatchi, C., Pandey, B., Papadopoulou, A., Park, S., Paul, S., Petkovic, T., Pomatsalyuk, R., Premathilake, S., Punjabi, V., Ransome, R. D., Reimer, P. E., Reinhold, J., Riordan, S., Roche, J., Rodriguez, V. M., Schmidt, A., Schmookler, B., Segarra, E. P., Shahinyan, A., Širca, S., Slifer, K., Solvignon, P., Su, T., Suleiman, R., Szumila-Vance, H., Tang, L., Tian, Y., Tireman, W., Tortorici, F., Toyama, Y., Uehara, K., Urciuoli, G. M., Votaw, D., Williamson, J., Wojtsekhowski, B., Wood, S., Ye, Z. H., Zhang, J., and Zheng, X.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
Inclusive electron scattering at carefully chosen kinematics can isolate scattering from short-range correlations (SRCs), produced through hard, short-distance interactions of nucleons in the nucleus. Because the two-nucleon (2N) SRCs arise from the same N-N interaction in all nuclei, the cross section in the SRC-dominated regime is identical up to an overall scaling factor, and the A/2H cross section ratio is constant in this region. This scaling behavior has been used to identify SRC dominance and to map out the contribution of SRCs for a wide range of nuclei. We examine this scaling behavior at lower momentum transfers using new data on $^2$H, $^3$H, and $^3$He which show that the scaling region is larger than in heavy nuclei. Based on the improved scaling, especially for $^3$H/$^3$He, we examine the ratios at kinematics where three-nucleon SRCs may play an important role. The data for the largest initial nucleon momenta are consistent with isolation of scattering from 3N-SRCs, and suggest that the very-highest momentum nucleons in $^3$He have a nearly isospin-independent momentum configuration, or a small enhancement of the proton distribution.
- Published
- 2024
5. A proposed mathematical model to help preoperative planning between RIRS and MiniPerc for renal stones between 10 and 20 mm using holmium:Yag laser (Cyber Ho): the stone management according to size-hardness (SMASH) score
- Author
-
Perri, D., Mazzoleni, F., Besana, U., Pacchetti, A., Morini, E., Calandriello, M., Pastore, A. L., Romero-Otero, J., Bruyere, F., Sighinolfi, M. C., Rocco, B., Micali, S., Gozen, A. S., Liatsikos, E., Roche, J. B., and Bozzini, G.
- Published
- 2024
- Full Text
- View/download PDF
6. The Present and Future of QCD
- Author
-
Achenbach, P., Adhikari, D., Afanasev, A., Afzal, F., Aidala, C. A., Al-bataineh, A., Almaalol, D. K., Amaryan, M., Androić, D., Armstrong, W. R., Arratia, M., Arrington, J., Asaturyan, A., Aschenauer, E. C., Atac, H., Avakian, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Barish, K. N., Barnea, N., Basar, G., Battaglieri, M., Baty, A. A., Bautista, I., Bazilevsky, A., Beattie, C., Behera, S. C., Bellini, V., Bellwied, R., Benesch, J. F., Benmokhtar, F., Bernardes, C. A., Bernauer, J. C., Bhatt, H., Bhatta, S., Boer, M., Boettcher, T. J., Bogacz, S. A., Bossi, H. J., Brandenburg, J. D., Brash, E. J., Briceño, R. A., Briscoe, W. J., Brodsky, S. J., Brown, D. A., Burkert, V. D., Caines, H., Cali, I. A., Camsonne, A., Carman, D. S., Caylor, J., Cerci, S., Llatas, M. Chamizo, Chatterjee, S., Chen, J. P., Chen, Y., Chen, Y. -C., Chien, Y. -T., Chou, P. -C., Chu, X., Chudakov, E., Cline, E., Cloët, I. C., Cole, P. L., Connors, M. E., Constantinou, M., Cosyn, W., Dusa, S. Covrig, Cruz-Torres, R., D'Alesio, U., da Silva, C., Davoudi, Z., Dean, C. T., Dean, D. J., Demarteau, M., Deshpande, A., Detmold, W., Deur, A., Devkota, B. R., Dhital, S., Diefenthaler, M., Dobbs, S., Döring, M., Dong, X., Dotel, R., Dow, K. A., Downie, E. J., Drachenberg, J. L., Dumitru, A., Dunlop, J. C., Dupre, R., Durham, J. M., Dutta, D., Edwards, R. G., Ehlers, R. J., Fassi, L. El, Elaasar, M., Elouadrhiri, L., Engelhardt, M., Ent, R., Esumi, S., Evdokimov, O., Eyser, O., Fanelli, C., Fatemi, R., Fernando, I. P., Flor, F. A., Fomin, N., Frawley, A. D., Frederico, T., Fries, R. J., Gal, C., Gamage, B. R., Gamberg, L., Gao, H., Gaskell, D., Geurts, F., Ghandilyan, Y., Ghimire, N., Gilman, R., Gleason, C., Gnanvo, K., Gothe, R. W., Greene, S. V., Grießhammer, H. W., Grossberndt, S. K., Grube, B., Hackett, D. C., Hague, T. J., Hakobyan, H., Hansen, J. -O., Hatta, Y., Hattawy, M., Havener, L. B., Hen, O., Henry, W., Higinbotham, D. W., Hobbs, T. J., Hodges, A. M., Holmstrom, T., Hong, B., Horn, T., Howell, C. R., Huang, H. Z., Huang, M., Huang, S., Huber, G. M., Hyde, C. E., Isupov, E. L., Jacobs, P. M., Jalilian-Marian, J., Jentsch, A., Jheng, H., Ji, C. -R., Ji, X., Jia, J., Jones, D. C., Jones, M. K., Kalantarians, N., Kalicy, G., Kang, Z. B., Karthein, J. M., Keller, D., Keppel, C., Khachatryan, V., Kharzeev, D. E., Kim, H., Kim, M., Kim, Y., King, P. M., Kinney, E., Klein, S. R., Ko, H. S., Koch, V., Kohl, M., Kovchegov, Y. V., Krintiras, G. K., Kubarovsky, V., Kuhn, S. E., Kumar, K. S., Kutz, T., Lajoie, J. G., Lauret, J., Lavrukhin, I., Lawrence, D., Lee, J. H., Lee, K., Lee, S., Lee, Y. -J., Li, S., Li, W., Li, Xiaqing, Li, Xuan, Liao, J., Lin, H. -W., Lisa, M. A., Liu, K. -F., Liu, M. X., Liu, T., Liuti, S., Liyanage, N., Llope, W. J., Loizides, C., Longo, R., Lorenzon, W., Lunkenheimer, S., Luo, X., Ma, R., McKinnon, B., Meekins, D. G., Mehtar-Tani, Y., Melnitchouk, W., Metz, A., Meyer, C. A., Meziani, Z. -E., Michaels, R., Michel, J. K. L., Milner, R. G., Mkrtchyan, H., Mohanmurthy, P., Mohanty, B., Mokeev, V. I., Moon, D. H., Mooney, I. A., Morningstar, C., Morrison, D. P., Müller, B., Mukherjee, S., Mulligan, J., Camacho, C. Munoz, Quijada, J. A. Murillo, Murray, M. J., Nadeeshani, S. A., Nadel-Turonski, P., Nam, J. D., Nattrass, C. E., Nijs, G., Noronha, J., Noronha-Hostler, J., Novitzky, N., Nycz, M., Olness, F. I., Osborn, J. D., Pak, R., Pandey, B., Paolone, M., Papandreou, Z., Paquet, J. -F., Park, S., Paschke, K. D., Pasquini, B., Pasyuk, E., Patel, T., Patton, A., Paudel, C., Peng, C., Peng, J. C., Da Costa, H. Pereira, Perepelitsa, D. V., Peters, M. J., Petreczky, P., Pisarski, R. D., Pitonyak, D., Ploskon, M. A., Posik, M., Poudel, J., Pradhan, R., Prokudin, A., Pruneau, C. A., Puckett, A. J. R., Pujahari, P., Putschke, J., Pybus, J. R., Qiu, J. -W., Rajagopal, K., Ratti, C., Read, K. F., Reed, R., Richards, D. G., Riedl, C., Ringer, F., Rinn, T., West, J. Rittenhouse, Roche, J., Rodas, A., Roland, G., Romero-López, F., Rossi, P., Rostomyan, T., Ruan, L., Ruimi, O. M., Saha, N. R., Sahoo, N. R., Sakaguchi, T., Salazar, F., Salgado, C. W., Salmè, G., Salur, S., Santiesteban, S. N., Sargsian, M. M., Sarsour, M., Sato, N., Satogata, T., Sawada, S., Schäfer, T., Scheihing-Hitschfeld, B., Schenke, B., Schindler, S. T., Schmidt, A., Seidl, R., Shabestari, M. H., Shanahan, P. E., Shen, C., Sheng, T. -A., Shepherd, M. R., Sickles, A. M., Sievert, M. D., Smith, K. L., Song, Y., Sorensen, A., Souder, P. A., Sparveris, N., Srednyak, S., Leiton, A. G. Stahl, Stasto, A. M., Steinberg, P., Stepanyan, S., Stephanov, M., Stevens, J. R., Stewart, D. J., Stewart, I. W., Stojanovic, M., Strakovsky, I., Strauch, S., Strickland, M., Cerci, D. Sunar, Suresh, M., Surrow, B., Syritsyn, S., Szczepaniak, A. P., Tadepalli, A. S., Tang, A. H., Takaki, J. D. Tapia, Tarnowsky, T. J., Tawfik, A. N., Taylor, M. I., Tennant, C., Thiel, A., Thomas, D., Tian, Y., Timmins, A. R., Tribedy, P., Tu, Z., Tuo, S., Ullrich, T., Umaka, E., Upton, D. W., Vary, J. P., Velkovska, J., Venugopalan, R., Vijayakumar, A., Vitev, I., Vogelsang, W., Vogt, R., Vossen, A., Voutier, E., Vovchenko, V., Walker-Loud, A., Wang, F., Wang, J., Wang, X., Wang, X. -N., Weinstein, L. B., Wenaus, T. J., Weyhmiller, S., Wissink, S. W., Wojtsekhowski, B., Wong, C. P., Wood, M. H., Wunderlich, Y., Wyslouch, B., Xiao, B. W., Xie, W., Xiong, W., Xu, N., Xu, Q. H., Xu, Z., Yaari, D., Yao, X., Ye, Z., Ye, Z. H., Yero, C., Yuan, F., Zajc, W. A., Zhang, C., Zhang, J., Zhao, F., Zhao, Y., Zhao, Z. W., Zheng, X., Zhou, J., and Zurek, M.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment ,Nuclear Experiment ,Nuclear Theory - Abstract
This White Paper presents the community inputs and scientific conclusions from the Hot and Cold QCD Town Meeting that took place September 23-25, 2022 at MIT, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 424 physicists registered for the meeting. The meeting highlighted progress in Quantum Chromodynamics (QCD) nuclear physics since the 2015 LRP (LRP15) and identified key questions and plausible paths to obtaining answers to those questions, defining priorities for our research over the coming decade. In defining the priority of outstanding physics opportunities for the future, both prospects for the short (~ 5 years) and longer term (5-10 years and beyond) are identified together with the facilities, personnel and other resources needed to maximize the discovery potential and maintain United States leadership in QCD physics worldwide. This White Paper is organized as follows: In the Executive Summary, we detail the Recommendations and Initiatives that were presented and discussed at the Town Meeting, and their supporting rationales. Section 2 highlights major progress and accomplishments of the past seven years. It is followed, in Section 3, by an overview of the physics opportunities for the immediate future, and in relation with the next QCD frontier: the EIC. Section 4 provides an overview of the physics motivations and goals associated with the EIC. Section 5 is devoted to the workforce development and support of diversity, equity and inclusion. This is followed by a dedicated section on computing in Section 6. Section 7 describes the national need for nuclear data science and the relevance to QCD research., Comment: QCD Town Meeting White Paper, as submitted to 2023 NSAC LRP committee on Feb. 28, 2023
- Published
- 2023
- Full Text
- View/download PDF
7. Revealing the short-range structure of the 'mirror nuclei' $^3$H and $^3$He
- Author
-
Li, S., Cruz-Torres, R., Santiesteban, N., Ye, Z. H., Abrams, D., Alsalmi, S., Androic, D., Aniol, K., Arrington, J., Averett, T., Gayoso, C. Ayerbe, Bane, J., Barcus, S., Barrow, J., Beck, A., Bellini, V., Bhatt, H., Bhetuwal, D., Biswas, D., Bulumulla, D., Camsonne, A., Castellanos, J., Chen, J., Chen, J-P., Chrisman, D., Christy, M. E., Clarke, C., Covrig, S., Craycraft, K., Day, D., Dutta, D., Fuchey, E., Gal, C., Garibaldi, F., Gautam, T. N., Gogami, T., Gomez, J., Guèye, P., Habarakada, A., Hague, T. J., Hansen, J. O., Hauenstein, F., Henry, W., Higinbotham, D. W., Holt, R. J., Hyde, C., Itabashi, T., Kaneta, M., Karki, A., Katramatou, A. T., Keppel, C. E., Khachatryan, M., Khachatryan, V., King, P. M., Korover, I., Kurbany, L., Kutz, T., Lashley-Colthirst, N., Li, W. B., Liu, H., Liyanage, N., Long, E., Mammei, J., Markowitz, P., McClellan, R. E., Meddi, F., Meekins, D., Beck, S. Mey-Tal, Michaels, R., Mihovilovič, M., Moyer, A., Nagao, S., Nelyubin, V., Nguyen, D., Nycz, M., Olson, M., Ou, L., Owen, V., Palatchi, C., Pandey, B., Papadopoulou, A., Park, S., Paul, S., Petkovic, T., Pomatsalyuk, R., Premathilake, S., Punjabi, V., Ransome, R. D., Reimer, P. E., Reinhold, J., Riordan, S., Roche, J., Rodriguez, V. M., Schmidt, A., Schmookler, B., Segarra, E. P., Shahinyan, A., Slifer, K., Solvignon, P., Širca, S., Su, T., Suleiman, R., Szumila-Vance, H., Tang, L., Tian, Y., Tireman, W., Tortorici, F., Toyama, Y., Uehara, K., Urciuoli, G. M., Votaw, D., Williamson, J., Wojtsekhowski, B., Wood, S., Zhang, J., and Zheng, X.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,Nuclear Theory - Abstract
When protons and neutrons (nucleons) are bound into atomic nuclei, they are close enough together to feel significant attraction, or repulsion, from the strong, short-distance part of the nucleon-nucleon interaction. These strong interactions lead to hard collisions between nucleons, generating pairs of highly-energetic nucleons referred to as short-range correlations (SRCs). SRCs are an important but relatively poorly understood part of nuclear structure and mapping out the strength and isospin structure (neutron-proton vs proton-proton pairs) of these virtual excitations is thus critical input for modeling a range of nuclear, particle, and astrophysics measurements. Hitherto measurements used two-nucleon knockout or ``triple-coincidence'' reactions to measure the relative contribution of np- and pp-SRCs by knocking out a proton from the SRC and detecting its partner nucleon (proton or neutron). These measurementsshow that SRCs are almost exclusively np pairs, but had limited statistics and required large model-dependent final-state interaction (FSI) corrections. We report on the first measurement using inclusive scattering from the mirror nuclei $^3$H and $^3$He to extract the np/pp ratio of SRCs in the A=3 system. We obtain a measure of the np/pp SRC ratio that is an order of magnitude more precise than previous experiments, and find a dramatic deviation from the near-total np dominance observed in heavy nuclei. This result implies an unexpected structure in the high-momentum wavefunction for $^3$He and $^3$H. Understanding these results will improve our understanding of the short-range part of the N-N interaction.
- Published
- 2022
- Full Text
- View/download PDF
8. Design of the ECCE Detector for the Electron Ion Collider
- Author
-
Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Conroy, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Gwenian, C., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, X., Liang, Y. T., Lim, S., Lin, C. -H., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Papandreou, Z, Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zhang, J., Zhang, Y., Zhao, Y. X., Zheng, X., and Zhuang, P.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment - Abstract
The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark-gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector., Comment: 34 pages, 30 figures, 9 tables
- Published
- 2022
9. Detector Requirements and Simulation Results for the EIC Exclusive, Diffractive and Tagging Physics Program using the ECCE Detector Concept
- Author
-
Bylinkin, A., Dean, C. T., Fegan, S., Gangadharan, D., Gates, K., Kay, S. J. D., Korover, I., Li, W. B., Li, X., Montgomery, R., Nguyen, D., Penman, G., Pybus, J. R., Santiesteban, N., Trotta, R., Usman, A., Baker, M. D., Frantz, J., Glazier, D. I., Higinbotham, D. W., Horn, T., Huang, J., Huber, G., Reed, R., Roche, J., Schmidt, A., Steinberg, P., Stevens, J., Goto, Y., Camacho, C. Munoz, Murray, M., Papandreou, Z., Zha, W., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Demarteau, M., Diehl, S., Doshita, N., Dupre, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Finger, M., Finger Jr., M., Friedman, M., Friscic, I., Gardner, S., Geurts, F., Gilman, R., Glimos, E., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Hoballah, M., Hoghmrtsyan, A., Hsu, P. -h. J., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Liang, Y. T., Lim, S., Lin, C. -h., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Morrison, D., Movsisyan, A., Mkrtchyan, H., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Oresic, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Pate, S. F., Patel, M., Paus, C., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K. F., Roed, K., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santos, R., Sarsour, M., Schambach, J., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Stepanov, P., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Tveter, T. S., Umaka, E., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zhang, J. -L., and Zhang, J. -X.
- Subjects
Physics - Instrumentation and Detectors ,Nuclear Experiment - Abstract
This article presents a collection of simulation studies using the ECCE detector concept in the context of the EIC's exclusive, diffractive, and tagging physics program, which aims to further explore the rich quark-gluon structure of nucleons and nuclei. To successfully execute the program, ECCE proposed to utilize the detecter system close to the beamline to ensure exclusivity and tag ion beam/fragments for a particular reaction of interest. Preliminary studies confirmed the proposed technology and design satisfy the requirements. The projected physics impact results are based on the projected detector performance from the simulation at 10 or 100 fb^-1 of integrated luminosity. Additionally, a few insights on the potential 2nd Interaction Region can (IR) were also documented which could serve as a guidepost for the future development of a second EIC detector.
- Published
- 2022
- Full Text
- View/download PDF
10. ECCE unpolarized TMD measurements
- Author
-
Seidl, R., Vladimirov, A., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, X., Liang, Y. T., Lim, S., Lin, C. -H., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Papandreou, Z, Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zhang, J., Zhang, Y., Zhao, Y. X., Zheng, X., and Zhuang, P.
- Subjects
High Energy Physics - Experiment - Abstract
We performed feasibility studies for various measurements that are related to unpolarized TMD distribution and fragmentation functions. The processes studied include semi-inclusive Deep inelastic scattering (SIDIS) where single hadrons (pions and kaons) were detected in addition to the scattered DIS lepton. The single hadron cross sections and multiplicities were extracted as a function of the DIS variables $x$ and $Q^2$, as well as the semi-inclusive variables $z$, which corresponds to the momentum fraction the detected hadron carries relative to the struck parton and $P_T$, which corresponds to the transverse momentum of the detected hadron relative to the virtual photon. The expected statistical precision of such measurements is extrapolated to accumulated luminosities of 10 fb$^{-1}$ and potential systematic uncertainties are approximated given the deviations between true and reconstructed yields., Comment: 12 pages, 9 figures, to be submitted in joint ECCE proposal NIM-A volume
- Published
- 2022
- Full Text
- View/download PDF
11. ECCE Sensitivity Studies for Single Hadron Transverse Single Spin Asymmetry Measurements
- Author
-
Seidl, R., Vladimirov, A., Pitonyak, D., Prokudin, A., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, X., Liang, Y. T., Lim, S., Lin, C. -H., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Papandreou, Z, Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zhang, J., Zhang, Y., Zhao, Y. X., Zheng, X., and Zhuang, P.
- Subjects
High Energy Physics - Experiment - Abstract
We performed feasibility studies for various single transverse spin measurements that are related to the Sivers effect, transversity and the tensor charge, and the Collins fragmentation function. The processes studied include semi-inclusive deep inelastic scattering (SIDIS) where single hadrons (pions and kaons) were detected in addition to the scattered DIS lepton. The data were obtained in {\sc pythia}6 and {\sc geant}4 simulated e+p collisions at 18 GeV on 275 GeV, 18 on 100, 10 on 100, and 5 on 41 that use the ECCE detector configuration. Typical DIS kinematics were selected, most notably $Q^2 > 1 $ GeV$^2$, and cover the $x$ range from $10^{-4}$ to $1$. The single spin asymmetries were extracted as a function of $x$ and $Q^2$, as well as the semi-inclusive variables $z$, and $P_T$. They are obtained in azimuthal moments in combinations of the azimuthal angles of the hadron transverse momentum and transverse spin of the nucleon relative to the lepton scattering plane. The initially unpolarized MonteCarlo was re-weighted in the true kinematic variables, hadron types and parton flavors based on global fits of fixed target SIDIS experiments and $e^+e^-$ annihilation data. The expected statistical precision of such measurements is extrapolated to 10 fb$^{-1}$ and potential systematic uncertainties are approximated given the deviations between true and reconstructed yields. The impact on the knowledge of the Sivers functions, transversity and tensor charges, and the Collins function has then been evaluated in the same phenomenological extractions as in the Yellow Report. The impact is found to be comparable to that obtained with the parameterized Yellow Report detector and shows that the ECCE detector configuration can fulfill the physics goals on these quantities., Comment: 22 pages, 22 figures, to be submitted to joint ECCE proposal NIM-A volume
- Published
- 2022
- Full Text
- View/download PDF
12. Open Heavy Flavor Studies for the ECCE Detector at the Electron Ion Collider
- Author
-
Li, X., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, W. B., Liang, Y. T., Lim, S., Lin, C. -H., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K. F., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zha, W., Zhang, J. -L., Zhang, J. -X., Zhang, Y., Zhao, Y. -X., Zheng, X., and Zhuang, P.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The ECCE detector has been recommended as the selected reference detector for the future Electron-Ion Collider (EIC). A series of simulation studies have been carried out to validate the physics feasibility of the ECCE detector. In this paper, detailed studies of heavy flavor hadron and jet reconstruction and physics projections with the ECCE detector performance and different magnet options will be presented. The ECCE detector has enabled precise EIC heavy flavor hadron and jet measurements with a broad kinematic coverage. These proposed heavy flavor measurements will help systematically study the hadronization process in vacuum and nuclear medium especially in the underexplored kinematic region., Comment: Open heavy flavor studies with the EIC reference detector design by the ECCE consortium. 11 pages, 11 figures, to be submitted to the Nuclear Instruments and Methods A
- Published
- 2022
13. Exclusive J/$\psi$ Detection and Physics with ECCE
- Author
-
Li, X., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, W. B., Liang, Y. T., Lim, S., Lin, C. -H., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K. F., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zha, W., Zhang, J. -L., Zhang, J. -X., Zhang, Y., Zhao, Y. -X., Zheng, X., and Zhuang, P.
- Subjects
Nuclear Experiment ,Physics - Instrumentation and Detectors - Abstract
Exclusive heavy quarkonium photoproduction is one of the most popular processes in EIC, which has a large cross section and a simple final state. Due to the gluonic nature of the exchange Pomeron, this process can be related to the gluon distributions in the nucleus. The momentum transfer dependence of this process is sensitive to the interaction sites, which provides a powerful tool to probe the spatial distribution of gluons in the nucleus. Recently the problem of the origin of hadron mass has received lots of attention in determining the anomaly contribution $M_{a}$. The trace anomaly is sensitive to the gluon condensate, and exclusive production of quarkonia such as J/$\psi$ and $\Upsilon$ can serve as a sensitive probe to constrain it. In this paper, we present the performance of the ECCE detector for exclusive J/$\psi$ detection and the capability of this process to investigate the above physics opportunities with ECCE., Comment: 11 pages, 14 figures, 1 table
- Published
- 2022
- Full Text
- View/download PDF
14. Search for $e\to\tau$ Charged Lepton Flavor Violation at the EIC with the ECCE Detector
- Author
-
Zhang, J. -L., Mantry, S., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, W. B., Li, X., Liang, Y. T., Lim, S., Lin, C. -H., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K. F., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zha, W., Zhang, J. -X., Zhang, Y., Zhao, Y. -X., Zheng, X., and Zhuang, P.
- Subjects
High Energy Physics - Phenomenology - Abstract
The recently approved Electron-Ion Collider (EIC) will provide a unique new opportunity for searches of charged lepton flavor violation (CLFV) and other new physics scenarios. In contrast to the $e \leftrightarrow \mu$ CLFV transition for which very stringent limits exist, there is still a relatively large discovery space for the $e \to \tau$ CLFV transition, potentially to be explored by the EIC. With the latest detector design of ECCE (EIC Comprehensive Chromodynamics Experiment) and projected integral luminosity of the EIC, we find the $\tau$-leptons created in the DIS process $ep\to \tau X$ are expected to be identified with high efficiency. A first ECCE simulation study, restricted to the 3-prong $\tau$-decay mode and with limited statistics for the Standard Model backgrounds, estimates that the EIC will be able to improve the current exclusion limit on $e\to \tau$ CLFV by an order of magnitude., Comment: 11 pages, 8 figures, to be submitted to NIM
- Published
- 2022
- Full Text
- View/download PDF
15. Design and Simulated Performance of Calorimetry Systems for the ECCE Detector at the Electron Ion Collider
- Author
-
Bock, F., Schmidt, N., Wang, P. K., Santiesteban, N., Horn, T., Huang, J., Lajoie, J., Camacho, C. Munoz, Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupre, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Hoghmrtsyan, A., Hsu, P. -h. J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C. E., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, W. B., Li, X., Liang, Y. T., Lim, S., Lin, C. -h., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Oresic, S., Osborn, J. D., Shaughnessy, C. O, Paganis, S., Papandreou, Z., Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K. F., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zha, W., Zhang, J. -L., Zhang, J. -X., Zhang, Y., Zhao, Y. -X., Zheng, X., and Zhuang, P.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
We describe the design and performance the calorimeter systems used in the ECCE detector design to achieve the overall performance specifications cost-effectively with careful consideration of appropriate technical and schedule risks. The calorimeter systems consist of three electromagnetic calorimeters, covering the combined pseudorapdity range from -3.7 to 3.8 and two hadronic calorimeters. Key calorimeter performances which include energy and position resolutions, reconstruction efficiency, and particle identification will be presented., Comment: 19 pages, 22 figures, 5 tables
- Published
- 2022
- Full Text
- View/download PDF
16. AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider
- Author
-
Fanelli, C., Papandreou, Z., Suresh, K., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J. C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C. T., Demarteau, M., Diehl, S., Doshita, N., Dupre, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huang, J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, W. B., Li, X., Liang, Y. T., Lim, S., Lin, C. -h., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Oresic, S., Osborn, J. D., O'Shaughnessy, C., Paganis, S., Pate, S. F., Patel, M., Paus, C., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K. F., Roed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zha, W., Zhang, J., Zhang, Y., Zhao, Y. X., Zheng, X., and Zhuang, P.
- Subjects
Physics - Instrumentation and Detectors ,Computer Science - Machine Learning ,High Energy Physics - Experiment ,Nuclear Experiment ,Physics - Computational Physics - Abstract
The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the "glue" that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&D currently ongoing. Notably, EIC is one of the first large-scale facilities to leverage Artificial Intelligence (AI) already starting from the design and R&D phases. The EIC Comprehensive Chromodynamics Experiment (ECCE) is a consortium that proposed a detector design based on a 1.5T solenoid. The EIC detector proposal review concluded that the ECCE design will serve as the reference design for an EIC detector. Herein we describe a comprehensive optimization of the ECCE tracker using AI. The work required a complex parametrization of the simulated detector system. Our approach dealt with an optimization problem in a multidimensional design space driven by multiple objectives that encode the detector performance, while satisfying several mechanical constraints. We describe our strategy and show results obtained for the ECCE tracking system. The AI-assisted design is agnostic to the simulation framework and can be extended to other sub-detectors or to a system of sub-detectors to further optimize the performance of the EIC detector., Comment: 16 pages, 18 figures, 2 appendices, 3 tables
- Published
- 2022
- Full Text
- View/download PDF
17. Scientific Computing Plan for the ECCE Detector at the Electron Ion Collider
- Author
-
Bernauer, J. C., Dean, C. T., Fanelli, C., Huang, J., Kauder, K., Lawrence, D., Osborn, J. D., Paus, C., Adkins, J. K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I. C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M. D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W. J., Brooks, M., Bueltmann, S., Bukhari, M. H. S., Bylinkin, A., Capobianco, R., Chang, W. -C., Cheon, Y., Chen, K., Chen, K. -F., Cheng, K. -Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J. M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fatemi, R., Fegan, S., Finger, M., Finger Jr., M., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S. V., Guo, A. Q., Guo, L., Ha, S. K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D. W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P. -h. J., Huber, G., Hutson, A., Hwang, K. Y., Hyde, C., Inaba, M., Iwata, T., Jo, H. S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S. J. D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S. H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C. -M., Kutz, T., Lajoie, J., Lebedev, S., Lee, H., Lee, J. S. H., Lee, S. W., Lee, Y. -J., Li, W., Li, X., Liang, Y. T., Lim, S., Lin, C. -h., Lin, D. X., Liu, K., Liu, M. X., Livingston, K., Liyanage, N., Llope, W. J., Loizides, C., Long, E., Lu, R. -S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R. G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V. A., Orešić, S., O'Shaughnessy, C., Paganis, S., Papandreou, Z, Pate, S. F., Patel, M., Penman, G., Perdekamp, M. G., Perepelitsa, D. V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M. L., Putschke, J., Pybus, J. R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K., Røed, K., Reed, R., Reinhold, J., Renner, E. L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G. M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T. -A., Shih, C. -W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I. I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W. -C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T. S., Umaka, E., Usman, A., van Hecke, H. W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P. K., Wang, Q., Wang, Y., Watts, D. P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C. -P., Wood, L., Wood, M. H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H. D., Yurov, M., Zachariou, N., Zajc, W. A., Zhang, J., Zhang, Y., Zhao, Y. X., Zheng, X., and Zhuang, P.
- Subjects
Physics - Instrumentation and Detectors ,High Energy Physics - Experiment ,Nuclear Experiment ,Physics - Computational Physics - Abstract
The Electron Ion Collider (EIC) is the next generation of precision QCD facility to be built at Brookhaven National Laboratory in conjunction with Thomas Jefferson National Laboratory. There are a significant number of software and computing challenges that need to be overcome at the EIC. During the EIC detector proposal development period, the ECCE consortium began identifying and addressing these challenges in the process of producing a complete detector proposal based upon detailed detector and physics simulations. In this document, the software and computing efforts to produce this proposal are discussed; furthermore, the computing and software model and resources required for the future of ECCE are described.
- Published
- 2022
- Full Text
- View/download PDF
18. Revealing the short-range structure of the mirror nuclei 3H and 3He
- Author
-
Li, S, Cruz-Torres, R, Santiesteban, N, Ye, ZH, Abrams, D, Alsalmi, S, Androic, D, Aniol, K, Arrington, J, Averett, T, Gayoso, C Ayerbe, Bane, J, Barcus, S, Barrow, J, Beck, A, Bellini, V, Bhatt, H, Bhetuwal, D, Biswas, D, Bulumulla, D, Camsonne, A, Castellanos, J, Chen, J, Chen, J-P, Chrisman, D, Christy, ME, Clarke, C, Covrig, S, Craycraft, K, Day, D, Dutta, D, Fuchey, E, Gal, C, Garibaldi, F, Gautam, TN, Gogami, T, Gomez, J, Guèye, P, Habarakada, A, Hague, TJ, Hansen, JO, Hauenstein, F, Henry, W, Higinbotham, DW, Holt, RJ, Hyde, C, Itabashi, T, Kaneta, M, Karki, A, Katramatou, AT, Keppel, CE, Khachatryan, M, Khachatryan, V, King, PM, Korover, I, Kurbany, L, Kutz, T, Lashley-Colthirst, N, Li, WB, Liu, H, Liyanage, N, Long, E, Mammei, J, Markowitz, P, McClellan, RE, Meddi, F, Meekins, D, Beck, S Mey-Tal, Michaels, R, Mihovilovič, M, Moyer, A, Nagao, S, Nelyubin, V, Nguyen, D, Nycz, M, Olson, M, Ou, L, Owen, V, Palatchi, C, Pandey, B, Papadopoulou, A, Park, S, Paul, S, Petkovic, T, Pomatsalyuk, R, Premathilake, S, Punjabi, V, Ransome, RD, Reimer, PE, Reinhold, J, Riordan, S, Roche, J, Rodriguez, VM, Schmidt, A, Schmookler, B, Segarra, EP, Shahinyan, A, Slifer, K, Solvignon, P, and Širca, S
- Subjects
Nuclear and Plasma Physics ,Synchrotrons and Accelerators ,Physical Sciences ,General Science & Technology - Abstract
When protons and neutrons (nucleons) are bound into atomic nuclei, they are close enough to feel significant attraction, or repulsion, from the strong, short-distance part of the nucleon-nucleon interaction. These strong interactions lead to hard collisions between nucleons, generating pairs of highly energetic nucleons referred to as short-range correlations (SRCs). SRCs are an important but relatively poorly understood part of nuclear structure1-3, and mapping out the strength and the isospin structure (neutron-proton (np) versus proton-proton (pp) pairs) of these virtual excitations is thus critical input for modelling a range of nuclear, particle and astrophysics measurements3-5. Two-nucleon knockout or 'triple coincidence' reactions have been used to measure the relative contribution of np-SRCs and pp-SRCs by knocking out a proton from the SRC and detecting its partner nucleon (proton or neutron). These measurements6-8 have shown that SRCs are almost exclusively np pairs, but they had limited statistics and required large model-dependent final-state interaction corrections. Here we report on measurements using inclusive scattering from the mirror nuclei hydrogen-3 and helium-3 to extract the np/pp ratio of SRCs in systems with a mass number of three. We obtain a measure of the np/pp SRC ratio that is an order of magnitude more precise than previous experiments, and find a marked deviation from the near-total np dominance observed in heavy nuclei. This result implies an unexpected structure in the high-momentum wavefunction for hydrogen-3 and helium-3. Understanding these results will improve our understanding of the short-range part of the nucleon-nucleon interaction.
- Published
- 2022
19. Deeply virtual Compton scattering cross section at high Bjorken $x_B$
- Author
-
Georges, F., Rashad, M. N. H., Stefanko, A., Dlamini, M., Karki, B., Ali, S. F., Lin, P-J., Ko, H-S, Israel, N., Adikaram, D., Ahmed, Z., Albataineh, H., Aljawrneh, B., Allada, K., Allison, S., Alsalmi, S., Androic, D., Aniol, K., Annand, J., Atac, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Bartlett, K., Bellini, V., Beminiwattha, R., Bericic, J., Biswas, D., Brash, E., Bulumulla, D., Campbell, J., Camsonne, A., Carmignotto, M., Castellano, J., Chen, C., Chen, J-P., Chetry, T., Christy, M. E., Cisbani, E., Clary, B., Cohen, E., Compton, N., Cornejo, J. C., Dusa, S. Covrig, Crowe, B., Danagoulian, S., Danley, T., De Persio, F., Deconinck, W., Defurne, M., Desnault, C., Di, D., Duer, M., Duran, B., Ent, R., Fanelli, C., Franklin, G., Fuchey, E., Gal, C., Gaskell, D., Gautam, T., Glamazdin, O., Gnanvo, K., Gray, V. M., Gu, C., Hague, T., Hamad, G., Hamilton, D., Hamilton, K., Hansen, O., Hauenstein, F., Henry, W., Higinbotham, D. W., Holmstrom, T., Horn, T., Huang, Y., Huber, G. M., Hyde, C., Ibrahim, H., Jen, C-M., Jin, K., Jones, M., Kabir, A., Keppel, C., Khachatryan, V., King, P. M., Li, S., Li, W. B., Liu, J., Liu, H., Liyanage, A., Magee, J., Malace, S., Mammei, J., Markowitz, P., McClellan, E., Mazouz, M., Meddi, F., Meekins, D., Mesik, K., Michaels, R., Mkrtchyan, A., Montgomery, R., Camacho, C. Muñoz, Myers, L. S., Nadel-Turonski, P., Nazeer, S. J., Nelyubin, V., Nguyen, D., Nuruzzaman, N., Nycz, M., Obretch, O. F., Ou, L., Palatchi, C., Pandey, B., Park, S., Park, K., Peng, C., Pomatsalyuk, R., Pooser, E., Puckett, A. J. R., Punjabi, V., Quinn, B., Rahman, S., Reimer, P. E., Roche, J., Sapkota, I., Sarty, A., Sawatzky, B., Saylor, N. H., Schmookler, B., Shabestari, M. H., Shahinyan, A., Sirca, S., Smith, G. R., Sooriyaarachchilage, S., Sparveris, N., Spies, R., Su, T., Subedi, A., Sulkosky, V., Sun, A., Thorne, L., Tian, Y., Ton, N., Tortorici, F., Trotta, R., Urciuoli, G. M., Voutier, E., Waidyawansa, B., Wang, Y., Wojtsekhowski, B., Wood, S., Yan, X., Ye, L., Ye, Z., Yero, C., Zhang, J., Zhao, Y., and Zhu, P.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
We report high-precision measurements of the Deeply Virtual Compton Scattering (DVCS) cross section at high values of the Bjorken variable $x_B$. DVCS is sensitive to the Generalized Parton Distributions of the nucleon, which provide a three-dimensional description of its internal constituents. Using the exact analytic expression of the DVCS cross section for all possible polarization states of the initial and final electron and nucleon, and final state photon, we present the first experimental extraction of all four helicity-conserving Compton Form Factors (CFFs) of the nucleon as a function of $x_B$, while systematically including helicity flip amplitudes. In particular, the high accuracy of the present data demonstrates sensitivity to some very poorly known CFFs.
- Published
- 2022
- Full Text
- View/download PDF
20. First Determination of the 27Al Neutron Distribution Radius from a Parity-Violating Electron Scattering Measurement
- Author
-
QWeak Collaboration, Androic, D., Armstrong, D. S., Bartlett, K., Beminiwattha, R. S., Benesch, J., Benmokhtar, F., Birchall, J., Carlini, R. D., Cornejo, J. C., Dusa, S. Covrig, Dalton, M. M., Davis, C. A., Deconinck, W., Dowd, J. F., Dunne, J. A., Dutta, D., Duvall, W. S., Elaasar, M., Falk, W. R., Finn, J. M., Forest, T., Gal, C., Gaskell, D., Gericke, M. T. W., Gray, V. M., Grimm, K., Guo, F., Hoskins, J. R., Jones, D. C., Jones, M. K., Kargiantoulakis, M., King, P. M., Korkmaz, E., Kowalski, S., Leacock, J., Leckey, J., Lee, A. R., Lee, J. H., Lee, L., MacEwan, S., Mack, D., Magee, J. A., Mahurin, R., Mammei, J., Martin, J. W., McHugh, M. J., Meekins, D., Mei, J., Mesick, K. E., Michaels, R., Micherdzinska, A., Mkrtchyan, A., Mkrtchyan, H., Narayan, A., Ndukum, L. Z., Nelyubin, V., Nuruzzaman, van Oers, W. T. H, Owen, V. F., Page, S. A., Pan, J., Paschke, K. D., Phillips, S. K., Pitt, M. L., Radloff, R. W., Rajotte, J. F., Ramsay, W. D., Roche, J., Sawatzky, B., Seva, T., Shabestari, M. H., Silwal, R., Simicevic, N., Smith, G. R., Solvignon, P., Spayde, D. T., Subedi, A., Subedi, R., Suleiman, R., Tadevosyan, V., Tobias, W. A., Tvaskis, V., Waidyawansa, B., Wang, P., Wells, S. P., Wood, S. A., Yang, S., Zang, P., Zhamkochyan, S., Christy, M. E., Horowitz, C. J., Fattoyev, F. J., and Lin, Z.
- Subjects
Nuclear Experiment - Abstract
We report the first measurement of the parity-violating elastic electron scattering asymmetry on 27Al. The 27Al elastic asymmetry is A_PV = 2.16 +- 0.11 (stat) +- 0.16 (syst) ppm, and was measured at
=0.02357 +- 0.0001 GeV^2,
= 7.61 +- 0.02 degrees, and = 1.157 GeV with the Qweak apparatus at Jefferson Lab. Predictions using a simple Born approximation as well as more sophisticated distorted-wave calculations are in good agreement with this result. From this asymmetry the 27Al neutron radius R_n = 2.89 +- 0.12 fm was determined using a many-models correlation technique. The corresponding neutron skin thickness R_n-R_p = -0.04 +- 0.12 fm is small, as expected for a light nucleus with a neutron excess of only 1. This result thus serves as a successful benchmark for electroweak determinations of neutron radii on heavier nuclei. A tree-level approach was used to extract the 27Al weak radius R_w = 3.00 +- 0.15 fm, and the weak skin thickness R_wk - R_ch = -0.04 +- 0.15 fm. The weak form factor at this Q^2 is F_wk = 0.39 +- 0.04., Comment: Revised version after referee's comments and suggestions. Some improvements and clarification to the text, no changes to the figures, tables, results or conclusions. 7 pages, 3 figures, 3 tables - Published
- 2021
- Full Text
- View/download PDF
21. Measurement of the EMC effect in light and heavy nuclei
- Author
-
Arrington, J., Bane, J., Daniel, A., Fomin, N., Gaskell, D., Seely, J., Asaturyan, R., Benmokhtar, F., Boeglin, W., Bosted, P., Bukhari, M. H. S., Christy, M. E., Connell, S., Dalton, M. M., Day, D., Dunne, J., Dutta, D., Fassi, L. El, Ent, R., Fenker, H., Gao, H., Holt, R. J., Horn, T., Hungerford, E., Jones, M. K., Jourdan, J., Kalantarians, N., Keppel, C. E., Kiselev, D., Lung, A. F., Malace, S., Meekins, D. G., Mertens, T., Mkrtchyan, H., Niculescu, G., Niculescu, I., Potterveld, D. H., Perdrisat, C., Punjabi, V., Qian, X., Reimer, P. E., Roche, J., Rodriguez, V. M., Rondon, O., Schulte, E., Slifer, K., Smith, G. R., Solvignon, P., Tadevosyan, V., Tang, L., Testa, G., Trojer, R., Tvaskis, V., Wesselmann, F. R., Wood, S. A., Yuan, L., and Zheng, X.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
Inclusive electron scattering from nuclear targets has been measured to extract the nuclear dependence of the inelastic cross section in Hall C at the Thomas Jefferson National Accelerator facility. Results are presented for 2H, 3He, 4He, 9B, 12C, 63Cu and 197Au at an incident electron beam energy of 5.77 GeV for a range of momentum transfer from Q^2 = 2 to 7 (GeV/c)^2. These data improve the precision of the existing measurements of the EMC effect in the nuclear targets at large x, and allow for more detailed examinations of the A dependence of the EMC effect., Comment: 28 pages, 23 figures, archival paper for Jefferson Lab experiment E03-103
- Published
- 2021
- Full Text
- View/download PDF
22. Deeply virtual Compton scattering off the neutron
- Author
-
Benali, M., Desnault, C., Mazouz, M., Ahmed, Z., Albataineh, H., Allada, K., Aniol, K. A., Bellini, V., Boeglin, W., Bertin, P., Brossard, M., Camsonne, A., Canan, M., Chandavar, S., Chen, C., Chen, J. -P., Defurne, M., de Jager, C. W., de Leo, R., Deur, A., Fassi, L. El, Ent, R., Flay, D., Friend, M., Fuchey, E., Frullani, S., Garibaldi, F., Gaskell, D., Giusa, A., Glamazdin, O., Golge, S., Gomez, J., Hansen, O., Higinbotham, D., Holmstrom, T., Horn, T., Huang, J., Huang, M., Huber, G. M., Hyde, C. E., Iqbal, S., Itard, F., Kang, Ho., Kang, Hy., Kelleher, A., Keppel, C., Koirala, S., Korover, I., LeRose, J. J., Lindgren, R., Long, E., Magne, M., Mammei, J., Margaziotis, D. J., Markowitz, P., Jimenez-Arguello, A. Marti, Meddi, F., Meekins, D., Michaels, R., Mihovilovic, M., Muangma, N., Camacho, C. Munoz, Nadel-Turonski, P., Nuruzzaman, N., Paremuzyan, R., Pomatsalyuk, R., Puckett, A., Punjabi, V., Qiang, Y., Rakhman, A., Rashad, M. N. H., Riordan, S., Roche, J., Russo, G., Sabatie, F., Saenboonruang, K., Saha, A., Sawatzky, B., Selvy, L., Shahinyan, A., Sirca, S., Solvignon, P., Sperduto, M. L., Subedi, R., Sulkosky, V., Sutera, C., Tobias, W. A., Urciuoli, G. M., Wang, D., Wojtsekhowski, B., Yao, H., Ye, Z., Zana, L., Zhan, X., Zhang, J., Zhao, B., Zhao, Z., Zheng, X., and Zhu, P.
- Subjects
High Energy Physics - Phenomenology ,High Energy Physics - Experiment ,Nuclear Experiment - Abstract
The three-dimensional structure of nucleons (protons and neutrons) is embedded in so-called generalized parton distributions, which are accessible from deeply virtual Compton scattering. In this process, a high energy electron is scattered off a nucleon by exchanging a virtual photon. Then, a highly-energetic real photon is emitted from one of the quarks inside the nucleon, which carries information on the quark's transverse position and longitudinal momentum. By measuring the cross-section of deeply virtual Compton scattering, Compton form factors related to the generalized parton distributions can be extracted. Here, we report the observation of unpolarized deeply virtual Compton scattering off a deuterium target. From the measured photon-electroproduction cross-sections, we have extracted the cross-section of a quasi-free neutron and a coherent deuteron. Due to the approximate isospin symmetry of quantum chromodynamics, we can determine the contributions from the different quark flavours to the helicity-conserved Compton form factors by combining our measurements with previous ones probing the proton's internal structure. These results advance our understanding of the description of the nucleon structure, which is important to solve the proton spin puzzle.
- Published
- 2021
- Full Text
- View/download PDF
23. The present and future of QCD
- Author
-
Achenbach, P., Adhikari, D., Afanasev, A., Afzal, F., Aidala, C.A., Al-bataineh, A., Almaalol, D.K., Amaryan, M., Androić, D., Armstrong, W.R., Arratia, M., Arrington, J., Asaturyan, A., Aschenauer, E.C., Atac, H., Avakian, H., Averett, T., Ayerbe Gayoso, C., Bai, X., Barish, K.N., Barnea, N., Basar, G., Battaglieri, M., Baty, A.A., Bautista, I., Bazilevsky, A., Beattie, C., Behera, S.C., Bellini, V., Bellwied, R., Benesch, J.F., Benmokhtar, F., Bernardes, C.A., Bernauer, J.C., Bhatt, H., Bhatta, S., Boer, M., Boettcher, T.J., Bogacz, S.A., Bossi, H.J., Brandenburg, J.D., Brash, E.J., Briceño, R.A., Briscoe, W.J., Brodsky, S.J., Brown, D.A., Burkert, V.D., Caines, H., Cali, I.A., Camsonne, A., Carman, D.S., Caylor, J., Cerci, D.S., Cerci, S., Chamizo Llatas, M., Chatterjee, S., Chen, J.P., Chen, Y., Chen, Y.-C., Chien, Y.-T., Chou, P.-C., Chu, X., Chudakov, E., Cline, E., Cloët, I.C., Cole, P.L., Connors, M.E., Constantinou, M., Cosyn, W., Covrig Dusa, S., Cruz-Torres, R., D'Alesio, U., da Silva, C., Davoudi, Z., Dean, C.T., Dean, D.J., Demarteau, M., Deshpande, A., Detmold, W., Deur, A., Devkota, B.R., Dhital, S., Diefenthaler, M., Dobbs, S., Döring, M., Dong, X., Dotel, R., Dow, K.A., Downie, E.J., Drachenberg, J.L., Dumitru, A., Dunlop, J.C., Dupre, R., Durham, J.M., Dutta, D., Edwards, R.G., Ehlers, R.J., El Fassi, L., Elaasar, M., Elouadrhiri, L., Engelhardt, M., Ent, R., Esumi, S., Evdokimov, O., Eyser, O., Fanelli, C., Fatemi, R., Fernando, I.P., Flor, F.A., Fomin, N., Frawley, A.D., Frederico, T., Fries, R.J., Gal, C., Gamage, B.R., Gamberg, L., Gao, H., Gaskell, D., Geurts, F., Ghandilyan, Y., Ghimire, N., Gilman, R., Gleason, C., Gnanvo, K., Gothe, R.W., Greene, S.V., Grießhammer, H.W., Grossberndt, S.K., Grube, B., Hackett, D.C., Hague, T.J., Hakobyan, H., Hansen, J.-O., Hatta, Y., Hattawy, M., Havener, L.B., Hen, O., Henry, W., Higinbotham, D.W., Hobbs, T.J., Hodges, A.M., Holmstrom, T., Hong, B., Horn, T., Howell, C.R., Huang, H.Z., Huang, M., Huang, S., Huber, G.M., Hyde, C.E., Isupov, E.L., Jacobs, P.M., Jalilian-Marian, J., Jentsch, A., Jheng, H., Ji, C.-R., Ji, X., Jia, J., Jones, D.C., Jones, M.K., Joosten, S., Kalantarians, N., Kalicy, G., Kang, Z.B., Karthein, J.M., Keller, D., Keppel, C., Khachatryan, V., Kharzeev, D.E., Kim, H., Kim, M., Kim, Y., King, P.M., Kinney, E., Klein, S.R., Ko, H.S., Koch, V., Kohl, M., Kovchegov, Y.V., Krintiras, G.K., Kubarovsky, V., Kuhn, S.E., Kumar, K.S., Kutz, T., Lajoie, J.G., Lauret, J., Lavrukhin, I., Lawrence, D., Lee, J.H., Lee, K., Lee, S., Lee, Y.-J., Li, S., Li, W., Li, Xiaqing, Li, Xuan, Liao, J., Lin, H.-W., Lisa, M.A., Liu, K.-F., Liu, M.X., Liu, T., Liuti, S., Liyanage, N., Llope, W.J., Loizides, C., Longo, R., Lorenzon, W., Lunkenheimer, S., Luo, X., Ma, R., McKinnon, B., Meekins, D.G., Mehtar-Tani, Y., Melnitchouk, W., Metz, A., Meyer, C.A., Meziani, Z.-E., Michaels, R., Michel, J.K.L., Milner, R.G., Mkrtchyan, H., Mohanmurthy, P., Mohanty, B., Mokeev, V.I., Moon, D.H., Mooney, I.A., Morningstar, C., Morrison, D.P., Müller, B., Mukherjee, S., Mulligan, J., Munoz Camacho, C., Murillo Quijada, J.A., Murray, M.J., Nadeeshani, S.A., Nadel-Turonski, P., Nam, J.D., Nattrass, C.E., Nijs, G., Noronha, J., Noronha-Hostler, J., Novitzky, N., Nycz, M., Olness, F.I., Osborn, J.D., Pak, R., Pandey, B., Paolone, M., Papandreou, Z., Paquet, J.-F., Park, S., Paschke, K.D., Pasquini, B., Pasyuk, E., Patel, T., Patton, A., Paudel, C., Peng, C., Peng, J.C., Pereira Da Costa, H., Perepelitsa, D.V., Peters, M.J., Petreczky, P., Pisarski, R.D., Pitonyak, D., Ploskon, M.A., Posik, M., Poudel, J., Pradhan, R., Prokudin, A., Pruneau, C.A., Puckett, A.J.R., Pujahari, P., Putschke, J., Pybus, J.R., Qiu, J.-W., Rajagopal, K., Ratti, C., Read, K.F., Reed, R., Richards, D.G., Riedl, C., Ringer, F., Rinn, T., Rittenhouse West, J., Roche, J., Rodas, A., Roland, G., Romero-López, F., Rossi, P., Rostomyan, T., Ruan, L., Ruimi, O.M., Saha, N.R., Sahoo, N.R., Sakaguchi, T., Salazar, F., Salgado, C.W., Salmè, G., Salur, S., Santiesteban, S.N., Sargsian, M.M., Sarsour, M., Sato, N., Satogata, T., Sawada, S., Schäfer, T., Scheihing-Hitschfeld, B., Schenke, B., Schindler, S.T., Schmidt, A., Seidl, R., Shabestari, M.H., Shanahan, P.E., Shen, C., Sheng, T.-A., Shepherd, M.R., Sickles, A.M., Sievert, M.D., Smith, K.L., Song, Y., Sorensen, A., Souder, P.A., Sparveris, N., Srednyak, S., Stahl Leiton, A.G., Stasto, A.M., Steinberg, P., Stepanyan, S., Stephanov, M., Stevens, J.R., Stewart, D.J., Stewart, I.W., Stojanovic, M., Strakovsky, I., Strauch, S., Strickland, M., Sunar Cerci, D., Suresh, M., Surrow, B., Syritsyn, S., Szczepaniak, A.P., Tadepalli, A.S., Tang, A.H., Tapia Takaki, J.D., Tarnowsky, T.J., Tawfik, A.N., Taylor, M.I., Tennant, C., Thiel, A., Thomas, D., Tian, Y., Timmins, A.R., Tribedy, P., Tu, Z., Tuo, S., Ullrich, T., Umaka, E., Upton, D.W., Vary, J.P., Velkovska, J., Venugopalan, R., Vijayakumar, A., Vitev, I., Vogelsang, W., Vogt, R., Vossen, A., Voutier, E., Vovchenko, V., Walker-Loud, A., Wang, F., Wang, J., Wang, X., Wang, X.-N., Weinstein, L.B., Wenaus, T.J., Weyhmiller, S., Wissink, S.W., Wojtsekhowski, B., Wong, C.P., Wood, M.H., Wunderlich, Y., Wyslouch, B., Xiao, B.W., Xie, W., Xiong, W., Xu, N., Xu, Q.H., Xu, Z., Yaari, D., Yao, X., Ye, Z., Ye, Z.H., Yero, C., Yuan, F., Zajc, W.A., Zhang, C., Zhang, J., Zhao, F., Zhao, Y., Zhao, Z.W., Zheng, X., Zhou, J., and Zurek, M.
- Published
- 2024
- Full Text
- View/download PDF
24. Deeply virtual Compton scattering using a positron beam in Hall-C at Jefferson Lab
- Author
-
Afanasev, A., Albayrak, I., Ali, S., Amaryan, M., Annand, J. R. M., Asaturyan, A., Bellini, V., Berdnikov, V. V., Boer, M., Brinkmann, K., Briscoe, W. J., Camsonne, A., Caudron, M., Causse, L., Carmignotto, M., Day, D., Defurne, M., Diehl, S., Ent, R., Chatagnon, P., Dupré, R., Dutta, D., Ehrhart, M., Fernando, M. A. I., Forest, T., Guidal, M., Grames, J., Gueye, P., Habet, S., Hamilton, D. J., Hobart, A., Horn, T., Hyde, C., Kalicy, G., Keller, D., Keppel, C., Kerver, M., Kinney, E., Ko, H. -S., Marchand, D., Markowitze, P., Mazouz, M., McCaughan, M., McKinnon, B., Mkrtchyan, A., Mkrtchyan, H., Muhoza, M., Camacho, C. Muñoz, Murphy, J., Nadel-Turonski, P., Niccolai, S., Niculescu, G., Novotny, R., Paremuzyan, R., Pegg, I., Price, K., Rashad, H., Roche, J., Rondon, R., Sawatzky, B., Sergeyeva, V., Širca, S., Somov, A., Strakovsky, I., Tadevosyan, V., Trotta, R., Voskanyan, H., Voutier, E., Wojtsekhowski, B., Wood, S., Zhamkochyan, S., Zhang, J., Zhao, S., and Zorn, C.
- Subjects
Nuclear Experiment - Abstract
We propose to use the High Momentum Spectrometer of Hall C combined with the Neutral Particle Spectrometer (NPS) to perform high precision measurements of the Deeply Virtual Compton Scattering (DVCS) cross section using a beam of positrons. The combination of measurements with oppositely charged incident beams is the only unambiguous way to disentangle the contribution of the DVCS$^2$ term in the photon electroproduction cross section from its interference with the Bethe-Heitler amplitude. This provides a stronger way to constrain the Generalized Parton Distributions of the nucleon. A wide range of kinematics accessible with an 11 GeV beam off an unpolarized proton target will be covered. The $Q^2-$dependence of each contribution will be measured independently.
- Published
- 2021
- Full Text
- View/download PDF
25. Measurement of the Nucleon $F^n_2/F^p_2$ Structure Function Ratio by the Jefferson Lab MARATHON Tritium/Helium-3 Deep Inelastic Scattering Experiment
- Author
-
MARATHON Collaboration, Abrams, D., Albataineh, H., Aljawrneh, B. S., Alsalmi, S., Aniol, K., Armstrong, W., Arrington, J., Atac, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Beck, A., Bellini, V., Bhatt, H., Bhetuwal, D., Biswas, D., Blyth, D., Boeglin, W., Bulumulla, D., Butler, J., Camsonne, A., Carmignotto, M., Castellanos, J., Chen, J. -P., Cohen, E. O., Covrig, S., Craycraft, K., Cruz-Torres, R., Dongwi, B., Duran, B., Dutta, D., Fuchey, E., Gal, C., Gautam, T. N., Gilad, S., Gnanvo, K., Gogami, T., Gomez, J., Gu, C., Habarakada, A., Hague, T., Hansen, J. -O., Hattawy, M., Hauenstein, F., Higinbotham, D. W., Holt, R. J., Hughes, E. W., Hyde, C., Ibrahim, H., Jian, S., Joosten, S., Karki, A., Karki, B., Katramatou, A. T., Keith, C., Keppel, C., Khachatryan, M., Khachatryan, V., Khanal, A., Kievsky, A., King, D., King, P. M., Korover, I., Kulagin, S. A., Kumar, K. S., Kutz, T., Lashley-Colthirst, N., Li, S., Li, W., Liu, H., Liuti, S., Liyanage, N., Markowitz, P., McClellan, R. E., Meekins, D., Beck, S. Mey-Tal, Meziani, Z. -E., Michaels, R., Mihovilovic, M., Nelyubin, V., Nguyen, D., Nuruzzaman, Nycz, M., Obrecht, R., Olson, M., Owen, V. F., Pace, E., Pandey, B., Pandey, V., Paolone, M., Papadopoulou, A., Park, S., Paul, S., Petratos, G. G., Petti, R., Piasetzky, E., Pomatsalyuk, R., Premathilake, S., Puckett, A. J. R., Punjabi, V., Ransome, R. D., Rashad, M. N. H., Reimer, P. E., Riordan, S., Roche, J., Salme, G., Santiesteban, N., Sawatzky, B., Scopetta, S., Schmidt, A., Schmookler, B., Segal, J., Segarra, E. P., Shahinyan, A., Sirca, S., Sparveris, N., Su, T., Suleiman, R., Szumila-Vance, H., Tadepalli, A. S., Tang, L., Tireman, W., Tortorici, F., Urciuoli, G. M., Wojtsekhowski, B., Wood, S., Ye, Z. H., Ye, Z. Y., and Zhang, J.
- Subjects
High Energy Physics - Experiment - Abstract
The ratio of the nucleon $F_2$ structure functions, $F_2^n/F_2^p$, is determined by the MARATHON experiment from measurements of deep inelastic scattering of electrons from $^3$H and $^3$He nuclei. The experiment was performed in the Hall A Facility of Jefferson Lab and used two high resolution spectrometers for electron detection, and a cryogenic target system which included a low-activity tritium cell. The data analysis used a novel technique exploiting the mirror symmetry of the two nuclei, which essentially eliminates many theoretical uncertainties in the extraction of the ratio. The results, which cover the Bjorken scaling variable range $0.19 < x < 0.83$, represent a significant improvement compared to previous SLAC and Jefferson Lab measurements for the ratio. They are compared to recent theoretical calculations and empirical determinations of the $F_2^n/F_2^p$ ratio.
- Published
- 2021
26. Measurement of the Beam-Normal Single-Spin Asymmetry for Elastic Electron Scattering from $^{12}$C and $^{27}$Al
- Author
-
QWeak Collaboration, Androic, D., Armstrong, D. S., Asaturyan, A., Bartlett, K., Beminiwattha, R. S., Benesch, J., Benmokhtar, F., Birchall, J., Carlini, R. D., Christy, M. E., Cornejo, J. C., Dusa, S. Covrig, Dalton, M. M., Davis, C. A., Deconinck, W., Dowd, J. F., Dunne, J. A., Dutta, D., Duvall, W. S., Elassar, M., Falk, W. R., Finn, J. M., Forest, T., Gal, C., Gaskell, D., Gericke, M. T. W., Gray, V. M., Guo, F., Hoskins, J. R., Jones, D. C., Kargiantoulakis, M., King, P. M., Korkmaz, E., Kowalski, S., Leacock, J., Leckey, J. P., Lee, A. R., Lee, J. H., Lee, L., MacEwan, S., Mack, D., Magee, J. A., Mahurin, R., Mammei, J., Martin, J. W., McHugh, M. J., Meekins, D., Mesick, K. E., Michaels, R., Mkrtchyan, A., Mkrtchyan, H., Narayan, A., Ndukum, L. Z., Nuruzzaman, Nelyubin, V., van Oers, W. T. H, Owen, V. F., Page, S. A., Pan, J., Paschke, K. D., Phillips, S. K., Pitt, M. L., Radloff, R. W., Rajotte, J. F., Ramsay, W. D., Roche, J., Sawatzky, B., Seva, T., Shabestari, M. H., Silwal, R., Simicevic, N., Smith, G. R., Solvignon, P., Spayde, D. T., Subedi, A., Subedi, R., Tadevosyan, V., Tobias, W. A., Waidyawansa, B., Wang, P., Wells, S. P., Wood, S. A., Zang, P., and Zhamkochyan, S.
- Subjects
Nuclear Experiment - Abstract
We report measurements of the parity-conserving beam-normal single-spin elastic scattering asymmetries $B_n$ on $^{12}$C and $^{27}$Al, obtained with an electron beam polarized transverse to its momentum direction. These measurements add an additional kinematic point to a series of previous measurements of $B_n$ on $^{12}$C and provide a first measurement on $^{27}$Al. The experiment utilized the Qweak apparatus at Jefferson Lab with a beam energy of 1.158 GeV. The average lab scattering angle for both targets was 7.7 degrees, and the average $Q^2$ for both targets was 0.02437 GeV$^2$ (Q=0.1561 GeV). The asymmetries are $B_n$ = -10.68 $\pm$ 0.90 stat) $\pm$ 0.57 (syst) ppm for $^{12}$C and $B_n$ = -12.16 $\pm$ 0.58 (stat) $\pm$ 0.62 (syst) ppm for $^{27}$Al. The results are consistent with theoretical predictions, and are compared to existing data. When scaled by Z/A, the Q-dependence of all the far-forward angle (theta < 10 degrees) data from $^{1}$H to $^{27}$Al can be described by the same slope out to $Q \approx 0.35$ GeV. Larger-angle data from other experiments in the same Q range are consistent with a slope about twice as steep., Comment: Minor changes after refereeing; version as accepted for Physical Review C. Cosmetic changes to several figures, one author added. 22 pages, 8 figures
- Published
- 2021
- Full Text
- View/download PDF
27. Form Factors and Two-Photon Exchange in High-Energy Elastic Electron-Proton Scattering
- Author
-
Christy, M. E., Gautam, T., Ou, L., Schmookler, B., Wang, Y., Adikaram, D., Ahmed, Z., Albataineh, H., Ali, S. F., Aljawrneh, B., Allada, K., Allison, S. L., Alsalmi, S., Androic, D., Aniol, K., Annand, J., Arrington, J., Atac, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Bartlett, K., Bellini, V., Beminiwattha, R., Bericic, J., Bhatt, H., Bhetuwal, D., Biswas, D., Brash, E., Bulumulla, D., Camacho, C. M., Campbell, J., Camsonne, A., Carmignotto, M., Castellanos, J., Chen, C., Chen, J-P., Chetry, T., Cisbani, E., Clary, B., Cohen, E., Compton, N., Cornejo, J. C., Dusa, S. Covrig, Crowe, B., Danagoulian, S., Danley, T., Deconinck, W., Defurne, M., Desnault, C., Di, D., Dlamini, M., Duer, M., Duran, B., Ent, R., Fanelli, C., Fuchey, E., Gal, C., Gaskell, D., Georges, F., Gilad, S., Glamazdin, O., Gnanvo, K., Gramolin, A. V., Gray, V. M., Gu, C., Habarakada, A., Hague, T., Hamad, G., Hamilton, D., Hamilton, K., Hansen, O., Hauenstein, F., Hernandez, A. V., Henry, W., Higinbotham, D. W., Holmstrom, T., Horn, T., Huang, Y., Huber, G. M., Hyde, C., Ibrahim, H., Israel, N., Jen, C-M., Jin, K., Jones, M., Kabir, A., Karki, B., Keppel, C., Khachatryan, V., King, P. M., Li, S., Li, W., Liu, H., Liu, J., Liyanage, A. H., Mack, D., Magee, J., Malace, S., Mammei, J., Markowitz, P., Mayilyan, S., McClellan, E., Meddi, F., Meekins, D., Mesick, K., Michaels, R., Mkrtchyan, A., Moffit, B., Montgomery, R., Myers, L. S., Nadel-Turonski, P., Nazeer, S. J., Nelyubin, V., Nguyen, D., Nuruzzaman, N., Nycz, M., Obrecht, R. F., Ohanyan, K., Palatchi, C., Pandey, B., Park, K., Park, S., Peng, C., Persio, F. D., Pomatsalyuk, R., Pooser, E., Puckett, A. J. R., Punjabi, V., Quinn, B., Rahman, S., Rashad, M. N. H., Riordan, S., Roche, J., Sapkota, I., Sarty, A., Sawatzky, B., Saylor, N. H., Shabestari, M. H., Shahinyan, A., Sirca, S., Smith, G. R., Sooriyaarachchilage, S., Sparveris, N., Spies, R., Stefanko, A., Su, T., Subedi, A., Sulkosky, V., Sun, A., Tan, Y., Thorne, L., Ton, N., Tortorici, F., Trotta, R., Uniyal, R., Urciuoli, G. M., Voutier, E., Waidyawansa, B., Wojtsekhowski, B., Wood, S., Yan, X., Ye, L., Ye, Z. H., Yero, C., Zhang, J., Zhao, Y. X., and Zhu, P.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
We present new precision measurements of the elastic electron-proton scattering cross section for momentum transfer (Q$^2$) up to 15.75~\gevsq. Combined with existing data, these provide an improved extraction of the proton magnetic form factor at high Q$^2$ and double the range over which a longitudinal/transverse separation of the cross section can be performed. The difference between our results and polarization data agrees with that observed at lower Q$^2$ and attributed to hard two-photon exchange (TPE) effects, extending to 8~(GeV/c)$^2$ the range of Q$^2$ for which a discrepancy is established at $>$95\% confidence. We use the discrepancy to quantify the size of TPE contributions needed to explain the cross section at high Q$^2$., Comment: 7 pages, 2 figures
- Published
- 2021
- Full Text
- View/download PDF
28. Measurement of the EMC effect in light and heavy nuclei
- Author
-
Arrington, J, Bane, J, Daniel, A, Fomin, N, Gaskell, D, Seely, J, Asaturyan, R, Benmokhtar, F, Boeglin, W, Bosted, P, Bukhari, MHS, Christy, ME, Connell, S, Dalton, MM, Day, D, Dunne, J, Dutta, D, Fassi, L El, Ent, R, Fenker, H, Gao, H, Holt, RJ, Horn, T, Hungerford, E, Jones, MK, Jourdan, J, Kalantarians, N, Keppel, CE, Kiselev, D, Lung, AF, Malace, S, Meekins, DG, Mertens, T, Mkrtchyan, H, Niculescu, G, Niculescu, I, Potterveld, DH, Perdrisat, C, Punjabi, V, Qian, X, Reimer, PE, Roche, J, Rodriguez, VM, Rondon, O, Schulte, E, Slifer, K, Smith, GR, Solvignon, P, Tadevosyan, V, Tang, L, Testa, G, Trojer, R, Tvaskis, V, Wesselmann, FR, Wood, SA, Yuan, L, and Zheng, X
- Subjects
Nuclear and Plasma Physics ,Synchrotrons and Accelerators ,Physical Sciences ,Nuclear and plasma physics - Abstract
Inclusive electron scattering from nuclear targets has been measured to extract the nuclear dependence of the inelastic cross section (σA) in Hall C at the Thomas Jefferson National Accelerator facility. Results are presented for H2, He3, He4, B9, C12, Cu63, and Au197 at an incident electron beam energy of 5.77 GeV for a range of momentum transfer from Q2 = 2 to 7 (GeV/c)2. These data improve the precision of the existing measurements of the EMC effect in the nuclear targets at large x and allow for more detailed examinations of the A dependence of the EMC effect.
- Published
- 2021
29. Broad-band spectroscopy of a vanadyl porphyrin: a model electronuclear spin qudit
- Author
-
Gimeno, I., Urtizberea, A., Román-Roche, J., Zueco, D., Camón, A., Alonso, P. J., Roubeau, O., and Luis, F.
- Subjects
Quantum Physics ,Condensed Matter - Materials Science - Abstract
We explore how to encode more than a qubit in vanadyl porphyrin molecules hosting a electronic spin 1/2 coupled to a nuclear spin 7/2. The spin Hamiltonian and its parameters, as well as the spin dynamics, have been determined via a combination of electron paramagnetic resonance, heat capacity, magnetization and on-chip magnetic spectroscopy experiments performed on single crystals. We find low temperature spin coherence times of micro-seconds and spin relaxation times longer than a second. For sufficiently strong magnetic fields (B larger than 0.1 T, corresponding to resonance frequencies of 9 to 10 GHz) these properties make vanadyl porphyrin molecules suitable qubit realizations. The presence of multiple equispaced nuclear spin levels then merely provides 8 alternatives to define the 0 and 1 basis states. For lower magnetic fields (below 0.1 T), and lower frequencies (smaller than 2 GHz), we find spectroscopic signatures of a sizeable electronuclear entanglement. This effect generates a larger set of allowed transitions between different electronuclear spin states and removes their degeneracies. Under these conditions, we show that each molecule fulfills the conditions to act as a universal 4-qubit processor or, equivalently, as a d = 16 qudit. These findings widen the catalogue of chemically designed systems able to implement non-trivial quantum functionalities, such as quantum simulations and, especially, quantum error correction at the molecular level., Comment: 18 pages, 8 figures, plus supplementary information
- Published
- 2021
30. Deep exclusive electroproduction of $\pi^0$ at high $Q^2$ in the quark valence regime
- Author
-
The Jefferson Lab Hall A Collaboration, Dlamini, M., Karki, B., Ali, S. F., Lin, P-J., Georges, F., Ko, H-S, Israel, N., Rashad, M. N. H., Stefanko, A., Adikaram, D., Ahmed, Z., Albataineh, H., Aljawrneh, B., Allada, K., Allison, S., Alsalmi, S., Androic, D., Aniol, K., Annand, J., Atac, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Bartlett, K., Bellini, V., Beminiwattha, R., Bericic, J., Biswas, D., Brash, E., Bulumulla, D., Campbell, J., Camsonne, A., Carmignotto, M., Castellano, J., Chen, C., Chen, J-P., Chetry, T., Christy, M. E., Cisbani, E., Clary, B., Cohen, E., Compton, N., Cornejo, J. C., Dusa, S. Covrig, Crowe, B., Danagoulian, S., Danley, T., De Persio, F., Deconinck, W., Defurne, M., Desnault, C., Di, D., Duer, M., Duran, B., Ent, R., Fanelli, C., Franklin, G., Fuchey, E., Gal, C., Gaskell, D., Gautam, T., Glamazdin, O., Gnanvo, K., Gray, V. M., Gu, C., Hague, T., Hamad, G., Hamilton, D., Hamilton, K., Hansen, O., Hauenstein, F., Henry, W., Higinbotham, D. W., Holmstrom, T., Horn, T., Huang, Y., Huber, G. M., Hyde, C., Ibrahim, H., Jen, C-M., Jin, K., Jones, M., Kabir, A., Keppel, C., Khachatryan, V., King, P. M., Li, S., Li, W., Liu, J., Liu, H., Liyanage, A., Magee, J., Malace, S., Mammei, J., Markowitz, P., McClellan, E., Meddi, F., Meekins, D., Mesik, K., Michaels, R., Mkrtchyan, A., Montgomery, R., Camacho, C. Munoz, Myers, L. S., Nadel-Turonski, P., Nazeer, S. J., Nelyubin, V., Nguyen, D., Nuruzzaman, N., Nycz, M., Obretch, O. F., Ou, L., Palatchi, C., Pandey, B., Park, S., Park, K., Peng, C., Pomatsalyuk, R., Pooser, E., Puckett, A. J. R., Punjabi, V., Quinn, B., Rahman, S., Reimer, P. E., Roche, J., Sapkota, I., Sarty, A., Sawatzky, B., Saylor, N. H., Schmookler, B., Shabestari, M. H., Shahinyan, A., Sirca, S., Smith, G. R., Sooriyaarachchilage, S., Sparveris, N., Spies, R., Su, T., Subedi, A., Sulkosky, V., Sun, A., Thorne, L., Tian, Y., Ton, N., Tortorici, F., Trotta, R., Urciuoli, G. M., Voutier, E., Waidyawansa, B., Wang, Y., Wojtsekhowski, B., Wood, S., Yan, X., Ye, L., Ye, Z., Yero, C., Zhang, J., Zhao, Y., and Zhu, P.
- Subjects
High Energy Physics - Experiment ,Nuclear Experiment - Abstract
We report measurements of the exclusive neutral pion electroproduction cross section off protons at large values of $x_B$ (0.36, 0.48 and 0.60) and $Q^2$ (3.1 to 8.4 GeV$^2$) obtained from Jefferson Lab Hall A experiment E12-06-014. The corresponding structure functions $d\sigma_L/dt+\epsilon d\sigma_T/dt$, $d\sigma_{TT}/dt$, $d\sigma_{LT}/dt$ and $d\sigma_{LT'}/dt$ are extracted as a function of the proton momentum transfer $t-t_{min}$. The results suggest the amplitude for transversely polarized virtual photons continues to dominate the cross-section throughout this kinematic range. The data are well described by calculations based on transversity Generalized Parton Distributions coupled to a helicity flip Distribution Amplitude of the pion, thus providing a unique way to probe the structure of the nucleon.
- Published
- 2020
- Full Text
- View/download PDF
31. Backward-angle Exclusive pi0 Production above the Resonance Region
- Author
-
Li, W. B., Huber, G. M., Stevens, J. R., Semenov-Tian-Shansky, K., Szymanowski, L., Pire, B., Amaryan, M., Androic, D., Aniol, K., Armstrong, D., Averett, T., Gayoso, C. Ayerbe, Boeglin, W., Boer, M., Camsonne, A., Chen, J., Dusa, S. Covrig, Deconinck, W., Defurne, M., Delcarro, F., Diefenthaler, M., Diehl, S., Elaasar, M., Fanelli, C., Fegan, S., Fuchey, E., Gaskell, D., Hansen, O., Hauenstein, F., Higinbotham, D., Blin, A. Hiller, Hurley, A., Hyde, C., Joo, K., Junaid, M., Kalantarians, N., Kay, S., Khachatryan, M., King, P., Kumar, V., Lersch, D., Lorenti, L., Markowitz, P., McCaughan, M., Mkrtchyan, A., Mkrtchyan, H., Niculescu, G., Niculescu, I., Papandreou, Z., Paremuzyan, R., Park, K., Paudyal, D., Roche, J., Rodas, A., Sawatzky, B., Schertz, A., Smith, G., Strakovsky, I., Tadevosyan, V., Usman, A., Voskanyan, H., and Yero, C.
- Subjects
Nuclear Experiment - Abstract
The proposed measurement is a dedicated study of the exclusive electroproduction process,1H(e,e'p)pi0, in the backward-angle regime (u-channel process) above the resonance region. The produced pi0 is emitted 180 degrees opposite to the virtual-photon momentum. This study also aims to apply the well-known Rosenbluth separation technique that provides the model-independent differential cross-sections at the never explored u-channel kinematics region. Currently, the "soft-hard transition" in u-channel meson production remains an interesting and unexplored subject. The available theoretical frameworks offer competing interpretations for the observed backward-angle cross section peaks. In a "soft" hadronic Regge exchange description, the backward meson production comes from the interference between nucleon exchange and the meson produced via re-scattering within the nucleon. Whereas in the "hard" GPD-like backward collinear factorization regime, the scattering amplitude factorizes into a hard subprocess amplitude and baryon to meson transition distribution amplitudes (TDAs), otherwise known as super skewed parton distributions (SuperSPDs). Both TDAs and SPDs are universal non-perturbative objects of nucleon structure accessible only through backward-angle kinematics. The separated cross sections:sigma_T,sigma_L and T/L ratio at Q2=2-6 GeV2, provide a direct test of two predictions from the TDA model. The magnitude and u-dependence of the separated cross sections also provide a direct connection to the re-scattering Regge picture. The extracted interaction radius (from u-dependence) at different Q2 can be used to study the soft-hard transition in the u-channel kinematics. The acquisition of these data will be an important step forward in validating the existence of a backward factorization scheme of the nucleon structure function and establishing its applicable kinematic range.
- Published
- 2020
32. An experimental program with high duty-cycle polarized and unpolarized positron beams at Jefferson Lab
- Author
-
Accardi, A., Afanasev, A., Albayrak, I., Ali, S. F., Amaryan, M., Annand, J. R. M., Arrington, J., Asaturyan, A., Atac, H., Avakian, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Barion, L., Battaglieri, M., Bellini, V., Beminiwattha, R., Benmokhtar, F., Berdnikov, V. V., Bernauer, J. C., Bertone, V., Bianconi, A., Biselli, A., Bisio, P., Blunden, P., Boer, M., Bondì, M., Brinkmann, K. -T., Briscoe, W. J., Burkert, V., Cao, T., Camsonne, A., Capobianco, R., Cardman, L., Carmignotto, M., Caudron, M., Causse, L., Celentano, A., Chatagnon, P., Chen, J. -P., Chetry, T., Ciullo, G., Cline, E., Cole, P. L., Contalbrigo, M., Costantini, G., D'Angelo, A., Darmé, L., Day, D., Defurne, M., De Napoli, M., Deur, A., De Vita, R., D'Hose, N., Diehl, S., Diefenthaler, M., Dongwi, B., Dupré, R., Dutrieux, H., Dutta, D., Ehrhart, M., Fassi, L. El, Elouadrhiri, L., Ent, R., Erler, J., Fernando, I. P., Filippi, A., Flay, D., Forest, T., Fuchey, E., Fucini, S., Furletova, Y., Gao, H., Gaskell, D., Gasparian, A., Gautam, T., Girod, F. -X., Gnanvo, K., Grames, J., Grauvoge, G. N., Gueye, P., Guidal, M., Habet, S., Hague, T. J., Hamilton, D. J., Hansen, O., Hasell, D., Hattawy, M., Higinbotham, D. W., Hobart, A., Horn, T., Hyde, C. E., Ibrahim, H., Ilyichev, A., Italiano, A., Joo, K., Joosten, S. J., Khachatryan, V., Kalantarians, N., Kalicy, G., Karky, B., Keller, D., Keppel, C., Kerver, M., Khandaker, M., Kim, A., Kim, J., King, P. M., Kinney, E., Klimenko, V., Ko, H. -S., Kohl, M., Kozhuharov, V., Kriesten, B. T., Krnjaic, G., Kubarovsky, V., Kutz, T., Lanza, L., Leali, M., Lenisa, P., Liyanage, N., Liu, Q., Liuti, S., Mammei, J., Mantry, S., Marchand, D., Markowitz, P., Marsicano, L., Mascagna, V., Mazouz, M., McCaughan, M., McKinnon, B., McNulty, D., Melnitchouk, W., Metz, A., Meziani, Z. -E., Migliorati, S., Mihovilovic, M., Milner, R., Mkrtchyan, A., Mkrtchyan, H., Movsisyan, A., Moutarde, H., Muhoza, M., Camacho, C. Muñoz, Murphy, J., Nadel-Turonski, P., Nardi, E., Nazeer, J., Niccolai, S., Niculescu, G., Novotny, R., Owens, J. F., Paolone, M., Pappalardo, L., Paremuzyan, R., Pasquini, B., Pasyuk, E., Patel, T., Pegg, I., Peng, C., Perera, D., Poelker, M., Price, K., Puckett, A. J. R., Raggi, M., Randazzo, N., Rashad, M. N. H., Rathnayake, M., Raue, B., Reimer, P. E., Rinaldi, M., Rizzo, A., Roblin, Y., Roche, J., Rondon-Aramayo, O., Sabatié, F., Salmè, G., Santopinto, E., Estrada, R. Santos, Sawatzky, B., Schmidt, A., Schweitzer, P., Scopetta, S., Sergeyeva, V., Shabestari, M., Shahinyan, A., Sharabian, Y., Širca, S., Smith, E. S., Sokhan, D., Somov, A., Sparveris, N., Spata, M., Spiesberger, H., Spreafico, M., Stepanyan, S., Stoler, P., Strakovsky, I., Suleiman, R., Suresh, M., Sznajder, P., Szumila-Vance, H., Tadevosyan, V., Tadepalli, A. S., Thomas, A. W., Tiefenback, M., Trotta, R., Ungaro, M., Valente, P., Vanderhaeghen, M., Venturelli, L., Voskanyan, H., Voutier, E., Wojtsekhowski, B., Wood, M. H., Wood, S., Xie, J., Xiong, W., Ye, Z., Yurov, M., Zaunick, H. -G., Zhamkochyan, S., Zhang, J., Zhang, S., Zhao, S., Zhao, Z. W., Zheng, X., Zhou, J., and Zorn, C.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology - Abstract
Positron beams, both polarized and unpolarized, are identified as essential ingredients for the experimental programs at the next generation of lepton accelerators. In the context of the hadronic physics program at Jefferson Lab (JLab), positron beams are complementary, even essential, tools for a precise understanding of the electromagnetic structure of nucleons and nuclei, in both the elastic and deep-inelastic regimes. For instance, elastic scattering of polarized and unpolarized electrons and positrons from the nucleon enables a model independent determination of its electromagnetic form factors. Also, the deeply-virtual scattering of polarized and unpolarized electrons and positrons allows unambiguous separation of the different contributions to the cross section of the lepto-production of photons and of lepton-pairs, enabling an accurate determination of the nucleons and nuclei generalized parton distributions, and providing an access to the gravitational form factors. Furthermore, positron beams offer the possibility of alternative tests of the Standard Model of particle physics through the search of a dark photon, the precise measurement of electroweak couplings, and the investigation of charged lepton flavor violation. This document discusses the perspectives of an experimental program with high duty-cycle positron beams at JLab., Comment: 18 pages, 7 figures This version superseeds the previous version which scientific content was decomposed into several more elaborated articles. All of these articles will be collected in the EPJ A Topical Issue about "Positron beam and physics at Jefferson Lab (e+@Jlab)"
- Published
- 2020
- Full Text
- View/download PDF
33. Precision Measurement of the Beam-Normal Single-Spin Asymmetry in Forward-Angle Elastic Electron-Proton Scattering
- Author
-
QWeak collaboration, Androic, D., Armstrong, D. S., Asaturyan, A., Bartlett, K., Beaufait, J., Beminiwattha, R. S., Benesch, J., Benmokhtar, F., Birchall, J., Carlini, R. D., Cornejo, J. C., Dusa, S. Covrig, Dalton, M. M., Davis, C. A., Deconinck, W., Dowd, J. F., Dunne, J. A., Dutta, D., Duvall, W. S., Elaasar, M., Falk, W. R., Finn, J. M., Forest, T., Gal, C., Gaskell, D., Gericke, M. T. W., Grames, J., Gray, V. M., Grimm, K., Guo, F., Hoskins, J. R., Jones, D., Jones, M. K., Jones, R. T., Kargiantoulakis, M., King, P. M., Korkmaz, E., Kowalski, S., Leacock, J., Leckey, J. P., Lee, A. R., Lee, J. H., Lee, L., MacEwan, S., Mack, D., Magee, J. A., Mahurin, R., Mammei, J., Martin, J. W., McHugh, M. J., Meekins, D., Mei, J., Mesick, K. E., Michaels, R., Micherdzinska, A., Mkrtchyan, A., Mkrtchyan, H., Morgan, N., Narayan, A., Ndukum, L. Z., Nelyubin, V., Nuruzzaman, van Oers, W. T. H, Owen, V. F., Page, S. A., Pan, J., Paschke, K. D., Phillips, S. K., Pitt, M. L., Radloff, R. W., Rajotte, J. F., Ramsay, W. D., Roche, J., Sawatzky, B., Seva, T., Shabestari, M. H., Silwal, R., Simicevic, N., Smith, G. R., Solvignon, P., Spayde, D. T., Subedi, A., Subedi, R., Suleiman, R., Tadevosyan, V., Tobias, W. A., Tvaskis, V., Waidyawansa, B., Wang, P., Wells, S. P., Wood, S. A., Yang, S., Zang, P., and Zhamkochyan, S.
- Subjects
Nuclear Experiment - Abstract
A beam-normal single-spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable related to the imaginary part of the two-photon exchange process. We report a 2% precision measurement of the beam-normal single-spin asymmetry in elastic electron-proton scattering with a mean scattering angle of theta_lab = 7.9 degrees and a mean energy of 1.149 GeV. The asymmetry result is B_n = -5.194 +- 0.067 (stat) +- 0.082 (syst) ppm. This is the most precise measurement of this quantity available to date and therefore provides a stringent test of two-photon exchange models at far-forward scattering angles (theta_lab -> 0) where they should be most reliable., Comment: 6 pages, 3 figures; Slightly revised version, after referee's comments; accepted in PRL
- Published
- 2020
- Full Text
- View/download PDF
34. Probing few-body nuclear dynamics via 3H and 3He (e,e'p)pn cross-section measurements
- Author
-
Cruz-Torres, R., Nguyen, D., Hauenstein, F., Schmidt, A., Li, S., Abrams, D., Albataineh, H., Alsalmi, S., Androic, D., Aniol, K., Armstrong, W., Arrington, J., Atac, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Beck, A., Bellini, V., Benmokhtar, F., Bhatt, H., Bhetuwal, D., Biswas, D., Blyth, D., Boeglin, W., Bulumulla, D., Camsonne, A., Castellanos, J., Chen, J-P., Cohen, E. O., Covrig, S., Craycraft, K., Dongwi, B., Duer, M., Duran, B., Dutta, D., Fuchey, E., Gal, C., Gautam, T. N., Gilad, S., Gnanvo, K., Gogami, T., Golak, J., Gomez, J., Gu, C., Hague, A. Habarakada T., Hansen, O., Hattawy, M., Hen, O., Higinbotham, D. W., Hughes, E., Hyde, C., Ibrahim, H., Jian, S., Joosten, S., Kamada, H., Karki, A., Karki, B., Katramatou, A. T., Keppel, C., Khachatryan, M., Khachatryan, V., Khanal, A., King, D., King, P., Korover, I., Kutz, T., Lashley-Colthirst, N., Laskaris, G., Li, W., Liu, H., Liyanage, N., Markowitz, P., McClellan, R. E., Meekins, D., Meziani, S. Mey-Tal Beck Z-E., Michaels, R., Mihovilovic, M., Nelyubin, V., Nuruzzaman, N., Nycz, M., Obrecht, R., Olson, M., Ou, L., Owen, V., Pandey, B., Pandey, V., Papadopoulou, A., Park, S., Patsyuk, M., Paul, S., Petratos, G. G., Piasetzky, E., Pomatsalyuk, R., Premathilake, S., Puckett, A. J. R., Punjabi, V., Ransome, R., Rashad, M. N. H., Reimer, P. E., Riordan, S., Roche, J., Sargsian, M., Santiesteban, N., Sawatzky, B., Segarra, E. P., Schmookler, B., Shahinyan, A., Sirca, S., Skibinski, R., Sparveris, N., Su, T., Suleiman, R., Szumila-Vance, H., Tadepalli, A. S., Tang, L., Tireman, W., Topolnicki, K., Tortorici, F., Urciuoli, G., Weinstein, L. B., Witala, H., Wojtsekhowski, B., Wood, S., Ye, Z. H., Ye, Z. Y., and Zhang, J.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
We report the first measurement of the \eep three-body breakup reaction cross sections in helium-3 ($^3$He) and tritium ($^3$H) at large momentum transfer ($\langle Q^2 \rangle \approx 1.9$ (GeV/c)$^2$) and $x_B>1$ kinematics, where the cross section should be sensitive to quasielastic (QE) scattering from single nucleons. The data cover missing momenta $40 \le p_{miss} \le 500$ MeV/c that, in the QE limit with no rescattering, equals the initial momentum of the probed nucleon. The measured cross sections are compared with state-of-the-art ab-initio calculations. Overall good agreement, within $\pm20\%$, is observed between data and calculations for the full $p_{miss}$ range for $^3$H and for $100 \le p_{miss} \le 350$ MeV/c for $^3$He. Including the effects of rescattering of the outgoing nucleon improves agreement with the data at $p_{miss} > 250$ MeV/c and suggests contributions from charge-exchange (SCX) rescattering. The isoscalar sum of $^3$He plus $^3$H, which is largely insensitive to SCX, is described by calculations to within the accuracy of the data over the entire $p_{miss}$ range. This validates current models of the ground state of the three-nucleon system up to very high initial nucleon momenta of $500$ MeV/c., Comment: Accepted for publication in PRL. 8 pages, 3 figures, and online supplementary materials
- Published
- 2020
- Full Text
- View/download PDF
35. Measurement of the beam-normal single-spin asymmetry for elastic electron scattering from C12 and Al27
- Author
-
Androić, D, Armstrong, DS, Asaturyan, A, Bartlett, K, Beminiwattha, RS, Benesch, J, Benmokhtar, F, Birchall, J, Carlini, RD, Christy, ME, Cornejo, JC, Dusa, S Covrig, Dalton, MM, Davis, CA, Deconinck, W, Dowd, JF, Dunne, JA, Dutta, D, Duvall, WS, Elaasar, M, Falk, WR, Finn, JM, Forest, T, Gal, C, Gaskell, D, Gericke, MTW, Gray, VM, Guo, F, Hoskins, JR, Jones, DC, Kargiantoulakis, M, King, PM, Korkmaz, E, Kowalski, S, Leacock, J, Leckey, JP, Lee, AR, Lee, JH, Lee, L, MacEwan, S, Mack, D, Magee, JA, Mahurin, R, Mammei, J, Martin, JW, McHugh, MJ, Meekins, D, Mesick, KE, Michaels, R, Mkrtchyan, A, Mkrtchyan, H, Narayan, A, Ndukum, LZ, Nelyubin, V, Nuruzzaman, van Oers, WTH, Owen, VF, Page, SA, Pan, J, Paschke, KD, Phillips, SK, Pitt, ML, Radloff, RW, Rajotte, JF, Ramsay, WD, Roche, J, Sawatzky, B, Seva, T, Shabestari, MH, Silwal, R, Simicevic, N, Smith, GR, Solvignon, P, Spayde, DT, Subedi, A, Subedi, R, Suleiman, R, Tadevosyan, V, Tobias, WA, Tvaskis, V, Waidyawansa, B, Wang, P, Wells, SP, Wood, SA, Zang, P, and Zhamkochyan, S
- Subjects
Clinical Research ,nucl-ex - Abstract
We report measurements of the parity-conserving beam-normal single-spinelastic scattering asymmetries $B_n$ on $^{12}$C and $^{27}$Al, obtained withan electron beam polarized transverse to its momentum direction. Thesemeasurements add an additional kinematic point to a series of previousmeasurements of $B_n$ on $^{12}$C and provide a first measurement on $^{27}$Al.The experiment utilized the Qweak apparatus at Jefferson Lab with a beam energyof 1.158 GeV. The average lab scattering angle for both targets was 7.7degrees, and the average $Q^2$ for both targets was 0.02437 GeV$^2$ (Q=0.1561GeV). The asymmetries are $B_n$ = -10.68 $\pm$ 0.90 stat) $\pm$ 0.57 (syst) ppmfor $^{12}$C and $B_n$ = -12.16 $\pm$ 0.58 (stat) $\pm$ 0.62 (syst) ppm for$^{27}$Al. The results are consistent with theoretical predictions, and arecompared to existing data. When scaled by Z/A, the Q-dependence of all thefar-forward angle (theta < 10 degrees) data from $^{1}$H to $^{27}$Al can bedescribed by the same slope out to $Q \approx 0.35$ GeV. Larger-angle data fromother experiments in the same Q range are consistent with a slope about twiceas steep.
- Published
- 2021
36. Evaluation of longitudinal double-spin asymmetry measurements in semi-inclusive deep-inelastic scattering from the proton for the ECCE detector design
- Author
-
Van Hulse, C., Adkins, J.K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I.C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M.D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J.C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W.J., Brooks, M., Bueltmann, S., Bukhari, M.H.S., Bylinkin, A., Capobianco, R., Chang, W.-C., Cheon, Y., Chen, K., Chen, K.-F., Cheng, K.-Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., C.Cuevas, Cunningham, J., David, G., Dean, C.T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J.M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger, M., Jr., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S.V., Guo, A.Q., Guo, L., Ha, S.K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D.W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P.-h.J., Huang, J., Huber, G., Hutson, A., Hwang, K.Y., Hyde, C.E., Inaba, M., Iwata, T., Jo, H.S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S.J.D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S.H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C.-M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J.S.H., Lee, S.W., Lee, Y.-J., Li, W., Li, W.B., Li, X., Liang, Y.T., Lim, S., Lin, C.-H., Lin, D.X., Liu, K., Liu, M.X., Livingston, K., Liyanage, N., Llope, W.J., Loizides, C., Long, E., Lu, R.-S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R.G., Milov, A., Miyachi, Y., Mkrtchyan, A., Mkrtchyan, H., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V.A., Orešić, S., Osborn, J.D., O’Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S.F., Patel, M., Paus, C., Penman, G., Perdekamp, M.G., Perepelitsa, D.V., Costa, H. Periera da, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M.L., Putschke, J., Pybus, J.R., Rajput-Ghoshal, R., Rasson, J., Read, K.F., Røed, K., Reed, R., Reinhold, J., Renner, E.L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G.M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T.-A., Shih, C.-W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I.I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W.-C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T.S., Umaka, E., Usman, A., Hecke, H.W. van, Velkovska, J., Voutier, E., Wang, P.K., Wang, Q., Wang, Y., Watts, D.P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C.-P., Wood, L., Wood, M.H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H.D., Yurov, M., Zachariou, N., Zajc, W.A., Zha, W., Zhang, J.-L., Zhang, J.-X., Zhang, Y., Zhao, Y.-X., Zheng, X., and Zhuang, P.
- Published
- 2023
- Full Text
- View/download PDF
37. Design and simulated performance of calorimetry systems for the ECCE detector at the electron ion collider
- Author
-
Bock, F., Schmidt, N., Wang, P.K., Santiesteban, N., Horn, T., Huang, J., Lajoie, J., Munoz Camacho, C., Adkins, J.K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I.C., Ayerbe Gayoso, C., Bae, J., Bai, X., Baker, M.D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J.C., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W.J., Brooks, M., Bueltmann, S., Bukhari, M.H.S., Bylinkin, A., Capobianco, R., Chang, W.-C., Cheon, Y., Chen, K., Chen, K.-F., Cheng, K.-Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Corrales Morales, Y., Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C.T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J.M., Dzhygadlo, R., Ehlers, R., El Fassi, L., Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger, M., Jr., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S.V., Guo, A.Q., Guo, L., Ha, S.K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D.W., Hoballah, M., Hoghmrtsyan, A., Hsu, P.-h.J., Huber, G., Hutson, A., Hwang, K.Y., Hyde, C.E., Inaba, M., Iwata, T., Jo, H.S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S.J.D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S.H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C.-M., Kutz, T., Lawrence, D., Lebedev, S., Lee, H., Lee, J.S.H., Lee, S.W., Lee, Y.-J., Li, W., Li, W.B., Li, X., Liang, Y.T., Lim, S., Lin, C.-h., Lin, D.X., Liu, K., Liu, M.X., Livingston, K., Liyanage, N., Llope, W.J., Loizides, C., Long, E., Lu, R.-S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R.G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V.A., Orešić, S., Osborn, J.D., O’Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S.F., Patel, M., Paus, C., Penman, G., Perdekamp, M.G., Perepelitsa, D.V., Periera da Costa, H., Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M.L., Putschke, J., Pybus, J.R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K.F., Røed, K., Reed, R., Reinhold, J., Renner, E.L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G.M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T.-A., Shih, C.-W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I.I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W.-C., Tapia Araya, S., Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T.S., Umaka, E., Usman, A., van Hecke, H.W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, Q., Wang, Y., Watts, D.P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C.-P., Wood, L., Wood, M.H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H.D., Yurov, M., Zachariou, N., Zajc, W.A., Zha, W., Zhang, J.-L., Zhang, J.-X., Zhang, Y., Zhao, Y.-X., Zheng, X., and Zhuang, P.
- Published
- 2023
- Full Text
- View/download PDF
38. ECCE unpolarized TMD measurements
- Author
-
Seidl, R., Vladimirov, A., Adkins, J.K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I.C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M.D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J.C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W.J., Brooks, M., Bueltmann, S., Bukhari, M.H.S., Bylinkin, A., Capobianco, R., Chang, W.-C., Cheon, Y., Chen, K., Chen, K.-F., Cheng, K.-Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Morales, Y. Corrales, Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C.T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J.M., Dzhygadlo, R., Ehlers, R., Fassi, L. El, Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger, M., Jr., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S.V., Guo, A.Q., Guo, L., Ha, S.K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D.W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P.-h.J., Huang, J., Huber, G., Hutson, A., Hwang, K.Y., Hyde, C.E., Inaba, M., Iwata, T., Jo, H.S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S.J.D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S.H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C.-M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J.S.H., Lee, S.W., Lee, Y.-J., Li, W., Li, W.B., Li, X., Liang, Y.T., Lim, S., Lin, C.-H., Lin, D.X., Liu, K., Liu, M.X., Livingston, K., Liyanage, N., Llope, W.J., Loizides, C., Long, E., Lu, R.-S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R.G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Mkrtchyan, H., Camacho, C. Munoz, Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V.A., Orešić, S., Osborn, J.D., O’Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S.F., Patel, M., Paus, C., Penman, G., Perdekamp, M.G., Perepelitsa, D.V., da Costa, H. Periera, Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M.L., Putschke, J., Pybus, J.R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K.F., Røed, K., Reed, R., Reinhold, J., Renner, E.L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G.M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T.-A., Shih, C.-W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I.I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W.-C., Araya, S. Tapia, Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T.S., Umaka, E., Usman, A., van Hecke, H.W., Hulse, C. Van, Velkovska, J., Voutier, E., Wang, P.K., Wang, Q., Wang, Y., Watts, D.P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C.-P., Wood, L., Wood, M.H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H.D., Yurov, M., Zachariou, N., Zajc, W.A., Zha, W., Zhang, J.-L., Zhang, J.-X., Zhang, Y., Zhao, Y.-X., Zheng, X., and Zhuang, P.
- Published
- 2023
- Full Text
- View/download PDF
39. Exclusive $\pi^+$ electroproduction off the proton from low to high -t
- Author
-
Basnet, S., Huber, G. M., Li, W. B., Blok, H. P., Gaskell, D., Horn, T., Aniol, K., Arrington, J., Beise, E. J., Boeglin, W., Brash, E. J., Breuer, H., Chang, C. C., Christy, M. E., Ent, R., Gibson, E., Holt, R. J., Jin, S., Jones, M. K., Keppel, C. E., Kim, W., King, P. M., Kovaltchouk, V., Liu, J., Lolos, G. J., Mack, D. J., Margaziotis, D. J., Markowitz, P., Matsumura, A., Meekins, D., Miyoshi, T., Mkrtchyan, H., Niculescu, I., Okayasu, Y., Pentchev, L., Perdrisat, C., Potterveld, D., Punjabi, V., Reimer, P., Reinhold, J., Roche, J., Sarty, A., Smith, G. R., Tadevosyan, V., Tang, L. G., Tvaskis, V., Volmer, J., Vulcan, W., Warren, G., Wood, S. A., Xu, C., and Zheng, X.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
Background: Measurements of exclusive meson production are a useful tool in the study of hadronic structure. In particular, one can discern the relevant degrees of freedom at different distance scales through these studies. Purpose: To study the transition between non-perturbative and perturbative Quantum Chromodyanmics as the square of four momentum transfer to the struck proton, -t, is increased. Method: Cross sections for the $^1$H(e,e'$\pi^+$)n reaction were measured over the -t range of 0.272 to 2.127 GeV$^2$ with limited azimuthal coverage at fixed beam energy of 4.709 GeV, Q$^2$ of 2.4 GeV$^2$ and W of 2.0 GeV at the Thomas Jefferson National Accelerator Facility (JLab) Hall C. Results: The -t dependence of the measured $\pi^+$ electroproduction cross section generally agrees with prior data from JLab Halls B and C. The data are consistent with a Regge amplitude based theoretical model, but show poor agreement with a Generalized Parton Distribution (GPD) based model. Conclusion: The agreement of cross sections with prior data implies small contribution from the interference terms, and the confirmation of the change in t-slopes between the low and high -t regions previously observed in photoproduction indicates the changing nature of the electroproduction reaction in our kinematic regime., Comment: 9 pages, 5 figures Physical Review C, in press
- Published
- 2019
- Full Text
- View/download PDF
40. Parity-Violating Inelastic Electron-Proton Scattering at Low $Q^2$ Above the Resonance Region
- Author
-
QWeak Collaboration, Androic, D., Armstrong, D. S., Asaturyan, A., Bartlett, K., Beminiwattha, R. S., Benesch, J., Benmokhtar, F., Birchall, J., Carlini, R. D., Cornejo, J. C., Dalton, M. M., Davis, C. A., Deconinck, W., Dowd, J. F., Dunne, J. A., Dutta, D., Duvall, W. S., Falk, W. R., Finn, J. M., Gal, C., Gaskell, D., Gericke, M. T. W., Grames, J., Guo, F., Hoskins, J. R., Jones, D., Jones, M. K., Jones, R., Kargiantoulakis, M., King, P. M., Korkmaz, E., Kowalski, S., Leacock, J., Lee, A. R., Lee, J. H., Lee, L., MacEwan, S., Mack, D., Magee, J. A., Mammei, J., Martin, J. W., McHugh, M. J., Meekins, D., Mesick, K. E., Michaels, R., Micherdzinska, A., Mkrtchyan, A., Mkrtchyan, H., Morgan, N., Narayan, A., Nelyubin, V., van Oers, W. T. H, Owen, V. F., Page, S. A., Pan, J., Paschke, K. D., Phillips, S. K., Pitt, M. L., Radloff, R. W., Ramsay, W. D., Roche, J., Sawatzky, B., Seva, T., Shabestari, M. H., Silwal, R., Simicevic, N., Smith, G. R., Solvignon, P., Spayde, D. T., Subedi, A., Tadevosyan, V., Waidyawansa, B., Wang, P., Wells, S. P., Wood, S. A., and Zang, P.
- Subjects
Nuclear Experiment ,High Energy Physics - Phenomenology - Abstract
We report the measurement of the parity-violating asymmetry for the inelastic scattering of electrons from the proton, at $Q^2 = 0.082$ GeV$^2$ and $ W = 2.23$ GeV, above the resonance region. The result $A_{\rm Inel} = - 13.5 \pm 2.0 ({\rm stat}) \pm 3.9 ({\rm syst})$~ppm agrees with theoretical calculations, and helps to validate the modeling of the $\gamma Z$ interference structure functions $F_1^{\gamma Z}$ and $F_2^{\gamma Z}$ used in those calculations, which are also used for determination of the two-boson exchange box diagram ($\Box_{\gamma Z}$) contribution to parity-violating elastic scattering measurements. A positive parity-violating asymmetry for inclusive $\pi^-$ production was observed, as well as positive beam-normal single-spin asymmetry for scattered electrons and a negative beam-normal single-spin asymmetry for inclusive $\pi^-$ production., Comment: 18 pages, 9 figures, version accepted in Physical Review C
- Published
- 2019
- Full Text
- View/download PDF
41. Unique Access to u-Channel Physics: Exclusive Backward-Angle Omega Meson Electroproduction
- Author
-
Li, W. B., Huber, G. M., Blok, H. P., Gaskell, D., Horn, T., Semenov-Tian-Shansky, K., Pire, B., Szymanowski, L., Laget, J. -M., Aniol, K., Arrington, J., Beise, E. J., Boeglin, W., Brash, E. J., Breuer, H., Chang, C. C., Christy, M. E., Ent, R., Gibson, E. F., Holt, R. J., Jin, S., Jones, M. K., Keppel, C. E., Kim, W., King, P. M., Kovaltchouk, V., Liu, J., Lolos, G. J., Mack, D. J., Margaziotis, D. J., Markowitz, P., Matsumura, A., Meekins, D., Miyoshi, T., Mkrtchyan, H., Niculescu, I., Okayasu, Y., Pentchev, L., Perdrisat, C., Potterveld, D., Punjabi, V., Reimer, P. E., Reinhold, J., Roche, J., Roos, P. G., Sarty, A., Smith, Tadevosyan, V., Tang, L. G., Tvaskis, V., Volmer, J., Vulcan, W., Warren, G., Wood, S. A., Xu, C., and Zheng, X.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,Nuclear Theory - Abstract
Backward-angle meson electroproduction above the resonance region, which was previously ignored, is anticipated to offer unique access to the three quark plus sea component of the nucleon wave function. In this letter, we present the first complete separation of the four electromagnetic structure functions above the resonance region in exclusive omega electroproduction off the proton, e + p -> e' + p + omega, at central Q^2 values of 1.60, 2.45 GeV^2 , at W = 2.21 GeV. The results of our pioneering -u ~ -u min study demonstrate the existence of a unanticipated backward-angle cross section peak and the feasibility of full L/T/LT/TT separations in this never explored kinematic territory. At Q^2 =2.45 GeV^2 , the observed dominance of sigma_T over sigma_L, is qualitatively consistent with the collinear QCD description in the near-backward regime, in which the scattering amplitude factorizes into a hard subprocess amplitude and baryon to meson transition distribution amplitudes (TDAs): universal non-perturbative objects only accessible through backward angle kinematics.
- Published
- 2019
42. Search for [formula omitted] charged lepton flavor violation at the EIC with the ECCE detector
- Author
-
Zhang, J.-L., Mantry, S., Adkins, J.K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I.C., Gayoso, C. Ayerbe, Bae, J., Bai, X., Baker, M.D., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J.C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W.J., Brooks, M., Bueltmann, S., Bukhari, M.H.S., Bylinkin, A., Capobianco, R., Chang, W.-C., Cheon, Y., Chen, K., Chen, K.-F., Cheng, K.-Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Corrales Morales, Y., Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Dean, C.T., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J.M., Dzhygadlo, R., Ehlers, R., El Fassi, L., Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Fegan, S., Finger, M., Finger, M., Jr., Frantz, J., Friedman, M., Friscic, I., Gangadharan, D., Gardner, S., Gates, K., Geurts, F., Gilman, R., Glazier, D., Glimos, E., Goto, Y., Grau, N., Greene, S.V., Guo, A.Q., Guo, L., Ha, S.K., Haggerty, J., Hayward, T., He, X., Hen, O., Higinbotham, D.W., Hoballah, M., Horn, T., Hoghmrtsyan, A., Hsu, P.-h.J., Huang, J., Huber, G., Hutson, A., Hwang, K.Y., Hyde, C.E., Inaba, M., Iwata, T., Jo, H.S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kay, S.J.D., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S.H., Korover, I., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C.-M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J.S.H., Lee, S.W., Lee, Y.-J., Li, W., Li, W.B., Li, X., Liang, Y.T., Lim, S., Lin, C.-H., Lin, D.X., Liu, K., Liu, M.X., Livingston, K., Liyanage, N., Llope, W.J., Loizides, C., Long, E., Lu, R.-S., Lu, Z., Lynch, W., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R.G., Milov, A., Miyachi, Y., Mkrtchyan, A., Mkrtchyan, H., Monaghan, P., Montgomery, R., Morrison, D., Movsisyan, A., Munoz Camacho, C., Murray, M., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Nguyen, D., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V.A., Orešić, S., Osborn, J.D., O’Shaughnessy, C., Paganis, S., Papandreou, Z., Pate, S.F., Patel, M., Paus, C., Penman, G., Perdekamp, M.G., Perepelitsa, D.V., Periera da Costa, H., Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M.L., Putschke, J., Pybus, J.R., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K.F., Røed, K., Reed, R., Reinhold, J., Renner, E.L., Richards, J., Riedl, C., Rinn, T., Roche, J., Roland, G.M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santiesteban, N., Santos, R., Sarsour, M., Schambach, J., Schmidt, A., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T.-A., Shih, C.-W., Shimizu, S., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I.I., Steinberg, P., Stepanov, P., Stevens, J., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W.-C., Tapia Araya, S., Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Trotta, R., Tveter, T.S., Umaka, E., Usman, A., van Hecke, H.W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P.K., Wang, Q., Wang, Y., Watts, D.P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C.-P., Wood, L., Wood, M.H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H.D., Yurov, M., Zachariou, N., Zajc, W.A., Zha, W., Zhang, J.-X., Zhang, Y., Zhao, Y.-X., Zheng, X., and Zhuang, P.
- Published
- 2023
- Full Text
- View/download PDF
43. Physics with Positron Beams at Jefferson Lab 12 GeV
- Author
-
Afanasev, A., Albayrak, I., Ali, S., Amaryan, M., D'Angelo, A., Annand, J., Arrington, J., Asaturyan, A., Avakian, H., Averett, T., Barion, L., Battaglieri, M., Bellini, V., Berdnikov, V., Bernauer, J., Biselli, A., Boer, M., Bondì, M., Brinkmann, K. -T., Briscoe, B., Burkert, V., Camsonne, A., Cao, T., Cardman, L., Carmignotto, M., Causse, L., Celentano, A., Chatagnon, P., Ciullo, G., Contalbrigo, M., Day, D., Defurne, M., Diehl, S., Dongwi, B., Dupré, R., Dutta, D., Ehrhart, M., Elouadrhiri, L., Ent, R., Fernando, I., Filippi, A., Furletova, Y., Gao, H., Gasparian, A., Gaskell, D., Georges, F., Girod, F. -X., Grames, J., Gu, C., Guidal, M., Hamilton, D., Hasell, D., Higinbotham, D., Hoballah, M., Horn, T., Hyde, C., Italiano, A., Kalantarians, N., Kalicy, G., Keller, D., Keppel, C., Kerver, M., King, P., Kinney, E., Ko, H. -S., Kohl, M., Kubarovsky, V., Lanza, L., Lenisa, P., Liyanage, N., Liuti, S., Mamei, J., Marchand, D., Markowitz, P., Marsicano, L., Mazouz, M., McCaughan, M., McKinnon, B., Mihovilovič, M., Milner, R., Mkrtchyan, A., Mkrtchyan, H., Movsisyan, A., Camacho, C. Muñoz, Nadel-Turońs, P., De Napoli, M., Nazeer, J., Niccolai, S., Niculescu, G., Novotny, R., Pappalardo, L., Paremuzyan, R., Pasyuk, E., Patel, T., Pegg, I., Perera, D., Puckett, A., Randazzo, N., Rashad, M., Rathnayake, M., Rizzo, A., Roche, J., Rondon, O., Schmidt, A., Shabestari, M., Sharabian, Y., Širca, S., Sokhan, D., Somov, A., Sparveris, N., Stepanyan, S., Strakovsky, I., Tadevosyan, V., Tiefenback, M., Trotta, R., De Vita, R., Voskanyan, H., Voutier, E., Wang, R., Wojtsekhowski, B., Wood, S., Zaunick, H. -G., Zhamkochyan, S., Zhang, J., Zhao, S., Zheng, X., and Zorn, C.
- Subjects
Nuclear Experiment ,High Energy Physics - Experiment - Abstract
Positron beams, both polarized and unpolarized, are identified as essential ingredients for the experimental program at the next generation of lepton accelerators. In the context of the Hadronic Physics program at the Jefferson Laboratory (JLab), positron beams are complementary, even essential, tools for a precise understanding of the electromagnetic structure of the nucleon, in both the elastic and the deep-inelastic regimes. For instance, elastic scattering of (un)polarized electrons and positrons off the nucleon allows for a model independent determination of the electromagnetic form factors of the nucleon. Also, the deeply virtual Compton scattering of (un)polarized electrons and positrons allows us to separate unambiguously the different contributions to the cross section of the lepto-production of photons, enabling an accurate determination of the nucleon Generalized Parton Distributions (GPDs), and providing an access to its Gravitational Form Factors. Furthermore, positron beams offer the possibility of alternative tests of the Standard Model through the search of a dark photon or the precise measurement of electroweak couplings. This letter proposes to develop an experimental positron program at JLab to perform unique high impact measurements with respect to the two-photon exchange problem, the determination of the proton and the neutron GPDs, and the search for the $A^{\prime}$ dark photon., Comment: Letter-of-Intent to Jefferson Lab PAC46
- Published
- 2019
44. Precision Measurement of the Weak Charge of the Proton
- Author
-
Androic, D., Armstrong, D. S., Asaturyan, A., Averett, T., Balewski, J., Bartlett, K., Beaufait, J., Beminiwattha, R. S., Benesch, J., Benmokhtar, F., Birchall, J., Carlini, R. D., Cornejo, J. C., Dusa, S. Covrig, Dalton, M. M., Davis, C. A., Deconinck, W., Diefenbach, J., Dowd, J. F., Dunne, J. A., Dutta, D., Duvall, W. S., Elaasar, M., Falk, W. R., Finn, J. M., Forest, T., Gal, C., Gaskell, D., Gericke, M. T. W., Grames, J., Gray, V. M., Grimm, K., Guo, F., Hoskins, J. R., Jones, D., Jones, M., Jones, R., Kargiantoulakis, M., King, P. M., Korkmaz, E., Kowalski, S., Leacock, J., Leckey, J., Lee, A. R., Lee, J. H., Lee, L., MacEwan, S., Mack, D., Magee, J. A., Mahurin, R., Mammei, J., Martin, J. W., McHugh, M. J., Meekins, D., Mei, J., Mesick, K. E., Michaels, R., Micherdzinska, A., Mkrtchyan, A., Mkrtchyan, H., Morgan, N., Narayan, A., Ndukum, L. Z., Nelyubin, V., Nuhait, H., Nuruzzaman, van Oers, W. T. H., Opper, A. K., Page, S. A., Pan, J., Paschke, K. D., Phillips, S. K., Pitt, M. L., Poelker, M., Rajotte, J. F., Ramsay, W. D., Roche, J., Sawatzky, B., Seva, T., Shabestari, M. H., Silwal, R., Simicevic, N., Smith, G. R., Solvignon, P., Spayde, D. T., Subedi, A., Subedi, R., Suleiman, R., Tadevosyan, V., Tobias, W. A., Tvaskis, V., Waidyawansa, B., Wang, P., Wells, S. P., Wood, S. A., Yang, S., Young, R. D., Zang, P., and Zhamkochyan, S.
- Subjects
Nuclear Experiment - Abstract
The fields of particle and nuclear physics have undertaken extensive programs to search for evidence of physics beyond that explained by current theories. The observation of the Higgs boson at the Large Hadron Collider completed the set of particles predicted by the Standard Model (SM), currently the best description of fundamental particles and forces. However, the theory's limitations include a failure to predict fundamental parameters and the inability to account for dark matter/energy, gravity, and the matter-antimater asymmetry in the universe, among other phenomena. Given the lack of additional particles found so far through direct searches in the post-Higgs era, indirect searches utilizing precise measurements of well predicted SM observables allow highly targeted alternative tests for physics beyond the SM. Indirect searches have the potential to reach mass/energy scales beyond those directly accessible by today's high-energy accelerators. The value of the weak charge of the proton Q_W^p is an example of such an indirect search, as it sets the strength of the proton's interaction with particles via the well-predicted neutral electroweak force. Parity violation (invariance under spatial inversion (x,y,z) -> (-x,-y,-z)) is violated only in the weak interaction, thus providing a unique tool to isolate the weak interaction in order to measure the proton's weak charge. Here we report Q_W^p=0.0719+-0.0045, as extracted from our measured parity-violating (PV) polarized electron-proton scattering asymmetry, A_ep=-226.5+-9.3 ppb. Our value of Q_W^p is in excellent agreement with the SM, and sets multi-TeV-scale constraints on any semi-leptonic PV physics not described within the SM., Comment: Direct link to Nature Version "https://rdcu.be/954U"
- Published
- 2019
- Full Text
- View/download PDF
45. Detector requirements and simulation results for the EIC exclusive, diffractive and tagging physics program using the ECCE detector concept
- Author
-
Bylinkin, A., Dean, C.T., Fegan, S., Gangadharan, D., Gates, K., Kay, S.J.D., Korover, I., Li, W.B., Li, X., Montgomery, R., Nguyen, D., Penman, G., Pybus, J.R., Santiesteban, N., Shimizu, S., Trotta, R., Usman, A., Baker, M.D., Frantz, J., Glazier, D.I., Higinbotham, D.W., Horn, T., Huang, J., Huber, G.M., Reed, R., Roche, J., Schmidt, A., Steinberg, P., Stevens, J., Goto, Y., Munoz Camacho, C., Murray, M., Papandreou, Z., Zha, W., Adkins, J.K., Akiba, Y., Albataineh, A., Amaryan, M., Arsene, I.C., Ayerbe Gayoso, C., Bae, J., Bai, X., Bashkanov, M., Bellwied, R., Benmokhtar, F., Berdnikov, V., Bernauer, J.C., Bock, F., Boeglin, W., Borysova, M., Brash, E., Brindza, P., Briscoe, W.J., Brooks, M., Bueltmann, S., Bukhari, M.H.S., Capobianco, R., Chang, W.-C., Cheon, Y., Chen, K., Chen, K.-F., Cheng, K.-Y., Chiu, M., Chujo, T., Citron, Z., Cline, E., Cohen, E., Cormier, T., Corrales Morales, Y., Cotton, C., Crafts, J., Crawford, C., Creekmore, S., Cuevas, C., Cunningham, J., David, G., Demarteau, M., Diehl, S., Doshita, N., Dupré, R., Durham, J.M., Dzhygadlo, R., Ehlers, R., El Fassi, L., Emmert, A., Ent, R., Fanelli, C., Fatemi, R., Finger, M., Finger, M., Jr, Friedman, M., Friscic, I., Gardner, S., Geurts, F., Gilman, R., Glimos, E., Grau, N., Greene, S.V., Guo, A.Q., Guo, L., Ha, S.K., Haggerty, J., Hayward, T., He, X., Hen, O., Hoballah, M., Hoghmrtsyan, A., Hsu, P.-h.J., Hutson, A., Hwang, K.Y., Hyde, C.E., Inaba, M., Iwata, T., Jo, H.S., Joo, K., Kalantarians, N., Kalicy, G., Kawade, K., Kim, A., Kim, B., Kim, C., Kim, M., Kim, Y., Kistenev, E., Klimenko, V., Ko, S.H., Korsch, W., Krintiras, G., Kuhn, S., Kuo, C.-M., Kutz, T., Lajoie, J., Lawrence, D., Lebedev, S., Lee, H., Lee, J.S.H., Lee, S.W., Lee, Y.-J., Li, W., Liang, Y.T., Lim, S., Lin, C.-h., Lin, D.X., Liu, K., Liu, M.X., Livingston, K., Liyanage, N., Llope, W.J., Loizides, C., Long, E., Lu, R.-S., Lu, Z., Lynch, W., Mantry, S., Marchand, D., Marcisovsky, M., Markert, C., Markowitz, P., Marukyan, H., McGaughey, P., Mihovilovic, M., Milner, R.G., Milov, A., Miyachi, Y., Mkrtchyan, A., Monaghan, P., Morrison, D., Movsisyan, A., Mkrtchyan, H., Nagai, K., Nagle, J., Nakagawa, I., Nattrass, C., Niccolai, S., Nouicer, R., Nukazuka, G., Nycz, M., Okorokov, V.A., Orešić, S., Osborn, J.D., O’Shaughnessy, C., Paganis, S., Pate, S.F., Patel, M., Paus, C., Perdekamp, M.G., Perepelitsa, D.V., Periera da Costa, H., Peters, K., Phelps, W., Piasetzky, E., Pinkenburg, C., Prochazka, I., Protzman, T., Purschke, M.L., Putschke, J., Rajput-Ghoshal, R., Rasson, J., Raue, B., Read, K.F., Røed, K., Reinhold, J., Renner, E.L., Richards, J., Riedl, C., Rinn, T., Roland, G.M., Ron, G., Rosati, M., Royon, C., Ryu, J., Salur, S., Santos, R., Sarsour, M., Schambach, J., Schmidt, N., Schwarz, C., Schwiening, J., Seidl, R., Sickles, A., Simmerling, P., Sirca, S., Sharma, D., Shi, Z., Shibata, T.-A., Shih, C.-W., Shrestha, U., Slifer, K., Smith, K., Sokhan, D., Soltz, R., Sondheim, W., Song, J., Strakovsky, I.I., Stepanov, P., Strube, J., Sun, P., Sun, X., Suresh, K., Tadevosyan, V., Tang, W.-C., Tapia Araya, S., Tarafdar, S., Teodorescu, L., Thomas, D., Timmins, A., Tomasek, L., Trotta, N., Tveter, T.S., Umaka, E., van Hecke, H.W., Van Hulse, C., Velkovska, J., Voutier, E., Wang, P.K., Wang, Q., Wang, Y., Watts, D.P., Wickramaarachchi, N., Weinstein, L., Williams, M., Wong, C.-P., Wood, L., Wood, M.H., Woody, C., Wyslouch, B., Xiao, Z., Yamazaki, Y., Yang, Y., Ye, Z., Yoo, H.D., Yurov, M., Zachariou, N., Zajc, W.A., Zhang, J.-L., Zhang, J.-X., Zhang, Y., Zhao, Y.-X., Zheng, X., and Zhuang, P.
- Published
- 2023
- Full Text
- View/download PDF
46. Comparing proton momentum distributions in $A=2$ and 3 nuclei via $^2$H $^3$H and $^3$He $(e, e'p)$ measurements
- Author
-
Cruz-Torres, R., Li, S., Hauenstein, F., Schmidt, A., Nguyen, D., Abrams, D., Albataineh, H., Alsalmi, S., Androic, D., Aniol, K., Armstrong, W., Arrington, J., Atac, H., Averett, T., Gayoso, C. Ayerbe, Bai, X., Bane, J., Barcus, S., Beck, A., Bellini, V., Bhatt, H., Bhetuwal, D., Biswas, D., Blyth, D., Boeglin, W., Bulumulla, D., Camsonne, A., Castellanos, J., Chen, J. -P., Cohen, E. O., Covrig, S., Craycraft, K., Dongwi, B., Duer, M., Duran, B., Dutta, D., Fuchey, E., Gal, C., Gautam, T. N., Gilad, S., Gnanvo, K., Gogami, T., Gomez, J., Gu, C., Habarakada, A., Hague, T., Hansen, O., Hattawy, M., Hen, O., Higinbotham, D. W., Hughes, E., Hyde, C., Ibrahim, H., Jian, S., Joosten, S., Karki, A., Karki, B., Katramatou, A. T., Keppel, C., Khachatryan, M., Khachatryan, V., Khanal, A., King, D., King, P., Korover, I., Kutz, T., Lashley-Colthirst, N., Laskaris, G., Li, W., Liu, H., Liyanage, N., Lonardoni, D., Machleidt, R., Marcucci, L. E., Markowitz, P., McClellan, R. E., Meekins, D., Beck, S. Mey-Tal, Meziani, Z. -E., Michaels, R., Mihovilovic, M., Nelyubin, V., Nuruzzaman, N., Nycz, M., Obrecht, R., Olson, M., Ou, L., Owen, V., Pandey, B., Pandey, V., Papadopoulou, A., Park, S., Patsyuk, M., Paul, S., Petratos, G. G., Piasetzky, E., Pomatsalyuk, R., Premathilake, S., Puckett, A. J. R., Punjabi, V., Ransome, R., Rashad, M. N. H., Reimer, P. E., Riordan, S., Roche, J., Sammarruca, F., Santiesteban, N., Sawatzky, B., Segarra, E. P., Schmookler, B., Shahinyan, A., Širch, S., Sparveris, N., Su, T., Suleiman, R., Szumila-Vance, H., Tadepalli, A. S., Tang, L., Tireman, W., Tortorici, F., Urciuoli, G., Viviani, M., Weinstein, L. B., Wojtsekhowski, B., Wood, S., Ye, Z. H., Ye, Z. Y., and Zhang, J.
- Subjects
Nuclear Experiment ,Nuclear Theory - Abstract
We report the first measurement of the $(e,e'p)$ reaction cross-section ratios for Helium-3 ($^3$He), Tritium ($^3$H), and Deuterium ($d$). The measurement covered a missing momentum range of $40 \le p_{miss} \le 550$ MeV$/c$, at large momentum transfer ($\langle Q^2 \rangle \approx 1.9$ (GeV$/c$)$^2$) and $x_B>1$, which minimized contributions from non quasi-elastic (QE) reaction mechanisms. The data is compared with plane-wave impulse approximation (PWIA) calculations using realistic spectral functions and momentum distributions. The measured and PWIA-calculated cross-section ratios for $^3$He$/d$ and $^3$H$/d$ extend to just above the typical nucleon Fermi-momentum ($k_F \approx 250$ MeV$/c$) and differ from each other by $\sim 20\%$, while for $^3$He/$^3$H they agree within the measurement accuracy of about 3\%. At momenta above $k_F$, the measured $^3$He/$^3$H ratios differ from the calculation by $20\% - 50\%$. Final state interaction (FSI) calculations using the generalized Eikonal Approximation indicate that FSI should change the $^3$He/$^3$H cross-section ratio for this measurement by less than 5\%. If these calculations are correct, then the differences at large missing momenta between the $^3$He/$^3$H experimental and calculated ratios could be due to the underlying $NN$ interaction, and thus could provide new constraints on the previously loosely-constrained short-distance parts of the $NN$ interaction., Comment: 8 pages, 3 figures (4 panels)
- Published
- 2019
- Full Text
- View/download PDF
47. Erratum to: Dispersive corrections in elastic electron-nucleus scattering: an investigation in the intermediate energy regime and their impact on the nuclear matter
- Author
-
Guèye, P, Kabir, AA, Giuliani, P, Glister, J, Lee, BW, Gilman, R, Higinbotham, DW, Piasetzky, E, Ron, G, Sarty, AJ, Strauch, S, Adeyemi, A, Allada, K, Armstrong, W, Arrington, J, Arenaövel, H, Beck, A, Benmokhtar, F, Berman, BL, Boeglin, W, Brash, E, Camsonne, A, Calarco, J, Chen, JP, Choi, S, Chudakov, E, Coman, L, Craver, B, Cusanno, F, Dumas, J, Dutta, C, Feuerbach, R, Freyberger, A, Frullani, S, Garibaldi, F, Hansen, J-O, Holmstrom, T, Hyde, CE, Ibrahim, H, Ilieva, Y, Jiang, X, Jones, MK, Katramatou, AT, Kelleher, A, Khrosinkova, E, Kuchina, E, Kumbartzki, G, LeRose, JJ, Lindgren, R, Markowitz, P, Beck, S May-Tal, McCullough, E, Meekins, D, Meziane, M, Meziani, Z-E, Michaels, R, Moffit, B, Norum, BE, Petratos, GG, Oh, Y, Olson, M, Paolone, M, Paschke, K, Perdrisat, CF, Potokar, M, Pomatsalyuk, R, Pomerantz, I, Puckett, A, Punjabi, V, Qian, X, Qiang, Y, Ransome, RD, Reyhan, M, Roche, J, Rousseau, Y, Sawatzky, B, Schulte, E, Schwamb, M, Shabestari, M, Shahinyan, A, Shneor, R, Širca, S, Slifer, K, Solvignon, P, Song, J, Sparks, R, Subedi, R, Urciuoli, GM, Wang, K, Wojtsekhowski, B, Yan, X, Yao, H, Zhan, X, and Zhu, X
- Subjects
Affordable and Clean Energy ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Nuclear & Particles Physics - Abstract
In the original PDF online version of this article, the references 22–26 were missing.These are the missing references.
- Published
- 2020
48. Dispersive corrections in elastic electron-nucleus scattering: an investigation in the intermediate energy regime and their impact on the nuclear matter
- Author
-
Guèye, P, Kabir, AA, Giuliani, P, Glister, J, Lee, BW, Gilman, R, Higinbotham, DW, Piasetzky, E, Ron, G, Sarty, AJ, Strauch, S, Adeyemi, A, Allada, K, Armstrong, W, Arrington, J, Arenaövel, H, Beck, A, Benmokhtar, F, Berman, BL, Boeglin, W, Brash, E, Camsonne, A, Calarco, J, Chen, JP, Choi, S, Chudakov, E, Coman, L, Craver, B, Cusanno, F, Dumas, J, Dutta, C, Feuerbach, R, Freyberger, A, Frullani, S, Garibaldi, F, Hansen, J-O, Holmstrom, T, Hyde, CE, Ibrahim, H, Ilieva, Y, Jiang, X, Jones, MK, Katramatou, AT, Kelleher, A, Khrosinkova, E, Kuchina, E, Kumbartzki, G, LeRose, JJ, Lindgren, R, Markowitz, P, Beck, S May-Tal, McCullough, E, Meekins, D, Meziane, M, Meziani, Z-E, Michaels, R, Moffit, B, Norum, BE, Petratos, GG, Oh, Y, Olson, M, Paolone, M, Paschke, K, Perdrisat, CF, Potokar, M, Pomatsalyuk, R, Pomerantz, I, Puckett, A, Punjabi, V, Qian, X, Qiang, Y, Ransome, RD, Reyhan, M, Roche, J, Rousseau, Y, Sawatzky, B, Schulte, E, Schwamb, M, Shabestari, M, Shahinyan, A, Shneor, R, Širca, S, Slifer, K, Solvignon, P, Song, J, Sparks, R, Subedi, R, Urciuoli, GM, Wang, K, Wojtsekhowski, B, Yan, X, Yao, H, Zhan, X, and Zhu, X
- Subjects
nucl-ex ,nucl-th ,Atomic ,Molecular ,Nuclear ,Particle and Plasma Physics ,Nuclear & Particles Physics - Abstract
Measurements of elastic electron scattering data within the past decade have highlighted two-photon exchange contributions as a necessary ingredient in theoretical calculations to precisely evaluate hydrogen elastic scattering cross sections. This correction can modify the cross section at the few percent level. In contrast, dispersive effects can cause significantly larger changes from the Born approximation. The purpose of this experiment is to extract the carbon-12 elastic cross section around the first diffraction minimum, where the Born term contributions to the cross section are small to maximize the sensitivity to dispersive effects. The analysis uses the LEDEX data from the high resolution Jefferson Lab Hall A spectrometers to extract the cross sections near the first diffraction minimum of 12C at beam energies of 362 MeV and 685 MeV. The results are in very good agreement with previous world data, although with less precision. The average deviation from a static nuclear charge distribution expected from linear and quadratic fits indicate a 30.6% contribution of dispersive effects to the cross section at 1 GeV. The magnitude of the dispersive effects near the first diffraction minimum of 12C has been confirmed to be large with a strong energy dependence and could account for a large fraction of the magnitude for the observed quenching of the longitudinal nuclear response. These effects could also be important for nuclei radii extracted from parity-violating asymmetries measured near a diffraction minimum.
- Published
- 2020
49. Exclusive π+ electroproduction off the proton from low to high -t
- Author
-
Basnet, S, Huber, GM, Li, WB, Blok, HP, Gaskell, D, Horn, T, Aniol, K, Arrington, J, Beise, EJ, Boeglin, W, Brash, EJ, Breuer, H, Chang, CC, Christy, ME, Ent, R, Gibson, E, Holt, RJ, Jin, S, Jones, MK, Keppel, CE, Kim, W, King, PM, Kovaltchouk, V, Liu, J, Lolos, GJ, MacK, DJ, Margaziotis, DJ, Markowitz, P, Matsumura, A, Meekins, D, Miyoshi, T, Mkrtchyan, H, Niculescu, I, Okayasu, Y, Pentchev, L, Perdrisat, C, Potterveld, D, Punjabi, V, Reimer, P, Reinhold, J, Roche, J, Sarty, A, Smith, GR, Tadevosyan, V, Tang, LG, Tvaskis, V, Volmer, J, Vulcan, W, Warren, G, Wood, SA, Xu, C, and Zheng, X
- Subjects
nucl-ex ,hep-ex - Abstract
Background: Measurements of exclusive meson production are a useful tool in the study of hadronic structure. In particular, one can discern the relevant degrees of freedom at different distance scales through these studies. Purpose: To study the transition between nonperturbative and perturbative quantum chromodynamics as the square of four-momentum transfer to the struck proton, -t, is increased. Method: Cross sections for the H1(e,e′π+)n reaction were measured over the -t range of 0.272 to 2.127 GeV2 with limited azimuthal coverage at fixed beam energy of 4.709 GeV, Q2 of 2.4 GeV2, and W of 2.0 GeV at the Thomas Jefferson National Accelerator Facility (JLab) Hall C. Results: The -t dependence of the measured π+ electroproduction cross section generally agrees with prior data from JLab Halls B and C. The data are consistent with a Regge amplitude-based theoretical model but show poor agreement with a generalized parton distribution-based model. Conclusion: The agreement of cross sections with prior data implies small contribution from the interference terms, and the confirmation of the change in t slopes between the low- and high - t regions previously observed in photoproduction indicates the changing nature of the electroproduction reaction in our kinematic regime.
- Published
- 2019
50. Exclusive π+ electroproduction off the proton from low to high −t
- Author
-
Basnet, S, Huber, GM, Li, WB, Blok, HP, Gaskell, D, Horn, T, Aniol, K, Arrington, J, Beise, EJ, Boeglin, W, Brash, EJ, Breuer, H, Chang, CC, Christy, ME, Ent, R, Gibson, E, Holt, RJ, Jin, S, Jones, MK, Keppel, CE, Kim, W, King, PM, Kovaltchouk, V, Liu, J, Lolos, GJ, Mack, DJ, Margaziotis, DJ, Markowitz, P, Matsumura, A, Meekins, D, Miyoshi, T, Mkrtchyan, H, Niculescu, I, Okayasu, Y, Pentchev, L, Perdrisat, C, Potterveld, D, Punjabi, V, Reimer, P, Reinhold, J, Roche, J, Sarty, A, Smith, GR, Tadevosyan, V, Tang, LG, Tvaskis, V, Volmer, J, Vulcan, W, Warren, G, Wood, SA, Xu, C, and Zheng, X
- Subjects
Nuclear and Plasma Physics ,Particle and High Energy Physics ,Physical Sciences ,nucl-ex ,hep-ex ,Nuclear and plasma physics - Abstract
Background: Measurements of exclusive meson production are a useful tool in the study of hadronic structure. In particular, one can discern the relevant degrees of freedom at different distance scales through these studies. Purpose: To study the transition between nonperturbative and perturbative quantum chromodynamics as the square of four-momentum transfer to the struck proton, -t, is increased. Method: Cross sections for the H1(e,e′π+)n reaction were measured over the -t range of 0.272 to 2.127 GeV2 with limited azimuthal coverage at fixed beam energy of 4.709 GeV, Q2 of 2.4 GeV2, and W of 2.0 GeV at the Thomas Jefferson National Accelerator Facility (JLab) Hall C. Results: The -t dependence of the measured π+ electroproduction cross section generally agrees with prior data from JLab Halls B and C. The data are consistent with a Regge amplitude-based theoretical model but show poor agreement with a generalized parton distribution-based model. Conclusion: The agreement of cross sections with prior data implies small contribution from the interference terms, and the confirmation of the change in t slopes between the low- and high - t regions previously observed in photoproduction indicates the changing nature of the electroproduction reaction in our kinematic regime.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.