1. Higher horospherical limit sets for G-modules over CAT(0)-spaces
- Author
-
Ross Geoghegan and Robert Bieri
- Subjects
Pure mathematics ,Discrete group ,Euclidean space ,General Mathematics ,010102 general mathematics ,0102 computer and information sciences ,Space (mathematics) ,01 natural sciences ,Action (physics) ,Zeroth law of thermodynamics ,010201 computation theory & mathematics ,Tropical geometry ,Limit (mathematics) ,0101 mathematics ,Group theory ,Mathematics - Abstract
The Σ-invariants of Bieri–Neumann–Strebel and Bieri–Renz involve an action of a discrete group G on a geometrically suitable space M. In the early versions, M was always a finite-dimensional Euclidean space on which G acted by translations. A substantial literature exists on this, connecting the invariants to group theory and to tropical geometry (which, actually, Σ-theory anticipated). More recently, we have generalized these invariants to the case where M is a proper CAT(0) space on which G acts by isometries. The “zeroth stage” of this was developed in our paper [BG16]. The present paper provides a higher-dimensional extension of the theory to the “nth stage” for any n.
- Published
- 2021
- Full Text
- View/download PDF