1. Isolation and Identification of Phosphate-solubilizing Bacteria in the Rhizosphere of Robinia pseudoacacia on the Loess Plateau and Verification of Phosphate Solubilization Capacity.
- Author
-
Zhang W, Zhou Y, Jia J, Lu Y, and Zhang H
- Subjects
- China, Soil chemistry, Solubility, Phosphorus metabolism, Bacteria metabolism, Bacteria classification, Bacteria isolation & purification, Bacteria genetics, Pseudomonas metabolism, Pseudomonas isolation & purification, Pseudomonas classification, Phylogeny, RNA, Ribosomal, 16S genetics, Robinia microbiology, Robinia chemistry, Phosphates metabolism, Rhizosphere, Soil Microbiology, Plant Roots microbiology
- Abstract
The Loess Plateau is one of the key areas for soil and water erosion control in China. Planting vegetation, such as Robinia pseudoacacia, is one of the mainstream methods to prevent soil and water erosion. However, the combination of abundant calcium ions and phosphate in the soil of the Loess Plateau limits the phosphorus nutrition of plants. In the present study, soil samples were collected under the R. pseudoacacia forest, from which two PSB strains with efficient phosphate solubilization capacities, named PSB2 and PSB7, were isolated and screened. The dissolved phosphate concentrations of their culture media were 9.68-fold and 11.61-fold higher, respectively, than that of the control group. After identification, PSB2 was classified as Pseudomonas and PSB7 as Inquilinus. This is the first time that Inquilinus has been isolated as a PSB from calcareous soil in the Loess Plateau. We then investigated the effects of different growth conditions on their phosphate solubilization capacities. Both strains effectively utilized glucose and ammonium nitrogen while maintaining high phosphate solubilization efficiency. In addition, PSB2 preferred to survive under neutral conditions and PSB7 under acidic conditions. Pot experiments indicated that the inoculation with PSB7 significantly increased the phosphorus content in the roots of R. pseudoacacia. These results imply the potential of this PSB as a phosphorus biofertilizer for R. pseudoacacia, which may be beneficial for soil and water management on the Loess Plateau.
- Published
- 2024
- Full Text
- View/download PDF