1. Hybrid Space-Frequency Access for Underwater Acoustic Networks
- Author
-
Andrea Petroni, Hak-Lim Ko, Taeho Im, Yong-Ho Cho, Roberto Cusani, Gaetano Scarano, and Mauro Biagi
- Subjects
Underwater acoustics ,access protocols ,massive MIMO ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
Underwater acoustic networks have recently risen as an effective support to several marine and oceanic applications. However, the potential presence of a large number of nodes simultaneously connected has pushed the scientific community to address the matter of communication resources management, hence to provide the best possible performance for each link. Since underwater acoustic communications (UWACs) suffer from limited bandwidth and long propagation delays, medium access control results really challenging. The best known schemes, that are time division, frequency division and code division multiple access have been considered to handle this problem in underwater scenarios, even though they suffer from some weaknesses. Furthermore, spatial division multiple access achievable in Multiple-Input Multiple-Output (MIMO) systems has emerged as a promising technique able to fit with the multipath propagation typically characterizing UWACs. Dealing with underwater medium access control, we investigate the feasibility of a novel hybrid multiple access technique that works in a bi-dimensional resources domain, namely space and frequency. This solution is aimed to mitigate the multi-user interference by exploiting spatial diversity and, whenever necessary, by applying frequency reuse. Finally, we discuss the feasibility and potential of massive MIMO paradigm, conveniently recast into the underwater context.
- Published
- 2022
- Full Text
- View/download PDF