108 results on '"Robert Bellé"'
Search Results
2. Treatise on the Power and Utility of Moneys
- Author
-
Biel, Gabriel, Burke, Robert Belle, Lately done into English by, Biel, Gabriel, and Burke, Robert Belle
- Published
- 2016
3. Opus Majus, Volumes 1 and 2
- Author
-
BACON, ROGER, BURKE, ROBERT BELLE, A Translation by, BACON, ROGER, and BURKE, ROBERT BELLE
- Published
- 2016
4. MAPK/ERK activity is required for the successful progression of mitosis in sea urchin embryos
- Author
-
Julia Morales, Héloïse Chassé, Odile Mulner-Lorillon, Patrick Cormier, Robert Bellé, Laboratoire de Biologie Intégrative des Modèles Marins (LBI2M), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Station biologique de Roscoff [Roscoff] (SBR), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
DNA Replication ,0301 basic medicine ,MAPK/ERK pathway ,Embryo, Nonmammalian ,Cell cycle checkpoint ,MAP Kinase Signaling System ,Cyclin B ,Mitosis ,Microtubules ,03 medical and health sciences ,0302 clinical medicine ,CDC2 Protein Kinase ,Nitriles ,Butadienes ,Animals ,Phosphorylation ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,Molecular Biology ,Ovum ,Cyclin-dependent kinase 1 ,biology ,embryonic cell division ,Cell Biology ,Cell cycle ,Biological Evolution ,Chromatin ,Cell biology ,Enzyme Activation ,Spindle checkpoint ,030104 developmental biology ,Fertilization ,Protein Biosynthesis ,Sea Urchins ,030220 oncology & carcinogenesis ,biology.protein ,cell cycle checkpoint ,Carrier Proteins ,Cell Division ,Developmental Biology - Abstract
International audience; Using sea urchin embryos, we demonstrate that the MEK/MAPK/ERK cascade is essential for the proper progression of the cell cycle. Activation of a limited fraction of MAPK/ERK is required between S-phase and M-phase. Neither DNA replication nor CDK1 activation are impacted by the inhibition of this small active MAPK/ERK fraction. Nonetheless, the chromatin and spindle organisations are profoundly altered. Early morphological disorders induced by the absence of MAPK/ERK activation are correlated with an important inhibition of global protein synthesis and modification in the cyclin B accumulation profile. After appearance of morphological disorders, there is an increase in the level of the inhibitor of protein synthesis, 4E-BP, and, ultimately, an activation of the spindle checkpoint. Altogether, our results suggest that MAPK/ERK activity is required for the synthesis of (a) protein(s) implicated in an early step of chromatin /microtubule attachment. If this MAPK/ERK-dependent step is not achieved, the cell activates a new checkpoint mechanism, involving the reappearance of 4E-BP that maintains a low level of protein translation, thus saving cellular energy.
- Published
- 2017
- Full Text
- View/download PDF
5. Model of the delayed translation of cyclin B maternal mRNA after sea urchin fertilization
- Author
-
Odile Mulner-Lorillon, Julia Morales, Anne Siegel, Robert Bellé, Patrick Cormier, Jérémie Bourdon, and Vincent Picard
- Subjects
0301 basic medicine ,Messenger RNA ,education.field_of_study ,biology ,Population ,Cyclin A ,Cyclin B ,Translation (biology) ,Cell Biology ,03 medical and health sciences ,chemistry.chemical_compound ,030104 developmental biology ,0302 clinical medicine ,Biochemistry ,Biosynthesis ,chemistry ,biology.animal ,Genetics ,Protein biosynthesis ,biology.protein ,education ,Sea urchin ,030217 neurology & neurosurgery ,Developmental Biology - Abstract
Sea urchin eggs exhibit a cap-dependent increase in protein synthesis within minutes after fertilization. This rise in protein synthesis occurs at a constant rate for a great number of proteins translated from the different available mRNAs. Surprisingly, we found that cyclin B, a major cell-cycle regulator, follows a synthesis pattern that is distinct from the global protein population, so we developed a mathematical model to analyze this dissimilarity in biosynthesis kinetic patterns. The model includes two pathways for cyclin B mRNA entry into the translational machinery: one from immediately available mRNA (mRNAcyclinB) and one from mRNA activated solely after fertilization (XXmRNAcyclinB). Two coefficients, α and β, were added to fit the measured scales of global protein and cyclin B synthesis, respectively. The model was simplified to identify the synthesis parameters and to allow its simulation. The calculated parameters for activation of the specific cyclin B synthesis pathway after fertilization included a kinetic constant (ka ) of 0.024 sec-1 , for the activation of XXmRNAcyclinB, and a critical time interval (t2 ) of 42 min. The proportion of XXmRNAcyclinB form was also calculated to be largely dominant over the mRNAcyclinB form. Regulation of cyclin B biosynthesis is an example of a select protein whose translation is controlled by pathways that are distinct from housekeeping proteins, even though both involve the same cap-dependent initiation pathway. Therefore, this model should help provide insight to the signaling utilized for the biosynthesis of cyclin B and other select proteins. Mol. Reprod. Dev. 83: 1070-1082, 2016. © 2016 Wiley Periodicals, Inc.
- Published
- 2016
- Full Text
- View/download PDF
6. Model of the delayed translation of cyclin B maternal mRNA after sea urchin fertilization
- Author
-
Vincent, Picard, Odile, Mulner-Lorillon, Jérémie, Bourdon, Julia, Morales, Patrick, Cormier, Anne, Siegel, and Robert, Bellé
- Subjects
RNA, Messenger, Stored ,Fertilization ,Protein Biosynthesis ,Sea Urchins ,Animals ,Female ,Cyclin B ,Models, Biological ,Ovum - Abstract
Sea urchin eggs exhibit a cap-dependent increase in protein synthesis within minutes after fertilization. This rise in protein synthesis occurs at a constant rate for a great number of proteins translated from the different available mRNAs. Surprisingly, we found that cyclin B, a major cell-cycle regulator, follows a synthesis pattern that is distinct from the global protein population, so we developed a mathematical model to analyze this dissimilarity in biosynthesis kinetic patterns. The model includes two pathways for cyclin B mRNA entry into the translational machinery: one from immediately available mRNA (mRNAcyclinB) and one from mRNA activated solely after fertilization (XXmRNAcyclinB). Two coefficients, α and β, were added to fit the measured scales of global protein and cyclin B synthesis, respectively. The model was simplified to identify the synthesis parameters and to allow its simulation. The calculated parameters for activation of the specific cyclin B synthesis pathway after fertilization included a kinetic constant (k
- Published
- 2016
7. Model of cap-dependent translation initiation in sea urchin: A step towards the eukaryotic translation regulation network
- Author
-
Patrick Cormier, Anne Siegel, Robert Bellé, and Sylvain Prigent
- Subjects
Regulation of gene expression ,0303 health sciences ,Computation tree logic ,Systems biology ,Translation (biology) ,Cell Biology ,Computational biology ,Biology ,03 medical and health sciences ,0302 clinical medicine ,Eukaryotic translation ,Component (UML) ,biology.animal ,Genetics ,Protein biosynthesis ,Sea urchin ,030217 neurology & neurosurgery ,030304 developmental biology ,Developmental Biology - Abstract
The large and rapid increase in the rate of protein synthesis following fertilization of the sea urchin egg has long been a paradigm of translational control, an important component of the regulation of gene expression in cells. This translational up-regulation is linked to physiological changes that occur upon fertilization and is necessary for entry into first cell division cycle. Accumulated knowledge on cap-dependent initiation of translation makes it suited and timely to start integrating the data into a system view of biological functions. Using a programming environment for system biology coupled with model validation (named Biocham), we have built an integrative model for cap-dependent initiation of translation. The model is described by abstract rules. It contains 51 reactions involved in 74 molecular complexes. The model proved to be coherent with existing knowledge by using queries based on computational tree logic (CTL) as well as Boolean simulations. The model could simulate the change in translation occurring at fertilization in the sea urchin model. It could also be coupled with an existing model designed for cell-cycle control. Therefore, the cap-dependent translation initiation model can be considered a first step towards the eukaryotic translation regulation network.
- Published
- 2009
- Full Text
- View/download PDF
8. Inhibition of translation and modification of translation factors during apoptosis induced by the DNA-damaging agent MMS in sea urchin embryos
- Author
-
Julia Morales, Sandrine Boulben, Ronan Le Bouffant, Robert Bellé, Odile Mulner-Lorillon, Patrick Cormier, Mer et santé (MS), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Ribosomal Proteins ,Embryo, Nonmammalian ,MESH: Eukaryotic Initiation Factor-2 ,Protein subunit ,Eukaryotic Initiation Factor-2 ,MESH: Methyl Methanesulfonate ,Apoptosis ,Biology ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,MESH: Ovum ,biology.animal ,Protein biosynthesis ,Animals ,MESH: Animals ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Translation factor ,Phosphorylation ,Sea urchin ,Ovum ,030304 developmental biology ,MESH: DNA Damage ,0303 health sciences ,MESH: Phosphorylation ,EIF4G ,MESH: Apoptosis ,organic chemicals ,fungi ,MESH: Embryo, Nonmammalian ,Translation (biology) ,MESH: Eukaryotic Initiation Factor-4G ,Cell Biology ,Methyl Methanesulfonate ,MESH: Ribosomal Proteins ,MESH: Sea Urchins ,Methyl methanesulfonate ,chemistry ,Biochemistry ,Protein Biosynthesis ,Sea Urchins ,MESH: Protein Biosynthesis ,030220 oncology & carcinogenesis ,embryonic structures ,Eukaryotic Initiation Factor-4G ,DNA Damage - Abstract
International audience; Translational control was investigated in sea urchin eggs and embryos in response to the DNA-damaging agent methyl methanesulfonate (MMS). We have shown in this report that exposure of sea urchin embryos to MMS induces drastic effects on protein synthesis activity, and on translation factors level, integrity and post-translational modifications. In response to the treatment of embryos by the DNA-damaging agent MMS, protein synthesis is inhibited independently of the translation inhibitor 4E-BP and in correlation with phosphorylation of the translation factor eIF2alpha subunit. Furthermore, a low molecular weight form of translation initiation factor eIF4G is detected correlatively with MMS-induced apoptosis. We propose that modifications of translation factors play an important role in protein synthesis modulation that occurs during DNA-damage induced apoptosis.
- Published
- 2008
- Full Text
- View/download PDF
9. Sea urchin embryo as a model for analysis of the signaling pathways linking DNA damage checkpoint, DNA repair and apoptosis
- Author
-
Odile Mulner-Lorillon, R. Le Bouffant, Patrick Cormier, Robert Bellé, A. Cueff, Mer et santé (MS), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
MESH: Signal Transduction ,Embryo, Nonmammalian ,Cell cycle checkpoint ,DNA Repair ,Cyclin B ,Apoptosis ,MESH: Animals ,MESH: DNA Repair ,0303 health sciences ,MESH: Kinetics ,biology ,030302 biochemistry & molecular biology ,Cell cycle ,MESH: CDC2 Protein Kinase ,3. Good health ,Cell biology ,Caspases ,embryonic structures ,MESH: Cell Division ,Molecular Medicine ,Cell Division ,Signal Transduction ,MESH: Enzyme Activation ,animal structures ,DNA damage ,DNA repair ,Models, Biological ,03 medical and health sciences ,Cellular and Molecular Neuroscience ,MESH: Mutagens ,CDC2 Protein Kinase ,Animals ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,CHEK1 ,Molecular Biology ,030304 developmental biology ,MESH: DNA Damage ,Pharmacology ,DNA integrity checkpoint ,MESH: Caspases ,MESH: Apoptosis ,MESH: Models, Biological ,MESH: Embryo, Nonmammalian ,MESH: Cyclin B ,Cell Biology ,G2-M DNA damage checkpoint ,MESH: Sea Urchins ,Enzyme Activation ,Kinetics ,Sea Urchins ,biology.protein ,DNA Damage ,Mutagens - Abstract
International audience; DNA integrity checkpoint control was studied in the sea urchin early embryo. Treatment of the embryos with genotoxic agents such as methyl methanesulfonate (MMS) or bleomycin induced the activation of a cell cycle checkpoint as evidenced by the occurrence of a delay or an arrest in the division of the embryos and an inhibition of CDK1/cyclin B activating dephosphorylation. The genotoxic treatment was shown to induce DNA damage that depended on the genotoxic concentration and was correlated with the observed cell cycle delay. At low genotoxic concentrations, embryos were able to repair the DNA damage and recover from checkpoint arrest, whereas at high doses they underwent morphological and biochemical changes characteristic of apoptosis. Finally, extracts prepared from embryos were found to be capable of supporting DNA repair in vitro upon incubation with oligonucleotides mimicking damage. Taken together, our results demonstrate that sea urchin early embryos contain fully functional and activatable DNA damage checkpoints. Sea urchin embryos are discussed as a promising model to study the signaling pathways of cell cycle checkpoint, DNA repair and apoptosis, which upon deregulation play a significant role in the origin of cancer.
- Published
- 2007
- Full Text
- View/download PDF
10. Facteurs d'initiation eIF4 : du développement embryonnaire de l'oursin à la leucémie lymphoïde chronique
- Author
-
Odile Mulner-Lorillon, Christian Berthou, Patrick Cormier, Hussam Saad, Julia Morales, Robert Bellé, and Bertrand Cosson
- Subjects
Aging ,Cell Biology - Abstract
La traduction des ARNm est une etape regulatrice importante de l'expression des genes au cours de differents mecanismes physiologiques et physiopathologiques, incluant la proliferation cellulaire et l'apoptose. Parmi les maladies du cycle cellulaire, la leucemie lymphoide chronique B-CD5 + (LLC) est caracterisee par une perte de l'apoptose. Les proteines eIF4E (eukaryotic Initiation Factor 4E) et 4E-BPs (eIF4E Binding Proteins), qui jouent un role important dans la regulation traductionnelle, ont recemment ete impliquees dans les mecanismes de survie et d'apoptose. Nos etudes ciblant ces acteurs au cours du developpement embryonnaire precoce de l'oursin nous ont permis de souligner leur importance pour l'entree dans le cycle cellulaire en reponse a la fecondation. Dans ce modele, la degradation de 4E-BP represente un nouveau mecanisme de controle de la traduction et doit etre pris en compte dans d'autres mecanismes physiologiques et physiopathologiques. L'ensemble des donnees permet de proposer les facteurs eIF4 comme cible potentielle pour de nouvelles approches therapeutiques contre le cancer en general et contre la LLC en particulier. Cette revue met en evidence l'apport du modele biologique du developpement precoce de l'oursin dans cet axe de recherche qui associe de facon originale une equipe de recherche de biologie cellulaire et une equipe medicale specialisee dans la cancerologie de la leucemie lymphoide chronique B-CD5 + .
- Published
- 2007
- Full Text
- View/download PDF
11. L'embryon d'oursin, le point de surveillance de l'ADN endommagé de la division cellulaire et les mécanismes à l'origine de la cancérisation
- Author
-
Julia Morales, Patrick Cormier, Bertrand Cosson, Ronan Le Bouffant, Robert Bellé, and Odile Mulner-Lorillon
- Subjects
Aging ,Cell cycle checkpoint ,DNA repair ,Cancer ,Cell Biology ,Cell cycle ,Biology ,medicine.disease ,medicine.disease_cause ,Embryonic stem cell ,Cell biology ,Cancer stem cell ,medicine ,Stem cell ,Carcinogenesis - Abstract
Cell division is an essential process for heredity, maintenance and evolution of the whole living kingdom. Sea urchin early development represents an excellent experimental model for the analysis of cell cycle checkpoint mechanisms since embryonic cells contain a functional DNA-damage checkpoint and since the whole sea urchin genome is sequenced. The DNA-damaged checkpoint is responsible for an arrest in the cell cycle when DNA is damaged or incorrectly replicated, for activation of the DNA repair mechanism, and for commitment to cell death by apoptosis in the case of failure to repair. New insights in cancer biology lead to two fundamental concepts about the very first origin of cancerogenesis. Cancers result from dysfunction of DNA-damaged checkpoints and cancers appear as a result of normal stem cell (NCS) transformation into a cancer stem cell (CSC). The second aspect suggests a new definition of "cancer", since CSC can be detected well before any clinical evidence. Since early development starts from the zygote, which is a primary stem cell, sea urchin early development allows analysis of the early steps of the cancerization process. Although sea urchins do not develop cancers, the model is alternative and complementary to stem cells which are not easy to isolate, do not divide in a short time and do not divide synchronously. In the field of toxicology and incidence on human health, the sea urchin experimental model allows assessment of cancer risk from single or combined molecules long before any epidemiologic evidence is available. Sea urchin embryos were used to test the worldwide used pesticide Roundup that contains glyphosate as the active herbicide agent; it was shown to activate the DNA-damage checkpoint of the first cell cycle of development. The model therefore allows considerable increase in risk evaluation of new products in the field of cancer and offers a tool for the discovery of molecular markers for early diagnostic in cancer biology. Prevention and early diagnosis are two decisive elements of human cancer therapy.
- Published
- 2007
- Full Text
- View/download PDF
12. Régulation de l'expression des gènes au niveau de la traduction : intérêt des modèles marins
- Author
-
Odile Mulner-Lorillon, Julia Morales, Robert Bellé, Patrick Cormier, Bertrand Cosson, and Nathalie Oulhen
- Subjects
Aging ,Animal model ,Cell Biology ,Biology ,Molecular biology ,Genetic translation - Abstract
La regulation de l'expression des genes est cruciale pour la survie des organismes, chaque etape doit etre finement regulee, depuis les genes jusqu'a la formation des proteines. Les ARNm peuvent etre stockes dans une cellule sans etre traduits automatiquement. Cela permet a la cellule de reagir rapidement pour produire les proteines necessaires au bon endroit et au bon moment en regulant l'etape de traduction. La cellule depense beaucoup d'energie pour synthetiser des proteines, il est essentiel de controler ces processus en fonction des besoins cellulaires. L'etape d'initiation de la traduction represente une etape regulatrice importante dans l'expression des genes. Elle fait intervenir de nombreux facteurs proteiques capables de se lier aux ARNm et de recruter differents partenaires pour inhiber ou stimuler la synthese proteique. Les oceans contiennent une diversite d'organismes qui constituent d'excellents modeles pour etudier les bases de l'expression des genes au niveau de la traduction. Ces organismes ont permis d'etudier des mecanismes de regulation traductionnelle dans differents processus physiologiques : cycle cellulaire (meiose lors de la maturation meiotique de l'etoile de mer, mitose en reponse a la fecondation chez l'oursin), et de mieux comprendre le fonctionnement du systeme nerveux (aplysie). Toutes ces donnees permettront de trouver de nouveaux acteurs indispensables a la regulation de la traduction et de fournir de nouvelles cibles de therapie dans la lutte contre les maladies chez l'Homme.
- Published
- 2007
- Full Text
- View/download PDF
13. Translational control genes in the sea urchin genome
- Author
-
Patrick Cormier, Bertrand Cosson, Odile Mulner-Lorillon, Julia Morales, Wendy S. Beane, Robert Bellé, Emmanuelle Morin, Cynthia A. Bradham, Mer et santé (MS), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Department of Geography, Department of geography, Laboratoire d'Informatique de Nantes Atlantique (LINA), Mines Nantes (Mines Nantes)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Sea urchin ,MESH: Sequence Homology, Amino Acid ,Peptide Chain Elongation, Translational ,MESH: Cell Cycle ,MESH: Amino Acid Sequence ,Genome ,chemistry.chemical_compound ,0302 clinical medicine ,MESH: Reverse Transcriptase Polymerase Chain Reaction ,Cap-dependent initiation ,MESH: Animals ,MESH: Proteins ,Peptide Chain Initiation, Translational ,Conserved Sequence ,Genetics ,0303 health sciences ,MESH: Conserved Sequence ,biology ,EIF4G ,Reverse Transcriptase Polymerase Chain Reaction ,EIF4E ,Cell Cycle ,Cell Differentiation ,MESH: Gene Expression Regulation ,MESH: Protein Biosynthesis ,Elongation factors ,MESH: Cell Differentiation ,MESH: Peptide Chain Initiation, Translational ,In silico ,Molecular Sequence Data ,MESH: Sequence Alignment ,03 medical and health sciences ,biology.animal ,Animals ,MESH: Genome ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Amino Acid Sequence ,Gene ,Molecular Biology ,MESH: Peptide Chain Elongation, Translational ,030304 developmental biology ,MESH: Molecular Sequence Data ,Sequence Homology, Amino Acid ,Proteins ,Translational control ,Cell Biology ,MESH: Sea Urchins ,Elongation factor ,chemistry ,Gene Expression Regulation ,Protein Biosynthesis ,Sea Urchins ,Human genome ,Sequence Alignment ,030217 neurology & neurosurgery ,Developmental Biology - Abstract
International audience; Sea urchin eggs and early cleavage stage embryos provide an example of regulated gene expression at the level of translation. The availability of the sea urchin genome offers the opportunity to investigate the "translational control" toolkit of this model system. The annotation of the genome reveals that most of the factors implicated in translational control are encoded by nonredundant genes in echinoderm, an advantage for future functional studies. In this paper, we focus on translation factors that have been shown or suggested to play crucial role in cell cycle and development of sea urchin embryos. Addressing the cap-binding translational control, three closely related eIF4E genes (class I, II, III) are present, whereas its repressor 4E-BP and its activator eIF4G are both encoded by one gene. Analysis of the class III eIF4E proteins in various phyla shows an echinoderm-specific amino acid substitution. Furthermore, an interaction site between eIF4G and poly(A)-binding protein is uncovered in the sea urchin eIF4G proteins and is conserved in metazoan evolution. In silico screening of the sea urchin genome has uncovered potential new regulators of eIF4E sharing the common eIF4E recognition motif. Taking together, these data provide new insights regarding the strong requirement of cap-dependent translation following fertilization. The genome analysis gives insights on the complexity of eEF1B structure and motifs of functional relevance, involved in the translational control of gene expression at the level of elongation. Finally, because deregulation of translation process can lead to diseases and tumor formation in humans, the sea urchin orthologs of human genes implicated in human diseases and signaling pathways regulating translation were also discussed.
- Published
- 2006
- Full Text
- View/download PDF
14. Embryonic-stage-dependent changes in the level of eIF4E-binding proteins during early development of sea urchin embryos
- Author
-
Patrick Salaun, Sandrine Boulben, Julia Morales, Patrick Cormier, Odile Mulner-Lorillon, Nahum Sonenberg, and Robert Bellé
- Subjects
Embryo, Nonmammalian ,Eukaryotic Initiation Factor-4E ,Embryogenesis ,EIF4E ,Embryonic Development ,Embryonic Stage ,Cell Biology ,Biology ,Up-Regulation ,Cell biology ,Molecular Weight ,Human fertilization ,Eukaryotic translation ,Fertilization ,Sea Urchins ,biology.animal ,Botany ,Animals ,RNA, Messenger ,Carrier Proteins ,Mitosis ,Sea urchin - Abstract
The eukaryotic initiation factor 4E (eIF4E)-binding proteins (4E-BPs) inhibit translation initiation by binding eIF4E and preventing recruitment of the translation machinery to mRNA. We have previously shown that fertilization of sea urchin eggs triggers eIF4E–4E-BP complex dissociation and 4E-BP degradation. Here, we show that microinjection of eIF4E-binding motif peptide into unfertilized eggs delays the onset of the first mitosis triggered by fertilization, demonstrating that dissociation of the eIF4E–4E-BP complex is functionally important for the first mitotic division in sea urchin embryos. We also show by gel filtration analyses that eIF4E is present in unfertilized eggs as an 80 kDa molecular mass complex containing 4E-BP and a new 4E-BP of 40 kDa. Fertilization triggers the dissociation of eIF4E from these two 4E-BPs and triggers the rapid recruitment of eIF4E into a high-molecular-mass complex. Release of eIF4E from the two 4E-BPs is correlated with a decrease in the total level of both 4E-BPs following fertilization. Abundance of the two 4E-BPs has been monitored during embryonic development. The level of the two proteins remains very low during the rapid cleavage stage of early development and increases 8 hours after fertilization. These results demonstrate that these two 4E-BPs are down- and upregulated during the embryonic development of sea urchins. Consequently, these data suggest that eIF4E availability to other partners represents an important determinant of the early development of sea urchin embryos.
- Published
- 2005
- Full Text
- View/download PDF
15. A glyphosate-based pesticide impinges on transcription
- Author
-
Julia Morales, Odile Mulner-Lorillon, Magali Le Breton, Julie Marc, Patrick Cormier, and Robert Bellé
- Subjects
Embryo, Nonmammalian ,Transcription, Genetic ,Glycine ,Toxicology ,Gene Expression Regulation, Enzymologic ,chemistry.chemical_compound ,Human fertilization ,Transcription (biology) ,biology.animal ,Botany ,Animals ,Sphaerechinus granularis ,Cloning, Molecular ,Sea urchin ,Pharmacology ,Pollutant ,biology ,Herbicides ,Reverse Transcriptase Polymerase Chain Reaction ,Hatching ,Gene Expression Regulation, Developmental ,Metalloendopeptidases ,Pesticide ,biology.organism_classification ,Biochemistry ,chemistry ,Sea Urchins ,Glyphosate ,Models, Animal ,embryonic structures ,RNA - Abstract
Widely spread chemicals used for human benefits may exert adverse effects on health or the environment, the identification of which are a major challenge. The early development of the sea urchin constitutes an appropriate model for the identification of undesirable cellular and molecular targets of pollutants. The widespread glyphosate-based pesticide affected sea urchin development by impeding the hatching process at millimolar range concentration of glyphosate. Glyphosate, the active herbicide ingredient of Roundup, by itself delayed hatching as judged from the comparable effect of different commercial glyphosate-based pesticides and from the effect of pure glyphosate addition to a threshold concentration of Roundup. The surfactant polyoxyethylene amine (POEA), the major component of commercial Roundup, was found to be highly toxic to the embryos when tested alone and therefore could contribute to the inhibition of hatching. Hatching, a landmark of early development, is a transcription-dependent process. Correlatively, the herbicide inhibited the global transcription, which follows fertilization at the 16-cell stage. Transcription inhibition was dose-dependent in the millimolar glyphosate range concentration. A 1257-bp fragment of the hatching enzyme transcript from Sphaerechinus granularis was cloned and sequenced; its transcription was delayed by 2 h in the pesticide-treated embryos. Because transcription is a fundamental basic biological process, the pesticide may be of health concern by inhalation near herbicide spraying at a concentration 25 times the adverse transcription concentration in the sprayed microdroplets.
- Published
- 2005
- Full Text
- View/download PDF
16. Formulated Glyphosate Activates the DNA-Response Checkpoint of the Cell Cycle Leading to the Prevention of G2/M Transition
- Author
-
Robert Bellé, Julia Morales, Patrick Cormier, Odile Mulner-Lorillon, and Julie Marc
- Subjects
G2 Phase ,Embryo, Nonmammalian ,Cell cycle checkpoint ,Cdc25 ,Chemistry, Pharmaceutical ,Blotting, Western ,Cyclin A ,Glycine ,Cyclin B ,Toxicology ,CDC2 Protein Kinase ,Animals ,CHEK1 ,S phase ,Ovum ,Cyclin-dependent kinase 1 ,biology ,Herbicides ,Cell Cycle ,DNA ,Cell cycle ,Phosphoric Monoester Hydrolases ,Cell biology ,Biochemistry ,Depression, Chemical ,Sea Urchins ,biology.protein ,Cell Division - Abstract
A glyphosate containing pesticide impedes at 10 mM glyphosate the G2/M transition as judged from analysis of the first cell cycle of sea urchin development. We show that formulated glyphosate prevented dephosphorylation of Tyr 15 of the cell cycle regulator CDK1/cyclin B in vivo, the end point target of the G2/M cell cycle checkpoint. Formulated glyphosate had no direct effect on the dual specific cdc25 phosphatase activity responsible for Tyr 15 dephosphorylation. At a concentration that efficiently impeded the cell cycle, formulated glyphosate inhibited the synthesis of DNA occurring in S phase of the cell cycle. The extent of the inhibition of DNA synthesis by formulated glyphosate was correlated with the effect on the cell cycle. We conclude that formulated glyphosate's effect on the cell cycle is exerted at the level of the DNA-response checkpoint of S phase. The resulting inhibition of CDK1/cyclin B Tyr 15 dephosphorylation leads to prevention of the G2/M transition and cell cycle progression.
- Published
- 2004
- Full Text
- View/download PDF
17. Signal transduction pathways that contribute to CDK1/cyclin B activation during the first mitotic division in sea urchin embryos
- Author
-
Magali Le Breton, Robert Bellé, Julia Morales, Patrick Cormier, Odile Mulner-Lorillon, Sandrine Boulben, and Patrick Salaun
- Subjects
Embryo, Nonmammalian ,Cyclin A ,Cyclin B ,Mitosis ,Biology ,Tacrolimus Binding Proteins ,Wortmannin ,Phosphatidylinositol 3-Kinases ,chemistry.chemical_compound ,Human fertilization ,biology.animal ,CDC2 Protein Kinase ,Animals ,Sea urchin ,PI3K/AKT/mTOR pathway ,Cyclin-dependent kinase 1 ,TOR Serine-Threonine Kinases ,Cell Biology ,Cell biology ,chemistry ,Fertilization ,Sea Urchins ,Oocytes ,biology.protein ,Protein Kinases ,Cyclin A2 ,Signal Transduction - Abstract
In sea urchins, fertilization triggers a rapid rise in protein synthesis necessary for activation of CDK1/cyclin B, the universal cell cycle regulator. It has been shown that FRAP/mTOR is required for eIF4E release from the translational repressor 4E-BP, a process that occurs upstream of de novo cyclin B synthesis. Here, we investigate whether PI 3-kinase acts independently or upstream from FRAP/mTOR in the signal transduction pathway that links fertilization to the activation of the CDK1/cyclin B complex in sea urchin egg. We found that wortmannin, a potent inhibitor of PI 3-kinase, partially inhibited the global increase in protein synthesis triggered by fertilization. Furthermore, wortmannin treatment induced partial inhibition of cyclin B translation triggered by fertilization, in correlation with an intermediate effect of the drug on 4E-BP degradation and on the dissociation of the 4E-BP/eIF4E complex induced by fertilization. Our results presented here suggest that PI 3-kinase activity is required for completion of mitotic divisions of the sea urchin embryo. Incubation of eggs with wortmannin or microinjection of wortmannin or LY 294002 affects drastically mitotic divisions induced by fertilization. In addition, we found that wortmannin treatment inhibits dephosphorylation of the tyrosine inhibitory site of CDK1. Taken together, these data suggest that PI 3-kinase acts upstream of at least two independent targets that function in the CDK1/cyclin B activation triggered by fertilization of sea urchin oocytes. We discuss the significance of these results concerning the cascade of reactions that impinge upon the activation of the CDK1/cyclin B complex that follows sea urchin oocyte fertilization.
- Published
- 2004
- Full Text
- View/download PDF
18. Sea urchin elongation factor 1? (EF1?) and evidence for cell cycle-directed localization changes of a sub-fraction of the protein at M phase
- Author
-
M. Le Breton, Julia Morales, Sandrine Boulben, Patrick Cormier, Robert Bellé, A. Monnier, and Odile Mulner-Lorillon
- Subjects
Cell division ,Molecular Sequence Data ,Cyclin B ,Mitosis ,Cellular and Molecular Neuroscience ,Peptide Elongation Factor 1 ,Tubulin ,biology.animal ,Animals ,Amino Acid Sequence ,Molecular Biology ,Sea urchin ,Pharmacology ,Cyclin-dependent kinase 1 ,biology ,Cell Cycle ,Cell Biology ,Cell cycle ,Molecular biology ,Eukaryotic translation elongation factor 1 alpha 1 ,Spindle apparatus ,Cell biology ,Elongation factor ,Protein Transport ,Sea Urchins ,biology.protein ,Molecular Medicine - Abstract
Eukaryotic elongation factor 1 (eEF1) is a translational multimolecular complex reported in higher eukaryotes to be a target of CDK1/cyclin B, the universal regulator of M phase, but whose role in the cell cycle remains to be determined. A specific polyclonal antibody was produced and used to characterize the delta subunit of sea urchin elongation factor 1 (SgEF1delta) in early embryos, a powerful model for investigating cell cycle regulation. The SgEF1delta protein was present in unfertilized eggs as two isoforms of 35 and 37 kDa, issued from two different mRNAs. The two canonical eEF1delta partners, eEF1gamma and eEF1beta, were shown to co-immunoprecipitate with the SgEF1delta isoforms. Both isoforms were associated in a macromolecular complex, which resolved upon gel filtration chromatography at a molecular weight400 kDa, suggesting association with other yet unidentified partners. After fertilization, the amount as well as the ratio of both SgEF1delta isoforms remained constant during the first cell division as judged by Western blotting. Immunofluorescence analysis showed that a pool of the protein concentrated as a ring at the embryo nuclear location around the period of nuclear envelope breakdown and was visualized later as two large spheres around the mitotic spindle poles. Thus, the eEF1delta protein shows cell cycle-specific localization changes in sea urchin embryos.
- Published
- 2003
- Full Text
- View/download PDF
19. EIF4E/4E-BP dissociation and 4E-BP degradation in the first mitotic division of the sea urchin embryo
- Author
-
Patrick Salaün, Julia Morales, Robert Bellé, Patrick Cormier, S.téphane Pyronnet, Odile Mulner-Lorillon, and Nahum Sonenberg
- Subjects
Male ,Proteolysis ,Cyclin B ,Mitosis ,4E-BP ,Eukaryotic translation ,biology.animal ,CDC2 Protein Kinase ,Protein biosynthesis ,medicine ,Animals ,Initiation factor ,Sea urchin ,Molecular Biology ,Sirolimus ,biology ,medicine.diagnostic_test ,EIF4E ,Cell Biology ,Phosphoproteins ,Eukaryotic Initiation Factor-4E ,Biochemistry ,4E-BP degradation ,Sea Urchins ,eIF4E ,Fertilization ,biology.protein ,Female ,Carrier Proteins ,Developmental Biology - Abstract
The mRNA’s cap-binding protein eukaryotic translation initiation factor (eIF)4E is a major target for the regulation of translation initiation. eIF4E activity is controlled by a family of translation inhibitors, the eIF4E-binding proteins (4E-BPs). We have previously shown that a rapid dissociation of 4E-BP from eIF4E is related with the dramatic rise in protein synthesis that occurs following sea urchin fertilization. Here, we demonstrate that 4E-BP is destroyed shortly following fertilization and that 4E-BP degradation is sensitive to rapamycin, suggesting that proteolysis could be a novel means of regulating 4E-BP function. We also show that eIF4E/4E-BP dissociation following fertilization is sensitive to rapamycin. Furthermore, while rapamycin modestly affects global translation rates, the drug strongly inhibits cyclin B de novo synthesis and, consequently, precludes the completion of the first mitotic cleavage. These results demonstrate that, following sea urchin fertilization, cyclin B translation, and thus the onset of mitosis, are regulated by a rapamycin-sensitive pathway. These processes are effected at least in part through eIF4E/4E-BP complex dissociation and 4E-BP degradation.
- Published
- 2003
- Full Text
- View/download PDF
20. Embryonic cell cycle for risk assessment of pesticides at the molecular level
- Author
-
O. Mulner-Lorillon, G. Durand, Robert Bellé, and J. Marc
- Subjects
Cyclin-dependent kinase 1 ,Cell cycle checkpoint ,Cell division ,Cell ,Cyclin B ,Biology ,Cell cycle ,Pesticide toxicity ,people.cause_of_death ,Cell biology ,medicine.anatomical_structure ,Botany ,biology.protein ,medicine ,Environmental Chemistry ,people ,Cyclin - Abstract
Cell cycle mechanisms are highly conserved from unicellular eukaryotes to complex metazoans including humans. Abnormalities in the regulation of the cell cycle result in death or diseases such as cancer. Early development of sea urchin has proved to be a powerful model for cell division studies and offers the opportunity to study synchronous cell divisions in the absence of transcriptional control. We have analyzed pesticide-induced dysfunctions in the first cell division following fertilization in sea urchin embryos, using Roundup, a widely used pesticide formulation containing isopropylamine glyphosate as the active substance. The pesticide induced cell cycle dysfunction by preventing the in vivo activation of the universal cell cycle regulator CDK1/cyclin B. We further show that synthesis of the regulator protein, cyclin B, as well as its association to the catalytic protein, CDK1, were not affected by the pesticide. Therefore, our results suggest that the pollutant impedes the processing of the CDK1/cyclin B complex, which is required in its physiological activation. Our studies demonstrate the relevance of sea urchin embryonic cells as a sensitive model to assess pesticide toxicity at the level of the universal cell cycle checkpoints.
- Published
- 2003
- Full Text
- View/download PDF
21. eIF4E Association with 4E-BP Decreases Rapidly Following Fertilization in Sea Urchin
- Author
-
Julia Morales, Odile Mulner-Lorillon, Nahum Sonenberg, Robert Bellé, Stéphane Pyronnet, and Patrick Cormier
- Subjects
Male ,protein synthesis ,4E-BP ,Biology ,eIF-4E ,sea urchin fertilization ,chemistry.chemical_compound ,Eukaryotic translation ,Peptide Initiation Factors ,biology.animal ,Protein biosynthesis ,Initiation factor ,Animals ,RNA, Messenger ,Phosphorylation ,Peptide Chain Initiation, Translational ,Sea urchin ,Molecular Biology ,Ovum ,Messenger RNA ,EIF4G ,Binding protein ,EIF4E ,Cell Biology ,Molecular biology ,Precipitin Tests ,Cell biology ,Eukaryotic Initiation Factor-4E ,chemistry ,Fertilization ,Protein Biosynthesis ,Sea Urchins ,Female ,Carrier Proteins ,Ribosomes ,Developmental Biology - Abstract
The eukaryotic translation initiation factor (eIF) 4F facilitates the recruitment of ribosomes to the mRNA 5′ end. The 4E-BPs are small proteins with hypophosphorylated forms that interact with the cap binding protein eIF4E, preventing its interaction with eIF4G, thereby preventing ribosome interaction with mRNA. In sea urchin, fertilization triggers a rapid rise in protein synthesis. Here, we demonstrate that a 4E-BP homologue exists and is associated with eIF4E in unfertilized eggs. We also show that 4E-BP/eIF4E association diminishes a few minutes following fertilization. This decrease is correlated with a decrease in the total amount of 4E-BP in combination with an increase in the phosphorylation of the protein. We propose that 4E-BP acts as a repressor of protein synthesis in unfertilized sea urchin eggs and that 4E-BP/eIF4E dissociation plays an important role in the rise in protein synthesis that occurs shortly following fertilization.
- Published
- 2001
- Full Text
- View/download PDF
22. Transient Increase of a Protein Kinase Activity Identified to CK2 during Sea Urchin Development
- Author
-
Christelle Delalande, Odile Mulner-Lorillon, Patrick Cormier, and Robert Bellé
- Subjects
Time Factors ,animal structures ,Recombinant Fusion Proteins ,Biophysics ,Spermine ,Protein Serine-Threonine Kinases ,Biology ,Biochemistry ,chemistry.chemical_compound ,Peptide Elongation Factor 1 ,Casein ,biology.animal ,Animals ,Enzyme Inhibitors ,Phosphorylation ,Kinase activity ,Casein Kinase II ,Molecular Biology ,Sea urchin ,Kinase ,Reproduction ,Caseins ,Cell Biology ,Blastula ,Molecular biology ,Spermidine ,chemistry ,Sea Urchins ,embryonic structures ,Oocytes ,Casein kinase 2 ,Protein Kinases ,Cell Division - Abstract
Using GST-EF-1 delta as an exogenous substrate, and EF-1 delta kinase activity was shown to increase transiently during early development of sea urchin embryos. The basal activity of EF-1 delta kinase in unfertilized eggs was 150 fmoles/min/mg protein. The activity began to increase 10 h after fertilization and reached its maximum level (8.4 x basal) at 24 h. The activity then declined to twice the basal value at 72 h post-fertilization. The EF-1 delta kinase activity was identified to a CK2-type enzyme on the basis of its substrate specificity for EF-1 delta, crude casein and beta casein, its inhibition by heparin, DRB, 2,3-bisphosphoglycerate, and its stimulation by spermine, spermidine, and polylysin. Furthermore, the activity was inhibited by the synthetic peptide RRREEETEEE specific for CK2. DRB (200 microM) and 2,3-bisphosphoglycerate (2.5 mM) blocked or delayed the transition from blastula to gastrula of the embryos, suggesting a role for the kinase in early development.
- Published
- 1999
- Full Text
- View/download PDF
23. Developmental Regulation of Elongation Factor-1 δ in Sea Urchin Suggests Appearance of a Mechanism for Alternative Poly(A) Site Selection in Gastrulae
- Author
-
Robert Bellé, Odile Minella, Christelle Delalande, Odile Mulner-Lorillon, Patrick Cormier, Annabelle Monnier, and Anne-Marie Geneviere
- Subjects
DNA, Complementary ,animal structures ,Transcription, Genetic ,Polyadenylation ,Molecular Sequence Data ,Biology ,Peptide Elongation Factor 1 ,biology.animal ,Complementary DNA ,Gene expression ,Protein biosynthesis ,Animals ,Amino Acid Sequence ,RNA, Messenger ,Cloning, Molecular ,Sea urchin ,Leucine Zippers ,Messenger RNA ,Gene Expression Regulation, Developmental ,Embryo ,Gastrula ,Sequence Analysis, DNA ,Cell Biology ,Peptide Elongation Factors ,Molecular biology ,Eukaryotic translation elongation factor 1 alpha 1 ,Protein Biosynthesis ,Sea Urchins ,embryonic structures - Abstract
Elongation factor-1 delta gene expression was analyzed during sea urchin development. EF-1 delta mRNA is present as a single 2.7-kb transcript in unfertilized eggs and in rapidly dividing cleavage stage embryos. It decreases rapidly 6 h after fertilization and then reappears at the gastrula stage as two transcripts of 2.7 and 2.0 kb. cDNA clones encoding the 2.7- and 2.0-kb transcripts were isolated from a sea urchin embryos library. The two cDNAs originate from alternative poly(A) site selection from a unique precursor. Both cDNAs are terminated by a poly(A) tail and were shown to encode for the same protein identified as EF-1 delta. Thus, EF-1 delta gene expression undergoes developmental regulation in early embryos leading to the presence of two poly(A) forms of the transcript. Since the 2.0-kb polyadenylated form of the EF-1 delta transcript appears at gastrula stage, our results suggest that a mechanism for alternative poly(A) site selection of the EF-1 delta transcript appears during embryonic development.
- Published
- 1998
- Full Text
- View/download PDF
24. Multiple Phosphorylation Sites and Quaternary Organization of Guanine-Nucleotide Exchange Complex of Elongation Factor-1 (EF-1βγδ/ValRS) Control the Various Functions of EF-1α
- Author
-
Robert Bellé, Odile Mulner-Lorillon, Guillaume Bec, Patrick Cormier, and Odile Minella
- Subjects
Models, Molecular ,Binding Sites ,biology ,MAP kinase kinase kinase ,Protein Conformation ,Cyclin-dependent kinase 2 ,Biophysics ,Proteins ,Cell Biology ,Mitogen-activated protein kinase kinase ,Peptide Elongation Factors ,Biochemistry ,Cell biology ,Peptide Elongation Factor 1 ,biology.protein ,Cyclin-dependent kinase complex ,Guanine Nucleotide Exchange Factors ,Cyclin-dependent kinase 9 ,Protein phosphorylation ,Phosphorylation ,Casein kinase 2 ,Protein kinase A ,Molecular Biology - Abstract
The eukaryotic guanine-nucleotide exchange factor commonly called elongation factor-1 betagammadelta (EF-1betagammadelta), comprises four different subunits including valyl-tRNA synthetase (EF-1betagammadelta/ValRS). The factor is multiply-phosphorylated by three different protein kinases, protein kinase C, casein kinase II and cyclin dependent kinase 1 (CDKI). EF-1betagammadelta/ValRS is organized as a macromolecular complex for which we propose a new structural model. Evidence that EF-1betagammadelta/ValRS is a sophisticated supramolecular complex containing many phosphorylation sites, makes it a potential regulator of any of the functions of its partner EF-1alpha, not only involved in protein synthesis elongation, but also in many other cellular functions.
- Published
- 1998
- Full Text
- View/download PDF
25. Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases
- Author
-
Dominique Marie, Christine Buquet-Fagot, E. Schierenberg, Odile Mulner-Lorillon, Pierre Guerrier, Catherine Bergounioux, Gregory J. Brunn, A. Andersen, Daniel Vaulot, Bert Schutte, Dominique Fagot, Mario Acquarone, Marie-Hélène Verlhac, Laurent Meijer, H. Hendriks, Nathalie Glab, B. Maro, Aldo Asensi, M. Goudeau, Jan Mester, H. Goudeau, Robert Bellé, Frédéric Berger, Bernard Kloareg, Robert T. Abraham, Monica Lippai, SA Poulet, and Peter J. Houghton
- Subjects
T-Lymphocytes ,Cyclin A ,Cyclin B ,Mitosis ,In Vitro Techniques ,Lymphocyte Activation ,Cyclin-dependent kinase ,Tumor Cells, Cultured ,Animals ,Humans ,Enzyme Inhibitors ,Metaphase ,Cyclin-dependent kinase 1 ,biology ,Cell growth ,Cell Cycle ,Cyclin-dependent kinase 2 ,Meiotic metaphase I ,Cell Biology ,General Medicine ,Kinetin ,Cyclin-Dependent Kinases ,Growth Inhibitors ,Cell biology ,Purines ,Oocytes ,biology.protein - Abstract
Olomoucine (2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine) has been recently described as a competitive inhibitor (ATP-binding site) of the cell cycle regulating p34cdc2/cyclin B, p33cdk2/cyclin A and p33cdk2/cyclin E kinases, the brain p33cdk5/p35 kinase and the ERK1/MAP-kinase. The unusual specificity of this compound towards cell cycle regulating enzymes suggests that it could inhibit certain steps of the cell cycle. The cellular effects of olomoucine were investigated in a large variety of plant and animal models. This compound inhibits the G1/S transition of unicellular algae (dinoflagellate and diatom). It blocks Fucus zygote cleavage and development of Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the development of Calanus copepod larvae. It reversibly inhibits the early cleavages of Caenorhabditis elegans embryos and those of ascidian embryos. Olomoucine inhibits the serotonin-induced prophase/metaphase transition of clam oocytes; furthermore, it triggers the the release of these oocytes from their meiotic metaphase I arrest, and induces nuclei reformation. Olomoucine slows down the prophase/metaphase transition in cleaving sea urchin embryos, but does not affect the duration of the metaphase/anaphase and anaphase/telophase transitions. It also inhibits the prophase/metaphase transition of starfish oocytes triggered by various agonists. Xenopus oocyte maturation, the in vivo and in vitro phosphorylation of elongation factor EF-1 are inhibited by olomoucine. Mouse oocyte maturation is delayed by this compound, whereas parthenogenetic release from metaphase II arrest is facilitated. Growth of a variety of human cell lines (rhabdomyosarcoma cell lines Rh1, Rh18, Rh28 and Rh30; MCF-7, KB-3-1 and their adriamycin-resistant counterparts; National Cancer Institute 60 human tumor cell lines comprising nine tumor types) is inhibited by olomoucine. Cell cycle parameter analysis of the non-small cell lung cancer cell line MR65 shows that olomoucine affects G1 and S phase transits. Olomoucine inhibits DNA synthesis in interleukin-2-stimulated T lymphocytes (CTLL-2 cells) and triggers a G1 arrest similar to interleukin-2 deprivation. Both cdc2 and cdk2 kinases (immunoprecipitated from nocodazole- and hydroxyurea-treated CTLL-2 cells, respectively) are inhibited by olomoucine. Both yeast and Drosophila embryos were insensitive to olomoucine. Taken together the results of this Noah's Ark approach show that olomoucine arrests cells both at the G1/S and the G2/M boundaries, consistent with the hypothesis of a prevalent effect on the cdk2 and cdc2 kinases, respectively.
- Published
- 1995
- Full Text
- View/download PDF
26. Dephosphorylation of eIF2α is essential for protein synthesis increase and cell cycle progression after sea urchin fertilization
- Author
-
Stefania Bilotto, Laurent Laguerre, Vlad Costache, Bertrand Cosson, Robert Bellé, Julia Morales, Patrick Cormier, Mer et santé (MS), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Sea urchin ,Cell cycle checkpoint ,Cell division ,Eukaryotic Initiation Factor-2 ,Biology ,Dephosphorylation ,03 medical and health sciences ,0302 clinical medicine ,Human fertilization ,biology.animal ,Protein biosynthesis ,Animals ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Phosphorylation ,Molecular Biology ,030304 developmental biology ,Translation factors ,0303 health sciences ,eIF2 ,Cell Cycle ,Cell Biology ,Cell biology ,Biochemistry ,Fertilization ,Protein Biosynthesis ,Sea Urchins ,Protein synthesis ,030217 neurology & neurosurgery ,Developmental Biology - Abstract
International audience; The eukaryotic Initiation Factor 2 (eIF2) is a key regulator of protein synthesis in eukaryotic cells, implicated in the initiation step of translation. Fertilization of the sea urchin eggs triggers a rapid increase in protein synthesis activity, which is necessary for the progress into embryonic cell cycles. Here we demonstrate that fertilization triggers eIF2α dephosphorylation, concomitant with an increase in protein synthesis and that induction of the eIF2α phosphorylation is intimately linked with an inhibition of protein synthesis and cell cycle arrest. Using a phospho-mimetic protein microinjected into sea urchin eggs, we showed that dephosphorylation of eIF2α is necessary for protein synthesis activity and cell division progression following fertilization. Our results demonstrate that regulation of eIF2α plays an important role in the protein synthesis rise that occurs during early development following fertilization.
- Published
- 2011
- Full Text
- View/download PDF
27. Expression of elongation factor 1α (EF-1α) and 1βγ (EF-1βγ) are uncoupled in earlyXenopus embryos
- Author
-
Thérèse Bassez, Odile Mulner-Lorillon, Patrick Cormier, Julia Morales, H. Beverley Osborne, and Robert Bellé
- Subjects
0303 health sciences ,biology ,Somatic cell ,Xenopus ,Embryo ,Cell Biology ,biology.organism_classification ,Molecular biology ,Eukaryotic translation elongation factor 1 alpha 1 ,Elongation factor ,03 medical and health sciences ,0302 clinical medicine ,Gene expression ,Genetics ,Translational elongation ,Gene ,030217 neurology & neurosurgery ,030304 developmental biology ,Developmental Biology - Abstract
In the amphibian Xenopus laevis, the elongation factor 1 alpha proteins (EF-1 alpha) synthesised in oocytes and somatic cells correspond to distinct gene products. Furthermore, the somatic EF-1 alpha gene (EF-1 alpha S) produces one of the most highly expressed early zygotic transcripts in the embryo. The functional recycling of EF-1 alpha (conversion of EF-1 alpha-GDP to EF-1 alpha-GTP) is assured by the EF-1 beta gamma complex. We show here that in Xenopus laevis embryos, contrary to the situation for EF-1 alpha, EF-1 beta, and EF-1 gamma mRNAs are transcribed from the same genes in oocytes and somatic cells. In addition, the onset of transcription of the EF-1 beta and EF-1 gamma genes from the zygotic genome occurs several hours after that of the somatic EF-1 alpha S gene. Therefore, during early Xenopus development the expression of these three elongation factors is not co-ordinated at the transcriptional level. The consequences of this uncoupling on the efficiency of translational elongation in the early Xenopus embryo are discussed.
- Published
- 1993
- Full Text
- View/download PDF
28. Higher eucaryotic cdc25 proteins are structurally related to phosphoseryl/threonyl protein phosphatases
- Author
-
Robert Bellé, Emmanuelle Ollivier, and Marie-Anne Guerrucci
- Subjects
Cyclin-dependent kinase 1 ,Sequence Homology, Amino Acid ,Protein family ,ras-GRF1 ,Sequence analysis ,Cdc25 ,Phosphatase ,Cell Cycle Proteins ,Cell Biology ,General Medicine ,Protein tyrosine phosphatase ,Biology ,Rats ,Fungal Proteins ,enzymes and coenzymes (carbohydrates) ,Biochemistry ,Phosphoprotein Phosphatases ,biology.protein ,Animals ,Humans ,biological phenomena, cell phenomena, and immunity ,Threonine ,14-3-3 protein - Abstract
cdc25 proteins are universally involved in the control of cell division. Using an original method of sequence analysis, cdc25 proteins from different sources were compared to protein phosphatases. Protein phosphatases could clearly be characterized as two distinct protein families, the phospho-seryl/threonyl phosphatases, and the phospho-tyrosyl phosphatases. None of the cdc25 proteins analyzed fitted with the phospho-tyrosyl phosphatases, indicating that if they indeed possess this biochemical activity, they form a distinct phosphatase protein group. Unexpectedly, higher eucaryotic cdc25 proteins (from human and fly) were found to be structurally related to phospho-seryl/threonyl phosphatases. These results fit well with the expected function of the proteins, associated solely in higher eucaryotes, to dephosphorylation of threonine in the cell cycle control protein cdc2.
- Published
- 1992
- Full Text
- View/download PDF
29. Chromium(III) triggers the DNA-damaged checkpoint of the cell cycle and induces a functional increase of 4E-BP
- Author
-
Odile Mulner-Lorillon, Robert Bellé, Julia Morales, Patrick Cormier, Ronan Le Bouffant, Mer et santé (MS), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Cell cycle checkpoint ,Embryo, Nonmammalian ,Time Factors ,MESH: Cell Cycle ,Apoptosis ,Toxicology ,MESH: Dose-Response Relationship, Drug ,chemistry.chemical_compound ,0302 clinical medicine ,MESH: Ovum ,MESH: Chromium Compounds ,MESH: Embryonic Development ,MESH: Animals ,0303 health sciences ,EIF4G ,EIF4E ,Cell Cycle ,Intracellular Signaling Peptides and Proteins ,Translation (biology) ,General Medicine ,Cell cycle ,MESH: Eukaryotic Initiation Factor-4E ,Cell biology ,030220 oncology & carcinogenesis ,Protein Binding ,Embryonic Development ,Biology ,Biological pathway ,03 medical and health sciences ,Chlorides ,MESH: Intracellular Signaling Peptides and Proteins ,Chromium Compounds ,Initiation factor ,MESH: Protein Binding ,Animals ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,CHEK1 ,MESH: Chlorides ,030304 developmental biology ,Ovum ,MESH: DNA Damage ,Dose-Response Relationship, Drug ,MESH: Apoptosis ,MESH: Time Factors ,MESH: Embryo, Nonmammalian ,MESH: Sea Urchins ,Eukaryotic Initiation Factor-4E ,chemistry ,Sea Urchins ,DNA Damage - Abstract
International audience; Using sea urchin early embryos as a pertinent model, chromium(III) provoked cell cycle arrest and induced apoptosis. The molecular machinery of translation initiation was investigated. Chromium provoked a time- and dose-dependent increase in the level of 4E-BP protein, the natural regulator of the cap-dependent initiation factor 4E (eIF4E). The 4E-BP increase was the result of 4E-BP stabilization and appeared functional for physiological eIF4E binding, removal of eIF4E from the initiation factor eIF4G, and almost full inhibition of cap-dependent translation in vivo. The protein 4E-BP may be involved in the biological pathway of apoptosis associated with the activation of the DNA-damaged checkpoint of the cell cycle.
- Published
- 2008
- Full Text
- View/download PDF
30. M-phase-specific cdc2 protein kinase phosphorylates the beta subunit of casein kinase II and increases casein kinase II activity
- Author
-
Robert Bellé, Odile Mulner‐Lorillon, Patrick Cormier, Marcel Dorée, Howard Beverley Osborne, Robert Poulhe, and Jean-Claude Labbé
- Subjects
Maturation-Promoting Factor ,Mitosis ,In Vitro Techniques ,Mitogen-activated protein kinase kinase ,Biochemistry ,MAP2K7 ,Starfish ,Xenopus laevis ,Adenosine Triphosphate ,CDC2 Protein Kinase ,Casein kinase 2, alpha 1 ,Animals ,Phosphorylation ,MAP kinase kinase kinase ,Chemistry ,Cell Cycle ,Alkaline Phosphatase ,Molecular biology ,Enzyme Activation ,Kinetics ,Autoradiography ,Electrophoresis, Polyacrylamide Gel ,Female ,Cyclin-dependent kinase 9 ,Casein kinase 1 ,Casein kinase 2 ,Casein Kinases ,Protein Kinases - Abstract
The M-phase-specific cdc2 (cell division control) protein kinase (a component of the M-phase-promoting factor) was found to activate casein kinase II in vitro. The increase in casein kinase II activity ranged over 1.5-5-fold. Increase in activity was prevented if ATP was replaced during the activation reaction by a non-hydrolysable analogue. Alkaline phosphatase treatment of the activated enzyme decreased the activity to the basal level. The beta subunit of casein kinase II was phosphorylated by cdc2 protein kinase at site(s) different from the autophosphorylation sites of the enzyme. Phosphoamino acid analysis showed that the beta subunit was phosphorylated by cdc2 protein kinase at threonine residues while autophosphorylation involved serine residues. Casein kinase II may be part of the cascade which leads to increased phosphorylation of many proteins at M-phase and therefore be involved in the pleiotropic effects of M-phase-promoting factor.
- Published
- 1990
- Full Text
- View/download PDF
31. In vivo progesterone regulation of protein phosphatase activity in Xenopus oocytes
- Author
-
Odile Mulner-Lorillon, Patrick Cormier, and Robert Bellé
- Subjects
animal structures ,Microinjections ,biology ,Phosphatase ,Xenopus ,Caseins ,Cell Biology ,Mitogen-activated protein kinase kinase ,biology.organism_classification ,Kinetics ,Xenopus laevis ,Biochemistry ,Casein kinase 2, alpha 1 ,Oocytes ,Phosphoprotein Phosphatases ,Animals ,Phosphorylation ,Female ,Casein kinase 1 ,Casein kinase 2 ,Protein kinase A ,Molecular Biology ,Progesterone ,Developmental Biology - Abstract
Exogenous β casein, previously phosphorylated in vitro by protein kinase A and casein kinase II, was microinjected into Xenopus oocytes to monitor in vivo protein phosphatase activities. Phosphatase activities were 1.6 and 3.4 fmol/min/oocyte, respectively, for β casein phosphorylated by casein kinase II and β casein phosphorylated by protein kinase A. Progesterone induced an early decrease (35% after 10 min) in phosphatase activity restricted to the protein kinase A sites of β casein.
- Published
- 1990
- Full Text
- View/download PDF
32. Protein phosphatase activities in vivo in Xenopus laevis oocyte: Inhibition by okadaic acid
- Author
-
René Ozon, Odile Mulner-Lorillon, Patrick Cormier, and Robert Bellé
- Subjects
Microinjections ,Phosphatase ,Xenopus ,Dephosphorylation ,Xenopus laevis ,chemistry.chemical_compound ,Ethers, Cyclic ,In vivo ,Okadaic Acid ,Phosphoprotein Phosphatases ,medicine ,Animals ,Phosphorylation ,Microinjection ,biology ,Caseins ,Cell Biology ,General Medicine ,Okadaic acid ,biology.organism_classification ,Oocyte ,Molecular biology ,Kinetics ,medicine.anatomical_structure ,chemistry ,Oocytes ,Female ,Protein Processing, Post-Translational - Abstract
Protein phosphatase activities were analyzed in vivo in Xenopus oocytes. The dephosphorylation of microinjected beta casein was inhibited when the tumor promoter okadaic acid was microinjected into oocytes. Inhibition was dose dependent and reversible; 50% of activity was recovered 15-30 minutes after microinjection.
- Published
- 1990
- Full Text
- View/download PDF
33. Changes in elongation factor-1α transcripts are uncoupled to changes in EF-1δ during sea urchin development
- Author
-
Robert Bellé, Christelle Delalande, Patrick Cormier, Odile Mulner-Lorillon, and Annabelle Monnier
- Subjects
Genetics ,Messenger RNA ,biology ,Cell Biology ,General Medicine ,Cell cycle ,Blastula ,biology.organism_classification ,Cell biology ,Elongation factor ,Human fertilization ,biology.animal ,Protein biosynthesis ,Sphaerechinus granularis ,Sea urchin - Abstract
A probe for Sphaerechinus granularis EF-1α mRNA was generated and sequenced, and further used for comparative developmental analysis of gene expressions of two components of elongation factor-1, EF-1α and EF-1δ. EF-1α mRNA, detected as a single 2.7 kb transcript decreased 6 h after fertilization and dramatically increased 20 h post-fertilization at the late blastula stage. The relative ratio of EF-1α versus EF-1δ transcripts varied from 0.2 up to 10 (× 50) during development, thus demonstrating uncoupling in the genetic expressions of the two EF-1 components during the rapid cell divisions following fertilization and in the slow cell cycle period of later development.
- Published
- 1998
- Full Text
- View/download PDF
34. The Genome of the Sea Urchin Strongylocentrotus purpuratus
- Author
-
Amro Hamdoun, Virginia Brockton, Huyen Dinh, Qiang Tu, Richard O. Hynes, Maria Ina Arnone, Wratko Hlavina, L. Courtney Smith, Mariano A. Loza, David R. Burgess, Matthew P. Hoffman, Florian Raible, Qiu Autumn Yuan, Geoffrey Okwuonu, Mark Y. Tong, Jennifer Hume, Donna Maglott, Manisha Goel, Olivier Fedrigo, Manuel L. Gonzalez-Garay, Celina E. Juliano, Judith Hernandez, Gary M. Wessel, William F. Marzluff, Audrey J. Majeske, Christian Gache, Louise Duloquin, Xingzhi Song, François Lapraz, Fowler J, Alexandre Souvorov, Jared V. Goldstone, Georgia Panopoulou, Sandra Hines, Kyle M. Judkins, Clay Davis, Christine G. Elsik, Paul Kitts, Mariano Loza-Coll, Greg Wray, Taku Hibino, Eric Röttinger, Allison M. Churcher, Annamaria Locascio, Arcady Mushegian, Masashi Kinukawa, Anna Reade, Katherine M. Buckley, I. R. Gibbons, Bert Gold, Aleksandar Milosavljevic, David Epel, Victor D. Vacquier, Ling Ling Pu, Vincenzo Cavalieri, Erin L. Allgood, Lan Zhang, Lynne V. Nazareth, Constantin N. Flytzanis, Ian Bosdet, Yi-Hsien Su, Zeev Pancer, Matthew L. Rowe, Robert C. Angerer, David R. McClay, William H. Klein, Rachel F. Gray, Julian L. Wong, Shunsuke Yaguchi, Robert Bellé, Aaron J. Mackey, Herath Jayantha Gunaratne, Karl Frederik Bergeron, Bruce P. Brandhorst, Greg Murray, Avis H. Cohen, Stephanie Bell, Kristin Tessmar-Raible, Ian K. Townley, Bertrand Cosson, Thomas D. Glenn, Jongmin Nam, Cynthia A. Bradham, Michael Dean, Joseph Chacko, Anthony J. Robertson, Margherita Branno, Valeria Matranga, K. James Durbin, Esther Miranda, Lili Chen, Eran Elhaik, Robert D. Burke, Rita A. Wright, Paola Oliveri, Sandra L. Lee, Gary W. Moy, Alexander E Primus, Shawn S. McCafferty, Cristina Calestani, David A. Garfield, Erica Sodergren, Karen Wilson, Joel Smith, Marco A. Marra, Cynthia Messier, Julia Morales, Kim D. Pruitt, Rachel Thorn, Rachel Gill, John S. Taylor, Mark E. Hahn, Victor Sapojnikov, Meredith Howard-Ashby, Lynne M. Angerer, Maurice R. Elphick, Kathy R. Foltz, Anne Marie Genevière, Justin T. Reese, Blanca E. Galindo, Kim C. Worley, Andrew Leone, Glen Humphrey, Kevin Berney, Olga Ermolaeva, George Miner, David P. Terwilliger, Elly Suk Hen Chow, Lora Lewis, Dan Graur, C. Titus Brown, Gerard Manning, Kevin J. Peterson, Angela Jolivet, Michele K. Anderson, Francesca Rizzo, Ekaterina Voronina, Thierry Lepage, Giorgio Matassi, Antonio Fernandez-Guerra, Mamoru Nomura, Charles A. Whittaker, James R.R. Whittle, James A. Coffman, George M. Weinstock, Mohammed M. Idris, Ashlan M. Musante, Sebastian D. Fugmann, Katherine D. Walton, Sorin Istrail, Shu-Yu Wu, Cerrissa Hamilton, Jonah Cool, Jacqueline E. Schein, Stacey M. Curry, Athula Wikramanayke, Seth Carbonneau, Blair J. Rossetti, Christopher E. Killian, Melissa J. Landrum, Amanda P. Rawson, Jenifer C. Croce, Ryan C. Range, Rahul Satija, John J. Stegeman, Yufeng Shen, Cavit Agca, Terry Gaasterland, Rocky Cheung, Takae Kiyama, Nikki Adams, Jonathan P. Rast, Robert Piotr Olinski, Andrew Cree, Mark Scally, Shuguang Liang, David A. Parker, Rebecca Thomason, Gretchen E. Hofmann, Michelle M. Roux, Ronghui Xu, Robert A. Obar, Enrique Arboleda, Odile Mulner-Lorillon, Shannon Dugan-Rocha, David J. Bottjer, Gabriele Amore, Manoj P. Samanta, Waraporn Tongprasit, Véronique Duboc, La Ronda Jackson, Fred H. Wilt, Viktor Stolc, Anna T. Neill, Michael Raisch, Pei Yun Lee, Jia L. Song, Margaret Morgan, Brian T. Livingston, Sofia Hussain, Zheng Wei, Bryan J. Cole, Tonya F. Severson, Victor V. Solovyev, Finn Hallböök, Donna M. Muzny, Christine A. Byrum, Albert J. Poustka, Xiuqian Mu, Andrew R. Jackson, Shin Heesun, Euan R. Brown, Nansheng Chen, Patrick Cormier, Ralph Haygood, Pedro Martinez, R. Andrew Cameron, D. Wang, Wendy S. Beane, Eric H. Davidson, Christie Kovar, Hemant Kelkar, Charles A. Ettensohn, Sham V. Nair, Robert L. Morris, Stefan C. Materna, Michael C. Thorndyke, Richard A. Gibbs, Dan O Mellott, Department of Physiology and Biophysics, Stony Brook University [The State University of New York] ( SBU ), Astronomy Unit ( AU ), Queen Mary University of London ( QMUL ), Urban and Industrial Air Quality Group, CSIRO Energy Technology, Commonwealth Scientific and Industrial Research Organisation Energy Technology ( CSIRO Energy Technology ), Commonwealth Scientific and Industrial Research Organisation, Center for Polymer Studies ( CPS ), Boston University [Boston] ( BU ), Physics Department [Boston] ( BU-Physics ), Max Planck Institute for Psycholinguistics, Max-Planck-Institut, Department of Biology [Norton], Wheaton College [Norton], Mathematical Institute [Oxford] ( MI ), University of Oxford [Oxford], Centre for the Analysis of Time Series ( CATS ), London School of Economics and Political Science ( LSE ), Thomas Jefferson National Accelerator Facility ( Jefferson Lab ), Thomas Jefferson National Accelerator Facility, Laboratoire d'Energétique et de Mécanique Théorique Appliquée ( LEMTA ), Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire Evolution, Génomes et Spéciation ( LEGS ), Centre National de la Recherche Scientifique ( CNRS ), Department of Geology, University of Illinois at Urbana-Champaign [Urbana], Department of Electrical and Computer Engineering [Portland] ( ECE ), Portland State University [Portland] ( PSU ), Saint-Gobain Crystals [USA], SAINT-GOBAIN, Institute for Animal Health ( IAH ), Biotechnology and Biological Sciences Research Council, Center for Agricultural Resources Research, Chinese Academy of Sciences [Changchun Branch] ( CAS ), Ipsen Inc. [Milford] ( Ipsen ), IPSEN, Department of Physics [Berkeley], University of California [Berkeley], Institute for Climate and Atmospheric Science [Leeds] ( ICAS ), University of Leeds, Chung-Ang University ( CAU ), Chung-Ang University [Seoul], Antarctic Climate and Ecosystems Cooperative Research Center ( ACE-CRC ), Institute of Aerodynamics and Fluid Mechanics ( AER ), Technische Universität München [München] ( TUM ), Mer et santé ( MS ), Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Centre National de la Recherche Scientifique ( CNRS ), Imperial College London, Radio and Atmospheric Sciences Division, National Physical Laboratory [Teddington] ( NPL ), International Research Institute for Climate and Society ( IRI ), Earth Institute at Columbia University, Columbia University [New York]-Columbia University [New York], Soils Group, The Macaulay Institute, Department of Haematology, University of Cambridge [UK] ( CAM ), School of Biology and Biochemistry, Queen's University, Leslie Hill Institute for Plant Conservation ( PCU ), University of Cape Town, Institute for Microelectronics and Microsystems/ Istituto per la Microelettronica e Microsistemi ( IMM ), Consiglio Nazionale delle Ricerche ( CNR ), Laboratoire d'acoustique de l'université du Mans ( LAUM ), Le Mans Université ( UM ) -Centre National de la Recherche Scientifique ( CNRS ), Interactive Systems Labs ( ISL ), Carnegie Mellon University [Pittsburgh] ( CMU ), Dalian Institute of Chemical Physics ( DICP ), Architectures, Languages and Compilers to Harness the End of Moore Years ( ALCHEMY ), Laboratoire de Recherche en Informatique ( LRI ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Recherche en Informatique et en Automatique ( Inria ) -CentraleSupélec-Centre National de la Recherche Scientifique ( CNRS ) -Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique ( Inria ), Clean Air Task Force ( CATF ), Clean Air Task Force, Space Physics Laboratory, Indian Space Research Organisation ( ISRO ), Centre d'études et de recherches appliquées à la gestion ( CERAG ), Université Pierre Mendès France - Grenoble 2 ( UPMF ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Microbiology and Immunology, College of Medicine and Health Sciences-Sultan Qaboos University, European Molecular Biology Laboratory [Heidelberg] ( EMBL ), Department of Biostatistics, University of Michigan [Ann Arbor], Department of Radiation Oncology [Michigan] ( Radonc ), Department of Physics and Astronomy [Leicester], University of Leicester, Informatique, Biologie Intégrative et Systèmes Complexes ( IBISC ), Université d'Évry-Val-d'Essonne ( UEVE ) -Centre National de la Recherche Scientifique ( CNRS ), Institut für Meteorologie und Klimaforschung ( IMK ), Karlsruher Institut für Technologie ( KIT ), Physics Department [UNB], University of New Brunswick ( UNB ), Laboratoire Parole et Langage ( LPL ), Centre National de la Recherche Scientifique ( CNRS ) -Aix Marseille Université ( AMU ), Institut des Sciences Chimiques de Rennes ( ISCR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Ecole Nationale Supérieure de Chimie de Rennes-Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS ), Biogéosciences [Dijon] ( BGS ), Université de Bourgogne ( UB ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique ( CNRS ), Bioprojet, Laboratoire de Matériaux à Porosité Contrôlée ( LMPC ), Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Ecole Nationale Supérieure de Chimie de Mulhouse-Centre National de la Recherche Scientifique ( CNRS ), School of Information Engineering [USTB] ( SIE ), University of Science and Technology Beijing [Beijing] ( USTB ), Laboratory for Atmospheric and Space Physics [Boulder] ( LASP ), University of Colorado Boulder [Boulder], Department of Applied Mathematics [Sheffield], University of Sheffield [Sheffield], School of Mathematics and Statistics [Sheffield] ( SoMaS ), Laboratoire de Mécanique de Lille - FRE 3723 ( LML ), Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Centre National de la Recherche Scientifique ( CNRS ), Computer Science Department [UCLA] ( CSD ), University of California at Los Angeles [Los Angeles] ( UCLA ), Développement et évolution ( DE ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Biologie du Développement de Villefranche sur mer ( LBDV ), Laboratoire Pierre Aigrain ( LPA ), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris ( FRDPENS ), Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Paris ( ENS Paris ) -Centre National de la Recherche Scientifique ( CNRS ) -École normale supérieure - Paris ( ENS Paris ) -Université Pierre et Marie Curie - Paris 6 ( UPMC ) -Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Department of Mathematics and Statistics [Mac Gill], McGill University, Departamento de Botánica [Comahue], Universidad nacional del Comahue, Bioénergétique Cellulaire et Pathologique ( BECP ), Université Joseph Fourier - Grenoble 1 ( UJF ) -Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ), Environnements et Paléoenvironnements OCéaniques ( EPOC ), Observatoire aquitain des sciences de l'univers ( OASU ), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers ( INSU - CNRS ) -Centre National de la Recherche Scientifique ( CNRS ) -École pratique des hautes études ( EPHE ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Jacques Monod ( IJM ), Université Paris Diderot - Paris 7 ( UPD7 ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratori Nazionali del Sud ( LNS ), National Institute for Nuclear Physics ( INFN ), Departament de Matemàtiques [Barcelona], Universitat Autònoma de Barcelona [Barcelona] ( UAB ), Max-Planck-Institut für Kohlenforschung (coal research), Institute of Oceanology [CAS] ( IOCAS ), National Chiao Tung University ( NCTU ), Department of Hydrology and Water Resources ( HWR ), University of Arizona, Centre for Educational Technology, Environment Department [York], University of York [York, UK], State Key Laboratory of Nuclear Physics and Technology ( SKL-NPT ), Peking University [Beijing], Department of Physics and Astronomy [Iowa City], University of Iowa [Iowa], NASA Ames Research Center ( ARC ), Department of Materials, Digital Language & Knowledge Contents Research Association ( DICORA ), Hankuk University of Foreign Studies, Department of Physics [Coventry], University of Warwick [Coventry], Space Science and Technology Department [Didcot] ( RAL Space ), STFC Rutherford Appleton Laboratory ( RAL ), Science and Technology Facilities Council ( STFC ) -Science and Technology Facilities Council ( STFC ), Institut de biologie et chimie des protéines [Lyon] ( IBCP ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ), H M Nautical Almanac Office [RAL] ( HMNAO ), Rutherford Appleton Laboratory, United Kingdom Met Office [Exeter], University College of London [London] ( UCL ), Department of Pathology and Laboratory Medicine [UCLA], University of California at Los Angeles [Los Angeles] ( UCLA ) -School of Medicine, School of Earth and Environmental Sciences [Seoul] ( SEES ), Seoul National University [Seoul], Department of Chemistry, Seoul Women's University, MicroMachines Centre ( MMC ), Nanyang Technological University [Singapour], Regroupement Québécois sur les Matériaux de Pointe ( RQMP ), École Polytechnique de Montréal ( EPM ) -Université de Sherbrooke [Sherbrooke]-McGill University-Université de Montréal-Fonds Québécois de Recherche sur la Nature et les Technologies ( FQRNT ), Département de Physique [Montréal], Université de Montréal, School of Earth and Environment [Leeds] ( SEE ), Centre for Ecology and Hydrology ( CEH ), Natural Environment Research Council ( NERC ), Norwegian Institute for Water Research ( NIVA ), Norwegian Institute for Water Research, Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Astronomy Unit [London] (AU), Queen Mary University of London (QMUL), Commonwealth Scientific and Industrial Research Organisation Energy Technology (CSIRO Energy Technology), Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Department of Biochemistry and Molecular Biology [Houston], The University of Texas Medical School at Houston, Mathematical Institute [Oxford] (MI), University of Oxford, Centre for the Analysis of Time Series (CATS), London School of Economics and Political Science (LSE), Thomas Jefferson National Accelerator Facility (Jefferson Lab), Laboratoire Énergies et Mécanique Théorique et Appliquée (LEMTA ), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Evolution, Génomes et Spéciation (LEGS), Centre National de la Recherche Scientifique (CNRS), University of Illinois System-University of Illinois System, Department of Electrical and Computer Engineering [Portland] (ECE), Portland State University [Portland] (PSU), Saint-Gobain, Institute for Animal Health (IAH), Biotechnology and Biological Sciences Research Council (BBSRC), Chinese Academy of Sciences [Changchun Branch] (CAS), Ipsen Inc. [Milford] (Ipsen), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Institute for Climate and Atmospheric Science [Leeds] (ICAS), School of Earth and Environment [Leeds] (SEE), University of Leeds-University of Leeds, Chung-Ang University (CAU), Antarctic Climate and Ecosystems Cooperative Research Centre (ACE-CRC), Institute of Aerodynamics and Fluid Mechanics (AER), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Mer et santé (MS), Station biologique de Roscoff [Roscoff] (SBR), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), National Physical Laboratory [Teddington] (NPL), International Research Institute for Climate and Society (IRI), Macaulay Institute, University of Cambridge [UK] (CAM), Queen's University [Kingston, Canada], Leslie Hill Institute for Plant Conservation (PCU), Istituto per la Microelettronica e Microsistemi [Catania] (IMM), National Research Council of Italy | Consiglio Nazionale delle Ricerche (CNR), Laboratoire d'Acoustique de l'Université du Mans (LAUM), Le Mans Université (UM)-Centre National de la Recherche Scientifique (CNRS), Interactive Systems Labs (ISL), Carnegie Mellon University [Pittsburgh] (CMU), Dalian Institute of Chemical Physics (DICP), Architectures, Languages and Compilers to Harness the End of Moore Years (ALCHEMY), Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Clean Air Task Force (CATF), Indian Space Research Organisation (ISRO), Centre d'études et de recherches appliquées à la gestion (CERAG), Université Pierre Mendès France - Grenoble 2 (UPMF)-Centre National de la Recherche Scientifique (CNRS), Sultan Qaboos University (SQU)-College of Medicine and Health Sciences [Baylor], Baylor University-Baylor University, European Molecular Biology Laboratory [Heidelberg] (EMBL), University of Michigan System-University of Michigan System, Department of Radiation Oncology [Michigan] (Radonc), Informatique, Biologie Intégrative et Systèmes Complexes (IBISC), Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS), Institute for Meteorology and Climate Research (IMK), Karlsruhe Institute of Technology (KIT), University of New Brunswick (UNB), Laboratoire Parole et Langage (LPL), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), Institut des Sciences Chimiques de Rennes (ISCR), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Biogéosciences [UMR 6282] (BGS), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Matériaux à Porosité Contrôlée (LMPC), Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS), School of Information Engineering [USTB] (SIE), University of Science and Technology Beijing [Beijing] (USTB), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], School of Mathematics and Statistics [Sheffield] (SoMaS), Laboratoire de Mécanique de Lille - FRE 3723 (LML), Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS), Computer Science Department [UCLA] (CSD), University of California [Los Angeles] (UCLA), Développement et évolution (DE), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie du Développement de Villefranche sur mer (LBDV), Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Pierre Aigrain (LPA), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Mathematics and Statistics [Montréal], McGill University = Université McGill [Montréal, Canada], Departamento de Botánica [Bariloche], Centro Regional Universitario Bariloche [Bariloche] (CRUB), Universidad Nacional del Comahue [Neuquén] (UNCOMA)-Universidad Nacional del Comahue [Neuquén] (UNCOMA), Bioénergétique Cellulaire et Pathologique (BECP), Université Joseph Fourier - Grenoble 1 (UJF)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Institut Jacques Monod (IJM (UMR_7592)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratori Nazionali del Sud (LNS), Istituto Nazionale di Fisica Nucleare (INFN), Departament de Matemàtiques [Barcelona] (UAB), Universitat Autònoma de Barcelona (UAB), Max-Planck-Institut für Kohlenforschung (Coal Research), Max-Planck-Gesellschaft, CAS Institute of Oceanology (IOCAS), Chinese Academy of Sciences [Beijing] (CAS), National Chiao Tung University (NCTU), Department of Hydrology and Water Resources (HWR), State Key Laboratory of Nuclear Physics and Technology (SKL-NPT), University of Iowa [Iowa City], NASA Ames Research Center (ARC), Digital Language & Knowledge Contents Research Association (DICORA), Space Science and Technology Department [Didcot] (RAL Space), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Institut de biologie et chimie des protéines [Lyon] (IBCP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), H M Nautical Almanac Office [RAL] (HMNAO), University College of London [London] (UCL), University of California (UC)-University of California (UC)-School of Medicine, School of Earth and Environmental Sciences [Seoul] (SEES), Seoul National University [Seoul] (SNU), MicroMachines Centre (MMC), Regroupement Québécois sur les Matériaux de Pointe (RQMP), École Polytechnique de Montréal (EPM)-Université de Sherbrooke (UdeS)-McGill University = Université McGill [Montréal, Canada]-Université de Montréal (UdeM)-Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT), Université de Montréal (UdeM), Centre for Ecology and Hydrology (CEH), Natural Environment Research Council (NERC), Norwegian Institute for Water Research (NIVA), SEA URCHIN GENOME SEQUENCING CONSORTIUM, SODERGREN E, WEINSTOCK GM, DAVIDSON EH, CAMERON RA, GIBBS RA, ANGERER RC, ANGERER LM, ARNONE MI, BURGESS DR, BURKE RD, COFFMAN JA, DEAN M, ELPHICK MR, ETTENSOHN CA, FOLTZ KR, HAMDOUN A, HYNES RO, KLEIN WH, MARZLUFF W, MCCLAY DR, MORRIS RL, MUSHEGIAN A, RAST JP, SMITH LC, THORNDYKE MC, VACQUIER VD, WESSEL GM, WRAY G, ZHANG L, ELSIK CG, ERMOLAEVA O, HLAVINA W, HOFMANN G, KITTS P, LANDRUM MJ, MACKEY AJ, MAGLOTT D, PANOPOULOU G, POUSTKA AJ, PRUITT K, SAPOJNIKOV V, SONG X, SOUVOROV A, SOLOVYEV V, WEI Z, WHITTAKER CA, WORLEY K, DURBIN KJ, SHEN Y, FEDRIGO O, GARFIELD D, HAYGOOD R, PRIMUS A, SATIJA R, SEVERSON T, GONZALEZ-GARAY ML, JACKSON AR, MILOSAVLJEVIC A, TONG M, KILLIAN CE, LIVINGSTON BT, WILT FH, ADAMS N, BELLE R, CARBONNEAU S, CHEUNG R, CORMIER P, COSSON B, CROCE J, FERNANDEZ-GUERRA A, GENEVIERE AM, GOEL M, KELKAR H, MORALES J, MULNER-LORILLON O, ROBERTSON AJ, GOLDSTONE JV, COLE B, EPEL D, GOLD B, HAHN ME, HOWARD-ASHBY M, SCALLY M, STEGEMAN JJ, ALLGOOD EL, COOL J, JUDKINS KM, MCCAFFERTY SS, MUSANTE AM, OBAR RA, RAWSON AP, ROSSETTI BJ, GIBBONS IR, HOFFMAN MP, LEONE A, ISTRAIL S, MATERNA SC, SAMANTA MP, STOLC V, TONGPRASIT W, TU Q, BERGERON KF, BRANDHORST BP, WHITTLE J, BERNEY K, BOTTJER DJ, CALESTANI C, PETERSON K, CHOW E, YUAN QA, ELHAIK E, GRAUR D, REESE JT, BOSDET I, HEESUN S, MARRA MA, SCHEIN J, ANDERSON MK, BROCKTON V, BUCKLEY KM, COHEN AH, FUGMANN SD, HIBINO T, LOZA-COLL M, MAJESKE AJ, MESSIER C, NAIR SV, PANCER Z, TERWILLIGER DP, AGCA C, ARBOLEDA E, CHEN N, CHURCHER AM, HALLBOOK F, HUMPHREY GW, IDRIS MM, KIYAMA T, LIANG S, MELLOTT D, MU X, MURRAY G, OLINSKI RP, RAIBLE F, ROWE M, TAYLOR JS, TESSMAR-RAIBLE K, WANG D, WILSON KH, YAGUCHI S, GAASTERLAND T, GALINDO BE, GUNARATNE HJ, JULIANO C, KINUKAWA M, MOY GW, NEILL AT, NOMURA M, RAISCH M, READE A, ROUX MM, SONG JL, SU YH, TOWNLEY IK, VORONINA E, WONG JL, AMORE G, BRANNO M, BROWN ER, CAVALIERI, V, DUBOC V, DULOQUIN L, FLYTZANIS C, GACHE C, LAPRAZ F, LEPAGE T, LOCASCIO A, MART, University of California-University of California, Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Consiglio Nazionale delle Ricerche (CNR), Centre National de la Recherche Scientifique (CNRS)-Le Mans Université (UM), Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Biogéosciences [UMR 6282] [Dijon] (BGS), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Ecole Nationale Supérieure de Chimie de Mulhouse-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), University of California-University of California-School of Medicine, Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Ecole Nationale Supérieure de Chimie de Rennes (ENSCR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Sciences et Technologies-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Joseph Fourier - Grenoble 1 (UJF), University of Manchester Institute of Science and Technology (UMIST), Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Brookhaven National Laboratory [Upton, NY] (BNL), UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY)-U.S. Department of Energy [Washington] (DOE), Baylor College of Medicine (BCM), Baylor University, Laboratoire de Traitement de l'Information Medicale (LaTIM), Université européenne de Bretagne - European University of Brittany (UEB)-Université de Brest (UBO)-Télécom Bretagne-Institut Mines-Télécom [Paris] (IMT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest), Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Duke University [Durham], Instituto Andaluz de Geofísica y Prevención de Desastres Sísmicos [Granada] (IAGPDS), Universidad de Granada (UGR), Laboratoire d'Ingénierie des Matériaux de Bretagne (LIMATB), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO), University of New South Wales [Sydney] (UNSW), Celera Genomics (CRA), Celera Genomics, Paléobiodiversité et paléoenvironnements, Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Roma Tor Vergata [Roma], Unité de recherches forestières (BORDX PIERR UR ), Institut National de la Recherche Agronomique (INRA), Deptartment of Neuroscience, Uppsala University, State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology (NIGPAS-CAS), Chinese Academy of Sciences [Nanjing Branch]-Chinese Academy of Sciences [Nanjing Branch], Institut Méditerranéen d'Ecologie et de Paléoécologie (IMEP), Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Avignon Université (AU)-Centre National de la Recherche Scientifique (CNRS), Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China, Université Paris Diderot - Paris 7 (UPD7), Department of Physical and Environmental Sciences [Toronto], University of Toronto at Scarborough, inconnu temporaire UPEMLV, Inconnu, Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE), Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS), Department of Atmospheric Sciences [Seattle], University of Washington [Seattle], National Institute of Advanced Industrial Science and Technology (AIST), Department of Pharmacy, Università degli studi di Genova = University of Genoa (UniGe), Interdisciplinary Arts and Sciences Department, St. Vincent's Hospital, Sydney, Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Electrical Engineering (DEE-POSTECH), Pohang University of Science and Technology (POSTECH), Centre Suisse d'Electronique et de Microtechnique SA [Neuchatel] (CSEM), Centre Suisse d'Electronique et Microtechnique SA (CSEM), Human Genome Sequencing Center [Houston] (HGSC), Brookhaven National Laboratory, Meteorological Service of Canada, 4905 Dufferin Street, Université européenne de Bretagne - European University of Brittany (UEB)-Télécom Bretagne-Centre Hospitalier Régional Universitaire de Brest (CHRU Brest)-Université de Brest (UBO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Mines-Télécom [Paris] (IMT), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Unité de Recherches Forestières, Department of Physical and Environmental Sciences, University of Toronto [Scarborough, Canada], National Institute for Nuclear Physics (INFN), University of Genoa (UNIGE), Institut de Recherche pour le Développement (IRD)-Institut Universitaire Européen de la Mer (IUEM), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada = University of Granada (UGR), Laboratoire d'Energétique et de Mécanique Théorique Appliquée (LEMTA ), Technische Universität München [München] (TUM), Queen's University [Kingston], Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Grenoble Alpes (UGA), Institut für Meteorologie und Klimaforschung (IMK), Karlsruher Institut für Technologie (KIT), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Chimie de Rennes-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES), Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille, Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS), Universitat Autònoma de Barcelona [Barcelona] (UAB), École Polytechnique de Montréal (EPM)-Université de Sherbrooke [Sherbrooke]-Université de Montréal [Montréal]-McGill University-Fonds Québécois de Recherche sur la Nature et les Technologies (FQRNT), Université de Montréal [Montréal], U.S. Department of Energy [Washington] (DOE)-UT-Battelle, LLC-Stony Brook University [SUNY] (SBU), Université de Bretagne Sud (UBS)-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université de Brest (UBO)-Université de Brest (UBO), Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Paul Cézanne - Aix-Marseille 3-Centre National de la Recherche Scientifique (CNRS)-Avignon Université (AU)-Université de Provence - Aix-Marseille 1, Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Brest (UBO), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Male ,MESH: Signal Transduction ,MESH: Sequence Analysis, DNA ,MESH : Transcription Factors ,MESH : Calcification, Physiologic ,Genome ,MESH : Proteins ,0302 clinical medicine ,MESH : Embryonic Development ,MESH: Gene Expression Regulation, Developmental ,Innate ,MESH: Embryonic Development ,Developmental ,Nervous System Physiological Phenomena ,MESH: Animals ,MESH: Proteins ,[SDV.BDD]Life Sciences [q-bio]/Development Biology ,Complement Activation ,ComputingMilieux_MISCELLANEOUS ,MESH: Evolution, Molecular ,MESH : Strongylocentrotus purpuratus ,Genetics ,0303 health sciences ,MESH: Nervous System Physiological Phenomena ,Multidisciplinary ,biology ,Medicine (all) ,MESH: Immunologic Factors ,Gene Expression Regulation, Developmental ,Genome project ,MESH: Transcription Factors ,MESH : Immunity, Innate ,MESH : Complement Activation ,MESH: Genes ,Bacterial artificial chromosome (BAC)DeuterostomesStrongylocentrotus purpuratusVertebrate innovations ,Echinoderm ,MESH : Nervous System Physiological Phenomena ,embryonic structures ,MESH: Cell Adhesion Molecules ,MESH : Genes ,MESH: Immunity, Innate ,Sequence Analysis ,Signal Transduction ,MESH: Computational Biology ,Genome evolution ,MESH: Complement Activation ,Sequence analysis ,Evolution ,MESH: Strongylocentrotus purpuratus ,MESH : Male ,Embryonic Development ,MESH : Immunologic Factors ,Article ,MESH: Calcification, Physiologic ,Calcification ,MESH : Cell Adhesion Molecules ,Evolution, Molecular ,03 medical and health sciences ,Calcification, Physiologic ,Animals ,Immunologic Factors ,MESH: Genome ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,MESH : Evolution, Molecular ,Physiologic ,Gene ,Strongylocentrotus purpuratus ,[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,030304 developmental biology ,MESH : Signal Transduction ,Bacterial artificial chromosome ,Immunity ,Molecular ,Computational Biology ,Proteins ,Cell Adhesion Molecules ,Genes ,Immunity, Innate ,Transcription Factors ,Sequence Analysis, DNA ,DNA ,biology.organism_classification ,MESH: Male ,Gene Expression Regulation ,MESH : Animals ,MESH : Gene Expression Regulation, Developmental ,MESH : Genome ,030217 neurology & neurosurgery ,MESH : Computational Biology ,MESH : Sequence Analysis, DNA - Abstract
We report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus , a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome. The genome encodes about 23,300 genes, including many previously thought to be vertebrate innovations or known only outside the deuterostomes. This echinoderm genome provides an evolutionary outgroup for the chordates and yields insights into the evolution of deuterostomes.
- Published
- 2006
- Full Text
- View/download PDF
35. Hypoxia and DNA-damaging agent bleomycin both increase the cellular level of the protein 4E-BP
- Author
-
Odile Mulner-Lorillon, Patrick Cormier, Robert Bellé, and Ronan Le Bouffant
- Subjects
Cell cycle checkpoint ,Embryo, Nonmammalian ,Eukaryotic Initiation Factor-4E ,Embryonic Development ,Biology ,Bleomycin ,Biochemistry ,chemistry.chemical_compound ,Human fertilization ,Peptide Initiation Factors ,medicine ,Animals ,Hypoxia ,Molecular Biology ,Ovum ,EIF4E ,Cell Cycle ,Intracellular Signaling Peptides and Proteins ,Embryo ,Cell Biology ,Hypoxia (medical) ,Molecular biology ,chemistry ,Sea Urchins ,Female ,medicine.symptom ,DNA ,DNA Damage - Abstract
The 4E-binding proteins (4E-BPs) regulate the cap-dependent eukaryotic initiation factor 4E (eIF4E). The level of 4E-BP protein is regulated during early development of sea urchin embryos. Fertilization leads to the rapid disappearance of the protein that reappears later in development. We show that two important cellular stresses, hypoxia and bleomycin prolonged checkpoint mobilization provoked the overexpression of the protein 4E-BP in developing sea urchin embryos. Hypoxia resulted after 1 h in a reversible gradual increase in the protein 4E-BP level. At 20 h, the protein 4E-BP had reached the level existing in the unfertilized eggs. Bleomycin used as a DNA-damaging agent for checkpoint activation, provoked cell cycle inhibition and after prolonged exposure (20 h), induced the expression of the protein 4E-BP. The effect of bleomycin on 4E-BP protein overexpression was dose-dependent between 0.4 and 1.2 mM. The role of the overexpression of the protein 4E-BP is discussed in relation with cellular stress responses.
- Published
- 2006
36. eEF1B: At the dawn of the 21st century
- Author
-
Frédéric Le Sourd, Ronan Le Bouffant, Sandrine Boulben, Patrick Cormier, Odile Mulner-Lorillon, Julia Morales, and Robert Bellé
- Subjects
Regulation of gene expression ,Genetics ,Biophysics ,Cell cycle ,Biology ,Biochemistry ,Control cell ,Ribosome ,Cell biology ,Elongation factor ,Nucleotide exchange factor ,Peptide Elongation Factor 1 ,Gene Expression Regulation ,Structural Biology ,Multiprotein Complexes ,Gene expression ,Translational regulation ,Animals ,Humans ,Phosphorylation ,Phylogeny - Abstract
Translational regulation of gene expression in eukaryotes can rapidly and accurately control cell activity in response to stimuli or when rapidly dividing. There is increasing evidence for a key role of the elongation step in this process. Elongation factor-1 (eEF1), which is responsible for aminoacyl-tRNA transfer on the ribosome, is comprised of two entities: a G-protein named eEF1A and a nucleotide exchange factor, eEF1B. The multifunctional nature of eEF1A, as well as its oncogenic potential, is currently the subject of a number of studies. Until recently, less work has been done on eEF1B. This review describes the macromolecular complexity of eEF1B, its multiple phosphorylation sites and numerous cellular partners, which lead us to suggest an essential role for the factor in the control of gene expression, particularly during the cell cycle.
- Published
- 2005
37. Translational control during mitosis
- Author
-
Robert Bellé, Julia Morales, Patrick Cormier, Odile Mulner-Lorillon, and Magali Le Breton
- Subjects
G2 Phase ,Cyclin A ,Cell Cycle ,Cyclin B ,Mitosis ,S-phase-promoting factor ,General Medicine ,Polo-like kinase ,Biology ,Polyadenylation ,Biochemistry ,APC/C activator protein CDH1 ,Cell biology ,Gene Expression Regulation ,Protein Biosynthesis ,Translational regulation ,CDC2 Protein Kinase ,biology.protein ,RNA, Messenger ,Biochemical switches in the cell cycle ,Cyclin B1 ,Phosphorylation - Abstract
Translation is now recognized as an important process in the regulation of gene expression. During the cell cycle, translation is tightly regulated. Protein synthesis is necessary for entry into and progression through mitosis and conversely, modifications of translational activity are observed during the cell cycle. This review focuses on translational control during mitosis (or M-phase) and the role of CDK1/cyclin B, the universal cell cycle regulator implicated in the G2/M transition, in protein synthesis regulation.
- Published
- 2005
38. Glyphosate-based pesticides affect cell cycle regulation
- Author
-
Odile Mulner-Lorillon, Julie Marc, and Robert Bellé
- Subjects
Genome instability ,Embryo, Nonmammalian ,Time Factors ,Cell division ,Cell ,Glycine ,Pharmacology ,Biology ,chemistry.chemical_compound ,medicine ,Animals ,Humans ,Dose-Response Relationship, Drug ,business.industry ,Herbicides ,Cell Cycle ,Embryo ,Cell Biology ,General Medicine ,Cell cycle ,Pesticide ,Biotechnology ,Dose–response relationship ,Kinetics ,medicine.anatomical_structure ,chemistry ,Glyphosate ,Sea Urchins ,business - Abstract
Cell-cycle dysregulation is a hallmark of tumor cells and human cancers. Failure in the cell-cycle checkpoints leads to genomic instability and subsequent development of cancers from the initial affected cell. A worldwide used product Roundup 3plus, based on glyphosate as the active herbicide, was suggested to be of human health concern since it induced cell cycle dysfunction as judged from analysis of the first cell division of sea urchin embryos, a recognized model for cell cycle studies. Several glyphosate-based pesticides from different manufacturers were assayed in comparison with Roundup 3plus for their ability to interfere with the cell cycle regulation. All the tested products, Amega, Cargly, Cosmic, and Roundup Biovert induced cell cycle dysfunction. The threshold concentration for induction of cell cycle dysfunction was evaluated for each product and suggests high risk by inhalation for people in the vicinity of the pesticide handling sprayed at 500 to 4000 times higher dose than the cell-cycle adverse concentration. © 2004 Elsevier SAS. All rights reserved.
- Published
- 2003
39. M-phase regulation of the recruitment of mRNAs onto polysomes using the CDK1/cyclin B inhibitor aminopurvalanol
- Author
-
Magali Le Breton, Robert Bellé, Julia Morales, Odile Mulner-Lorillon, and Patrick Cormier
- Subjects
G2 Phase ,Time Factors ,Cyclin A ,Biophysics ,Cyclin B ,Mitosis ,Biochemistry ,Polysome ,CDC2 Protein Kinase ,Protein biosynthesis ,Animals ,Electrophoresis, Gel, Two-Dimensional ,RNA, Messenger ,Molecular Biology ,Messenger RNA ,Cyclin-dependent kinase 1 ,biology ,Dose-Response Relationship, Drug ,Reverse Transcriptase Polymerase Chain Reaction ,Nucleic Acid Hybridization ,Cell Biology ,Cell cycle ,Molecular biology ,Cell biology ,Suppression subtractive hybridization ,Purines ,Fertilization ,Polyribosomes ,Protein Biosynthesis ,Sea Urchins ,biology.protein ,RNA - Abstract
Translation under the control of the universal cell cycle regulator CDK1/cyclin B was investigated during the first cell cycle in sea urchin embryos. The CDK1/cyclin B inhibitor aminopurvalanol arrested embryos at the G2/M transition. Polysomal mRNAs were purified from control and arrested embryos, and screened for specific mRNA recruitment or release at M-phase by subtractive hybridization. The polysomal repartition of clones issued from this screen was analyzed. Three specific mRNAs were selectively recruited onto polysomes at M-phase. Conversely, two other specific mRNAs were released from polysomes. The isolation of these translationally regulated mRNAs gives now important tools for insights into the regulation of protein synthesis by the cell cycle regulator CDK1–cyclin B.
- Published
- 2003
40. Pesticide Roundup provokes cell division dysfunction at the level of CDK1/cyclin B activation
- Author
-
Sandrine Boulben, Gaël Durand, Odile Mulner-Lorillon, Robert Bellé, Dorothee Hureau, and Julie Marc
- Subjects
Embryo, Nonmammalian ,Time Factors ,Cell division ,Cell ,Cyclin B ,Glycine ,Biology ,Toxicology ,chemistry.chemical_compound ,Botany ,CDC2 Protein Kinase ,medicine ,Animals ,Cyclin ,Ovum ,Cyclin-dependent kinase 1 ,Herbicides ,Cell Cycle ,Embryo ,General Medicine ,Cell cycle ,Cell biology ,Enzyme Activation ,medicine.anatomical_structure ,chemistry ,Glyphosate ,Sea Urchins ,biology.protein ,Cell Division - Abstract
To assess human health risk from environmental chemicals, we have studied the effect on cell cycle regulation of the widely used glyphosate-containing pesticide Roundup. As a model system we have used sea urchin embryonic first divisions following fertilization, which are appropriate for the study of universal cell cycle regulation without interference with transcription. We show that 0.8% Roundup (containing 8 mM glyphosate) induces a delay in the kinetic of the first cell cleavage of sea urchin embryos. The delay is dependent on the concentration of Roundup. The delay in the cell cycle could be induced using increasing glyphosate concentrations (1-10 mM) in the presence of a subthreshold concentration of Roundup 0.2%, while glyphosate alone was ineffective, thus indicating synergy between glyphosate and Roundup formulation products. The effect of Roundup was not lethal and involved a delay in entry into M-phase of the cell cycle, as judged cytologically. Since CDK1/cyclin B regulates universally the M-phase of the cell cycle, we analyzed CDK1/cyclin B activation during the first division of early development. Roundup delayed the activation of CDK1/cyclin B in vivo. Roundup inhibited also the global protein synthetic rate without preventing the accumulation of cyclin B. In summary, Roundup affects cell cycle regulation by delaying activation of the CDK1/cyclin B complex, by synergic effect of glyphosate and formulation products. Considering the universality among species of the CDK1/cyclin B regulator, our results question the safety of glyphosate and Roundup on human health.
- Published
- 2002
41. Protein translation during early cell divisions of sea urchin embryos regulated at the level of polypeptide chain elongation and highly sensitive to natural polyamines
- Author
-
Odile Mulner-Lorillon, Robert Bellé, Patrick Cormier, Annabelle Monnier, Sandrine Boulben, and Julia Morales
- Subjects
Embryo, Nonmammalian ,Time Factors ,Spermidine ,Spermine ,Fertilization in Vitro ,Biology ,chemistry.chemical_compound ,biology.animal ,Botany ,Protein biosynthesis ,Polyamines ,Animals ,RNA, Messenger ,Sea urchin ,Fertilisation ,Cell-Free System ,Dose-Response Relationship, Drug ,Embryo ,Cell Biology ,Cell biology ,Kinetics ,chemistry ,Fertilization ,Protein Biosynthesis ,Sea Urchins ,RNA ,Polyamine ,Peptides ,Protein Kinases ,Intracellular ,Cell Division ,Developmental Biology - Abstract
Protein synthesis was analysed following fertilisation in sea urchin. Fluctuations in the accumulation of neo-synthesised proteins were observed during the first cell cycles. Accurate translation analyses were performed from lysates prepared from early embryos. The lysates readily translated endogenous pre-initiated mRNAs allowing the determination of elongation rates in the absence of re-initiation in vitro. The translation capacity of embryo lysates increased 18-fold from 0 to 90 min after fertilisation, reflecting the increase in the amount of pre-initiated mRNAs during early development. Kinetics analysis at a short time interval during the course of early development (240 min) showed an overall increase in the elongation rate (> 10-fold) which is regulated by pauses in synchrony with the cell divisions. Elongation activity in the lysates was highly sensitive to the natural polyamines, spermine (ID50 = 0.2 mM) and spermidine (ID50 = 1.8 mM), indicating high potential regulation by the intracellular level of polyamines in embryos. The regulation in the elongation changes associated with the early embryo cell divisions is discussed in the light of the physiological fluctuations in polyamine concentrations.
- Published
- 2001
42. Phosphorylation of Xenopus elongation factor-1γ by cdc2 protein kinase: Identification of the phosphorylation site
- Author
-
Jean-Claude Cavadore, Robert Poulhe, Robert Bellé, Odile Mulner-Lorillon, Julia Morales, and Patrick Cormier
- Subjects
Threonine ,MAP kinase kinase kinase ,urogenital system ,Xenopus ,Molecular Sequence Data ,Cyclin-dependent kinase 2 ,Cell Biology ,Biology ,Mitogen-activated protein kinase kinase ,Peptide Elongation Factors ,Guanosine Diphosphate ,MAP2K7 ,Peptide Elongation Factor 1 ,Biochemistry ,CDC2 Protein Kinase ,biology.protein ,Animals ,Cyclin-dependent kinase 9 ,Amino Acid Sequence ,Guanosine Triphosphate ,Phosphorylation ,Protein kinase A ,cGMP-dependent protein kinase - Abstract
The cdc2 protein kinase phosphorylates elongation factor-1 gamma (EF-1 gamma) during meiotic maturation of Xenopus oocytes. A synthetic peptide P2: PKKETPKKEKPA matching the cDNA-deduced sequence of EF-1 gamma was an in vitro substrate for cdc2 protein kinase and inhibited phosphorylation of EF-1 gamma. Tryptic hydrolysis of EF-1 gamma and the P2 peptide, both phosphorylated by cdc2 protein kinase, resulted in multiple partial digestion products generated by the presence of barely hydrolysable bonds. The two peptides obtained from the hydrolysis of EF-1 gamma comigrated exactly in two-dimensional separation with two of the P2 peptide hydrolysates. EF-1 gamma therefore contains one unique phosphoacceptor for cdc2 protein kinase, identified as threonine-230.
- Published
- 1992
- Full Text
- View/download PDF
43. The elongation factor-1delta (EF-1delta) originates from gene duplication of an EF-1beta ancestor and fusion with a protein-binding domain
- Author
-
M.-A. Guerrucci, C. Delalande, Robert Bellé, and A. Monnier
- Subjects
Genetics ,Leucine zipper ,Phylogenetic tree ,Sequence Homology, Amino Acid ,Recombinant Fusion Proteins ,Molecular Sequence Data ,General Medicine ,Biology ,Plants ,Peptide Elongation Factors ,Maximum parsimony ,Elongation factor ,Peptide Elongation Factor 1 ,Phylogenetics ,Gene Duplication ,Gene duplication ,Animals ,Humans ,Amino Acid Sequence ,Gene ,Conserved Sequence ,Phylogeny ,Binding domain ,Protein Binding - Abstract
The molecular evolution of two components of elongation factor-1 (EF-1), EF-1beta and EF-1delta was analysed using the distance matrix, the maximum parsimony and the maximum likelihood methods, after careful alignment of protein and cDNA sequences. The topology of the phylogenetic trees obtained supports monophyly of plant EF-1beta and EF-1beta' sequences, and monophyly of higher eukaryotic animal EF-1beta and EF-1delta sequences. EF-1beta and EF-1delta are homologous in their C-terminal domain. EF-1delta, which emerged before arthropods, originates from a beta-type ancestor gene and fusion with a leucine zipper N-terminal motif. Plant EF-1beta and EF-1beta' correspond to paralogous genes whose ancestor was most likely duplicated before the emergence of monocotyledons and dicotyledons.
- Published
- 1999
44. The guanine-nucleotide-exchange complex (EF-1 beta gamma delta) of elongation factor-1 contains two similar leucine-zipper proteins EF-1 delta, p34 encoded by EF-1 delta 1 and p36 encoded by EF-1 delta 2
- Author
-
Odile Mulner-Lorillon, Robert Bellé, Odile Minella, Patrick Cormier, and Robert Poulhe
- Subjects
Leucine zipper ,DNA, Complementary ,Macromolecular Substances ,Molecular Sequence Data ,Biology ,In Vitro Techniques ,Biochemistry ,HSPA4 ,Xenopus laevis ,Peptide Elongation Factor 1 ,Complementary DNA ,HSPA2 ,Animals ,Amino Acid Sequence ,RNA, Messenger ,Cloning, Molecular ,ATF3 ,Leucine Zippers ,HSPA14 ,Binding Sites ,Autophagy-related protein 13 ,Peptide Elongation Factors ,Eukaryotic translation elongation factor 1 alpha 1 ,Guanine Nucleotides ,Molecular Weight ,Meiosis ,Protein Biosynthesis ,Oocytes ,Female - Abstract
We have cloned and sequenced a Xenopus cDNA referred to as EF-1 delta 2. The cDNA is homologous to EF-1 delta 1 encoding for EF-1 delta a protein of the guanine-nucleotide exchange complex of elongation factor-1 (EF-1). The protein sequence deduced from the cDNA, contains the two characteristic features of EF-1 delta protein, the leucine-zipper domain and the guanine-nucleotide exchange domain. In vitro and in vivo translation leads to the production of a 36-kDa protein from EF-1 delta and a 34-kDa protein from EF-1 delta 1. The clone EF-1 delta 2 therefore encodes for authentic p36 protein of EF-1 beta gamma delta complex, while EF-1 delta 1 encodes for a newly characterised p34 protein of the leucine zipper family. Both EF-1 delta proteins are simultaneously present in oocytes extracts, at a molecular ratio around 1:10 for p34 versus p36 proteins. Both are associated in a macromolecular structure that is greater than 750 kDa upon gel filtration. The two proteins are targets for Cdc2 kinase in meiotic maturation.
- Published
- 1996
45. Characterisation of protein structure/function relationship by sequence analysis without previous alignment: distinction between sub-groups of protein kinases
- Author
-
Robert Bellé and Marie-Anne Guerrucci
- Subjects
Databases, Factual ,Molecular Structure ,Sequence analysis ,Protein domain ,Biophysics ,Proteins ,Cell Biology ,Protein structure function ,Computational biology ,Protein structure prediction ,Biology ,Biochemistry ,SH3 domain ,Cell biology ,Structure-Activity Relationship ,Protein methods ,Animals ,Humans ,Protein function prediction ,Threading (protein sequence) ,Molecular Biology ,Protein Kinases ,Sequence Alignment ,Sequence Analysis - Abstract
Using an approach for protein comparison by computer analysis based on signal treatment methods without previous alignment of the sequence, we have analysed the structure/function relationship of related proteins. The aim was to demonstrate that from a few members of related proteins, specific parameters can be obtained and used for the characterisation of newly sequenced proteins obtained by molecular biology techniques. The analysis was performed on protein kinases, which comprise the largest known family of proteins, and therefore allows valid estimations to be made. We show that using only a dozen defined proteins, the specific parameters extracted from their sequences classified the protein kinase family into two sub-groups: the protein serine/threonine kinases (PSKs) and the protein tyrosine kinases (PTKs). The analysis, largely involving computation, appears applicable to large scale data-bank analysis and prediction of protein functions.
- Published
- 1995
46. Brefeldin A provokes indirect activation of cdc2 kinase (MPF) in Xenopus oocytes, resulting in meiotic cell division
- Author
-
O. Minella, Patrick Cormier, Robert Poulhe, G. Schmalzing, Odile Mulner-Lorillon, Robert Bellé, S. Drewing, ProdInra, Migration, Laboratoire associé de physiologie de la reproduction, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut National de la Recherche Agronomique (INRA), and Institut National de la Recherche Agronomique (INRA)-Université Pierre et Marie Curie - Paris 6 (UPMC)
- Subjects
[SDV]Life Sciences [q-bio] ,Maturation-Promoting Factor ,Cyclin B ,Xenopus ,environment and public health ,Xenopus laevis ,chemistry.chemical_compound ,Oogenesis ,Peptide Elongation Factor 1 ,0302 clinical medicine ,1-Methyl-3-isobutylxanthine ,Cyclic AMP ,BIOLOGIE CELLULAIRE ,Cycloheximide ,Phosphorylation ,Progesterone ,ComputingMilieux_MISCELLANEOUS ,0303 health sciences ,biology ,Kinase ,Cell Cycle ,Cell cycle ,Brefeldin A ,3. Good health ,Cell biology ,[SDV] Life Sciences [q-bio] ,Meiosis ,Mitogen-activated protein kinase ,CDC2 Protein Kinase ,Signal Transduction ,Cholera Toxin ,Cyclopentanes ,Protamine Kinase ,03 medical and health sciences ,Animals ,Molecular Biology ,030304 developmental biology ,Cyclin-dependent kinase 1 ,urogenital system ,Colforsin ,Cell Biology ,Peptide Elongation Factors ,biology.organism_classification ,Enzyme Activation ,chemistry ,Oocytes ,biology.protein ,Protein Processing, Post-Translational ,030217 neurology & neurosurgery ,Developmental Biology - Abstract
Brefeldin A, a fungal metabolite which disrupts protein traffic, provokes indirect activation of cdc2 protein kinase in Xenopus oocytes. Cdc2 protein kinase activation was judged by MPF (M-phase factor) transfer activity, histone H1 kinase activity, and phosphorylation in vivo of the guanine-nucleotide exchange complex EF-1 beta gamma delta. Oocytes resumed complete meiosis upon brefeldin A treatment. Cdc2 protein kinase, MAP kinase, cyclin B, MPF, and protein synthesis changes were all comparable in brefeldin A-treated oocytes and in progesterone-induced oocytes. ED50 for brefeldin A was 0.6 microM. Brefeldin A activation of cdc2 protein kinase occurs with a long time course. Simultaneous treatment of the oocytes at a subthreshold concentration of 1 nM progesterone and 30 microM brefeldin A considerably shortened the kinetics of maturation. Brefeldin A induction of maturation was sensitive to drugs that act on cAMP metabolism. ID50 for IBMX was 0.1 mM, compared to 1 mM for progesterone-treated oocytes. Brefeldin A inhibited protein traffic in oocytes as determined from protein export experiments. ID50 was between 0.1 and 1 microM. Our results give new insights into the possible mechanism of induction of meiotic maturation and further demonstrate that brefeldin A acts on cell cycle regulatory elements.
- Published
- 1995
47. Phosphorylation of elongation factor-1 (EF-1) by cdc2 kinase
- Author
-
Robert Bellé, Odile Minella, Julia Morales, Odile Mulner-Lorillon, Patrick Cormier, and Robert Poulhe
- Subjects
Cyclin-dependent kinase 1 ,MAP kinase kinase kinase ,biology ,Chemistry ,Cyclin-dependent kinase 2 ,Xenopus ,biology.protein ,Cyclin-dependent kinase 9 ,Mitogen-activated protein kinase kinase ,biology.organism_classification ,MAPK14 ,MAP2K7 ,Cell biology - Abstract
Elongation factor-1 (EF-1) is a major substrate for cdc2 kinase in Xenopus oocytes. The guanine-nucleotide exchange factor EF-1βγδ, appears to have a highly complex macromolecular structure containing several GTP/GDP exchange proteins, valyl-tRNA synthetase, and a putative anchoring protein EF-1γ. During meiotic cell division, the factor becomes phosphorylated by cdc2 kinase, not only on EF-1γ, but also on two different phospho-acceptors on EF-1δ. Phosphorylation is concomitant with changes in protein synthesis in vivo. Xenopus oocytes, and potentially all cells, contain a multitude of heteromeric forms of the complex which postulates that EF-1βγδ is not a “house keeping” factor but a sophisticated regulatory element.
- Published
- 1995
- Full Text
- View/download PDF
48. Elongation factor 1 contains two homologous guanine-nucleotide exchange proteins as shown from the molecular cloning of beta and delta subunits
- Author
-
Robert Bellé, Robert Poulhe, Julia Morales, Odile Mulner-Lorillon, O. Minella, T. Bassez, H. B. Osborne, Patrick Cormier, Université Pierre et Marie Curie - Paris 6 (UPMC), Biologie cellulaire et reproduction, Centre National de la Recherche Scientifique (CNRS), Physiologie de la Reproduction, (UA CNRS 1449 INRA), and Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Guanine ,MESH: Peptide Elongation Factors ,MESH: Sequence Homology, Amino Acid ,Xenopus ,Molecular Sequence Data ,Restriction Mapping ,Sequence Homology ,MESH: Amino Acid Sequence ,Biology ,Molecular cloning ,Homology (biology) ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Peptide Elongation Factor 1 ,Genetics ,Animals ,Guanine Nucleotide Exchange Factors ,MESH: Guanine Nucleotide Exchange Factors ,Nucleotide ,MESH: Animals ,MESH: Xenopus ,MESH: Cloning, Molecular ,MESH: Proteins ,Amino Acid Sequence ,MESH: Peptide Elongation Factor 1 ,Cloning, Molecular ,Peptide sequence ,MESH: Restriction Mapping ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,MESH: Molecular Sequence Data ,Sequence Homology, Amino Acid ,Protein primary structure ,Molecular ,Proteins ,Peptide Elongation Factors ,Molecular biology ,Eukaryotic translation elongation factor 1 alpha 1 ,Amino Acid ,[SDV.BDD.EO]Life Sciences [q-bio]/Development Biology/Embryology and Organogenesis ,chemistry ,Biochemistry ,030220 oncology & carcinogenesis ,Guanine nucleotide exchange factor ,Cloning - Abstract
International audience; Elongation factor 1 mediates the elongation step of mRNA translation. The transfer of aminoacyl-tRNA to ribosomes under hydrolysis of GTP is catalyzed by a GTP binding protein, EF1Ia. A guanine-nucleotide exchange complex now referred as EF1beta gamma delta replaces GDP by GTP on EF1alpha (1). A complex, purified from Xenopus oocytes as a substrate for the meiotic and mitotic p34Cdc2 kinase, was shown to contain the guanine-nucleotide exchange activity (2). The Xenopus complex is composed of three main proteins, p30, p36 and p47. Surprisingly, microsequencing of two of its components, p36 and p30 suggested the presence of two related proteins (2). We have previously cloned and sequenced the cDNA encoding for p47 or EF1gamma (3) and p36 or EF1delta (4), we present here the molecular cloning of p30 or EF1beta. This result allows for the first time, sequence analysis of EF1beta and delta proteins, both present in the same complex.
- Published
- 1993
49. Protein phosphatase 2A from Xenopus oocytes. Characterization during meiotic cell division
- Author
-
Thérèse Bassez, Odile Mulner-Lorillon, Robert Poulhe, Patrick Cormier, Robert Bellé, H.Beverley Osborne, Université Pierre et Marie Curie - Paris 6 (UPMC), Biologie cellulaire et reproduction, Centre National de la Recherche Scientifique (CNRS), Physiologie de la Reproduction, (UA CNRS 1449 INRA), and Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Xenopus ,Restriction Mapping ,MESH: Amino Acid Sequence ,MESH: Base Sequence ,Biochemistry ,0302 clinical medicine ,Structural Biology ,Phosphoprotein Phosphatases ,MESH: Animals ,MESH: Xenopus ,Protein Phosphatase 2 ,Protein phosphatase 2A ,MESH: Restriction Mapping ,0303 health sciences ,biology ,medicine.diagnostic_test ,Blotting ,MESH: Protein Phosphatase 2 ,MESH: DNA ,3. Good health ,Meiosis ,medicine.anatomical_structure ,Metaphase-specific form ,MESH: Cell Division ,Female ,Western ,Cell Division ,MESH: Ovary ,Blotting, Western ,Molecular Sequence Data ,Biophysics ,MESH: Oocytes ,03 medical and health sciences ,Prophase ,Western blot ,MESH: Phosphoprotein Phosphatases ,MESH: Gene Library ,Genetics ,medicine ,MESH: Blotting, Western ,Animals ,Amino Acid Sequence ,Molecular Biology ,Metaphase ,030304 developmental biology ,Gene Library ,MESH: Molecular Sequence Data ,Base Sequence ,Ovary ,Xenopus meiotic cell division ,Cell Biology ,Protein phosphatase 2 ,DNA ,Oocyte ,biology.organism_classification ,Molecular biology ,Cytosol ,MESH: Meiosis ,Associated protein ,[SDV.BDD.EO]Life Sciences [q-bio]/Development Biology/Embryology and Organogenesis ,Polyclonal antibodies ,biology.protein ,Oocytes ,MESH: Female ,030217 neurology & neurosurgery - Abstract
International audience; A polyclonal antibody was raised against bacterially produced catalytic alpha subunit of protein phosphatase 2A (PP2AC) cloned from Xenopus ovarian library. The amount of PP2AC in Xenopus oocytes determined by Western blot analysis was 1 ng/microgram of cytosolic protein. The antibody depleted PP2AC from oocyte extracts in association with 6 components (40, 62, 65, 80, 85 and 90 kDa). Prophase- and metaphase-arrested oocytes contained identical amounts of PP2AC. Metaphase oocytes showed one specific change in the 62 kDa protein associated with PP2AC.
- Published
- 1991
50. Purification and characterization of a germ cell-specific form of elongation factor 1 alpha (EF-1 alpha) from Xenopus laevis
- Author
-
Julia Morales, Herman Denis, Odile Mulner-Lorillon, and Robert Bellé
- Subjects
Somatic cell ,Immunoblotting ,Xenopus ,Biology ,Biochemistry ,Guanosine Diphosphate ,chemistry.chemical_compound ,RNA, Transfer, Phe ,Xenopus laevis ,Adenosine Triphosphate ,Peptide Elongation Factor 1 ,medicine ,Animals ,Aminoacyl-tRNA ,Binding Sites ,General Medicine ,biology.organism_classification ,Oocyte ,Peptide Elongation Factors ,Molecular biology ,Eukaryotic translation elongation factor 1 alpha 1 ,Elongation factor ,Molecular Weight ,medicine.anatomical_structure ,chemistry ,Transfer RNA ,Oocytes ,Electrophoresis, Polyacrylamide Gel ,Guanosine Triphosphate ,Germ cell ,Cell Division - Abstract
Elongation factor 1 alpha (EF-1 alpha) was purified to homogeneity from full-grown oocytes of Xenopus laevis. This protein is encoded by a gene previously shown to be expressed in male and female germ cells, and repressed in somatic cells. The purified protein was identified with EF-1 alpha on criteria of molecular mass, cross-reaction with antibodies raised against Artemia salina EF-1 alpha, affinity for guanine nucleotides, and ability to promote the mRNA-dependent binding of aminoacyl tRNA to 80S ribosomes.
- Published
- 1991
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.