153 results on '"Robert , Corinne"'
Search Results
2. Applying assessment methods to diversified farming systems: Simple adjustment or complete overhaul?
- Author
-
Magne, Marie-Angélina, Alaphilippe, Aude, Bérard, Annette, Cournut, Sylvie, Dumont, Bertrand, Gosme, Marie, Hedde, Mickael, Morel, Kevin, Mugnier, Sylvie, Parnaudeau, Virginie, Nozières-Petit, Marie-Odile, Paut, Raphaël, Puech, Thomas, Robert, Corinne, Ryschawy, Julie, Sabatier, Rodolphe, Stark, Fabien, Vialatte, Aude, and Martin, Guillaume
- Published
- 2024
- Full Text
- View/download PDF
3. Understanding changes in reducing pesticide use by farmers: Contribution of the behavioural sciences
- Author
-
Meunier, Elliot, Smith, Pauline, Griessinger, Thibaud, and Robert, Corinne
- Published
- 2024
- Full Text
- View/download PDF
4. Analyses of microstructural variation in the human striatum using non-negative matrix factorization
- Author
-
Robert, Corinne, Patel, Raihaan, Blostein, Nadia, Steele, Chrisopher J., and Chakravarty, M. Mallar
- Published
- 2022
- Full Text
- View/download PDF
5. Building integrated plant health surveillance: A proactive research agenda for anticipating and mitigating disease and pest emergence
- Author
-
Soubeyrand, Samuel, Estoup, Arnaud, Cruaud, Astrid, Malembic-Maher, S., Meynard, Charles, Ravigne, Virginie, Barbier, M., Barrès, Benoit, Berthier, Karine, Boitard, S., Dallot, Sylvie, Gaba, Sabrina, Grosdidier, Marie, Hannachi, Mourad, Jacques, Marie Agnès, Leclerc, M., Lucas, P., Martinetti, D., Mougel, Christophe, Robert, Corinne, Roques, Alain, Rossi, Jean-Pierre, Suffert, Frédéric, Abad, Pierre, Auger-Rozenberg, M.A., Ay, Jean-Sauveur, Bardin, Marc, Bernard, H., Bohan, David A., Candresse, Thierry, Castagnone-Sereno, Philippe, Danchin, Etienne G. J., Delmas, Chloé E. L., Ezanno, Pauline, Fabre, Frédéric, Facon, Benoît, Gabriel, E., Gaudin, Jacqueline, Gauffre, Bertrand, Gautier, Mathieu, Guinat, Claire, Lavigne, Claire, Lemaire, Olivier, Martinez, C., Michel, L., Moury, Benoit, Nam, Kiwoong, Nédellec, Claire, Ogliastro, Mylène, Papaïx, Julien, Parisey, N., Poggi, Sylvain, Radici, A., Rasplus, Jean-Yves, Reboud, Xavier, Robin, C., Roche, Mathieu, Rusch, Adrien, Sauvion, Nicolas, Streito, Jean-Claude, Verdin, Eric, Walker, Anne Sophie, Xuereb, Anne, Thébaud, Gaël, Morris, Cindy E., Soubeyrand, Samuel, Estoup, Arnaud, Cruaud, Astrid, Malembic-Maher, S., Meynard, Charles, Ravigne, Virginie, Barbier, M., Barrès, Benoit, Berthier, Karine, Boitard, S., Dallot, Sylvie, Gaba, Sabrina, Grosdidier, Marie, Hannachi, Mourad, Jacques, Marie Agnès, Leclerc, M., Lucas, P., Martinetti, D., Mougel, Christophe, Robert, Corinne, Roques, Alain, Rossi, Jean-Pierre, Suffert, Frédéric, Abad, Pierre, Auger-Rozenberg, M.A., Ay, Jean-Sauveur, Bardin, Marc, Bernard, H., Bohan, David A., Candresse, Thierry, Castagnone-Sereno, Philippe, Danchin, Etienne G. J., Delmas, Chloé E. L., Ezanno, Pauline, Fabre, Frédéric, Facon, Benoît, Gabriel, E., Gaudin, Jacqueline, Gauffre, Bertrand, Gautier, Mathieu, Guinat, Claire, Lavigne, Claire, Lemaire, Olivier, Martinez, C., Michel, L., Moury, Benoit, Nam, Kiwoong, Nédellec, Claire, Ogliastro, Mylène, Papaïx, Julien, Parisey, N., Poggi, Sylvain, Radici, A., Rasplus, Jean-Yves, Reboud, Xavier, Robin, C., Roche, Mathieu, Rusch, Adrien, Sauvion, Nicolas, Streito, Jean-Claude, Verdin, Eric, Walker, Anne Sophie, Xuereb, Anne, Thébaud, Gaël, and Morris, Cindy E.
- Abstract
In an era marked by rapid global changes, the reinforcement and modernization of plant health surveillance systems have become imperative. Sixty-five scientists present here a research agenda for an enhanced and modernized plant health surveillance to anticipate and mitigate disease and pest emergence. Our approach integrates a wide range of scientific fields (from life, social, physical and engineering sciences) and identifies the key knowledge gaps, focusing on anticipation, risk assessment, early detection, and multi-actor collaboration. The research directions we propose are organized around four complementary thematic axes. The first axis is the anticipation of pest emergence, encompassing innovative forecasting, adaptive potential, and the effects of climatic and cropping system changes. The second axis addresses the use of versatile broad-spectrum surveillance tools, including molecular or imaging diagnostics supported by artificial intelligence, and monitoring generic matrices such as air and water. The third axis focuses on surveillance of known pests from new perspectives, i.e., using novel approaches to detect known species but also anticipating and detecting, within a species, the populations or genotypes that pose a higher risk. The fourth axis advocates the management of plant health as a commons through the establishment of multi-actor and cooperative surveillance systems for long-term data-driven alert systems and information dissemination. We stress the importance of integrating data and information from multiple sources through open science databases and metadata, alongside developing methods for interpolating and extrapolating incomplete data. Finally, we advocate an Integrated Health Surveillance approach in the One Health context, favoring tailored and versatile solutions to plant health problems and recognizing the interconnected risks to the health of plants, humans, animals and the environment, including food insecurity, pesticide residues, e
- Published
- 2024
6. A Modeling Framework of a Territorial Socio-Ecosystem to Study the Trajectories of Change in Agricultural Phytosanitary Practices Under the Influence of the Territory's Ecological and Economic Components
- Author
-
Bourceret, Amélie, primary, Accatino, Francesco, additional, and Robert, Corinne, additional
- Published
- 2024
- Full Text
- View/download PDF
7. Modelling interaction dynamics between two foliar pathogens in wheat : a multiscale approach
- Author
-
Garin, Guillaume, Pradal, Christophe, Fournier, Christian, Claessen, David, Houlès, Vianney, and Robert, Corinne
- Published
- 2018
8. Plant architecture and foliar senescence impact the race between wheat growth and Zymoseptoria tritici epidemics
- Author
-
Robert, Corinne, Garin, Guillaume, Abichou, Mariem, Houlès, Vianney, Pradal, Christophe, and Fournier, Christian
- Published
- 2018
9. Wheat Leaf Photosynthesis Loss Due to Leaf Rust, with Respect to Lesion Development and Leaf Nitrogen Status
- Author
-
Robert, Corinne, Bancal, Marie-Odile, Ney, Bertrand, and Lannou, Christian
- Published
- 2005
10. Modelling the impact of proportion, sowing date, and architectural traits of a companion crop on foliar fungal pathogens of wheat in crop mixtures
- Author
-
Levionnois, Sébastien, primary, Pradal, Christophe, additional, Fournier, Christian, additional, Sanner, Jonathan, additional, and Robert, Corinne, additional
- Published
- 2023
- Full Text
- View/download PDF
11. Modeling the impact of proportion, sowing date, and architectural traits of a companion crop on foliar fungal pathogens of wheat in crop mixtures
- Author
-
Levionnois, Sébastien, Pradal, Christophe, Fournier, Christian, Sanner, Jonathan, Robert, Corinne, Levionnois, Sébastien, Pradal, Christophe, Fournier, Christian, Sanner, Jonathan, and Robert, Corinne
- Abstract
Diversification of cropping systems is a lever for the management of epidemics. However, most research to date has focused on cultivar mixtures, especially for cereals, even though crop mixtures can also improve disease management. To investigate the benefits of crop mixtures, we studied the effect of different crop mixture characteristics (i.e., companion proportion, sowing date, and traits) on the protective effect of the mixture. We developed a SEIR (Susceptible, Exposed, Infectious, Removed) model of two damaging wheat diseases (Zymoseptoria tritici and Puccinia triticina), which were applied to different canopy components, ascribable to wheat and a theoretical companion crop. We used the model to study the sensitivity of disease intensity to the following parameters: wheat-versus-companion proportion, companion sowing date and growth, and architectural traits. For both pathogens, the companion proportion had the strongest effect, with 25% of companion reducing disease severity by 50%. However, changing companion growth and architectural traits also significantly improved the protective effect. The effect of companion characteristics was consistent across different weather conditions. After decomposing the dilution and barrier effects, the model suggested that the barrier effect is maximized for an intermediate proportion of companion crop. Our study thus supports crop mixtures as a promising strategy to improve disease management. Future studies should identify real species and determine the combination of host and companion traits to maximize the protective effect of the mixture.
- Published
- 2023
12. A modelling framework to simulate foliar fungal epidemics using functional-structural plant models
- Author
-
Garin, Guillaume, Fournier, Christian, Andrieu, Bruno, Houlès, Vianney, Robert, Corinne, and Pradal, Christophe
- Published
- 2014
13. Effects of hedgerows on the preservation of spontaneous biodiversity and the promotion of biotic regulation services in agriculture: towards a more constructive relationships between agriculture and biodiversity
- Author
-
Précigout, Pierre-Antoine, primary and Robert, Corinne, additional
- Published
- 2022
- Full Text
- View/download PDF
14. Crop mixtures outperform rotations and landscape mosaics in regulation of wheat pathogens: a simulation study
- Author
-
Précigout, Pierre-Antoine, primary, Renard, Delphine, additional, Sanner, Jonathan, additional, Claessen, David, additional, and Robert, Corinne, additional
- Published
- 2022
- Full Text
- View/download PDF
15. Modelling the effect of wheat canopy architecture as affected by sowing density on Septoria tritici epidemics using a coupled epidemic-virtual plant model
- Author
-
Baccar, Rim, Fournier, Christian, Dornbusch, Tino, Andrieu, Bruno, Gouache, David, and Robert, Corinne
- Published
- 2011
16. Modelling Wheat Growth and Yield Losses from Late Epidemics of Foliar Diseases using Loss of Green Leaf Area per Layer and Pre-anthesis Reserves
- Author
-
BANCAL, MARIE-ODILE, ROBERT, CORINNE, and NEY, BERTRAND
- Published
- 2007
17. Quantification of the effects of Septoria tritici blotch on wheat leaf gas exchange with respect to lesion age, leaf number, and leaf nitrogen status
- Author
-
Robert, Corinne, Bancal, Marie-Odile, Lannou, Christian, and Ney, Bertrand
- Published
- 2006
18. Analysis and modelling of effects of leaf rust and Septoria tritici blotch on wheat growth
- Author
-
Robert, Corinne, Bancal, Marie-Odile, Nicolas, Pierre, Lannou, Christian, and Ney, Bertrand
- Published
- 2004
19. Variation in aggressiveness is detected among Puccinia triticina isolates of the same pathotype and clonal lineage in the adult plant stage
- Author
-
Pariaud, Bénédicte, Goyeau, Henriette, Halkett, Fabien, Robert, Corinne, and Lannou, Christian
- Published
- 2012
- Full Text
- View/download PDF
20. Microstructural variation in the human striatum using non-negative matrix factorization
- Author
-
Robert, Corinne, primary, Patel, Raihaan, additional, Blostein, Nadia, additional, Steele, Chrisopher C., additional, and Chakravarty, M. Mallar, additional
- Published
- 2021
- Full Text
- View/download PDF
21. Conclusion-2èmeJournéeDavidClaessen
- Author
-
Robert, Corinne
- Published
- 2020
- Full Text
- View/download PDF
22. A functional structural model of grass development based on metabolic regulation and coordination rules
- Author
-
Gauthier, Marion, primary, Barillot, Romain, additional, Schneider, Anne, additional, Chambon, Camille, additional, Fournier, Christian, additional, Pradal, Christophe, additional, Robert, Corinne, additional, and Andrieu, Bruno, additional
- Published
- 2020
- Full Text
- View/download PDF
23. Adaptation of Biotrophic Leaf Pathogens to Fertilization-Mediated Changes in Plant Traits: A Comparison of the Optimization Principle to Invasion Fitness
- Author
-
Précigout, Pierre-Antoine, primary, Robert, Corinne, additional, and Claessen, David, additional
- Published
- 2020
- Full Text
- View/download PDF
24. Modelling the interactions between landscape structure and spatio-temporal dynamics of pest natural enemies: Implications for conservation biological control
- Author
-
Le Gal, Antoine, primary, Robert, Corinne, additional, Accatino, Francesco, additional, Claessen, David, additional, and Lecomte, Jane, additional
- Published
- 2020
- Full Text
- View/download PDF
25. Does the Latent Period of Leaf Fungal Pathogens Reflect Their Trophic Type? A Meta-Analysis of Biotrophs, Hemibiotrophs, and Necrotrophs
- Author
-
Précigout, Pierre-Antoine, primary, Claessen, David, additional, Makowski, David, additional, and Robert, Corinne, additional
- Published
- 2020
- Full Text
- View/download PDF
26. Le jeu en vaut la chandelle
- Author
-
Coudreau, Chantal, primary, Robert, Corinne, additional, Marquet, Claire, additional, and Biasse, Aline, additional
- Published
- 2000
- Full Text
- View/download PDF
27. Agroecology: biodiversity in agroecosystems to regulate pests and diseases?
- Author
-
Jullien, Alexandra, Robert, Corinne, Doré, Thierry, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Université Paris-Saclay, Agronomie, and AgroParisTech-Institut National de la Recherche Agronomique (INRA)
- Subjects
[SDV]Life Sciences [q-bio] - Abstract
Agroecology: biodiversity in agroecosystems to regulate pests and diseases?Agriculture is currently facing yield stability and is causing a negative environmental impact. These two elements call into question the ever increasing use of synthetic inputs. In order to make agroecosystems resilient and autonomous with regard to synthetic inputs, one of the bets of agroecology is to mobilize biodiversity to promote biological regulation. In short, it aims to design agroecosystems capable of self-regulation while remaining sufficiently productive. We will begin by presenting the different meanings of agroecology and our own positioning. Then we will show how leveraging biodiversity is possible by illustrating it at different scales from organ to landscape. Thirdly, we will question the limits or unknowns of these effects and the compromises with respect to other services expected from agroecosystems. In conclusion, we will put these elements in a context of global change and in particular of climate change.; Agroécologie : la biodiversité dans les agroécosystèmes pour réguler les bioagresseurs ?L’agriculture fait actuellement face à une stabilité des rendements et est source d’un impact environnemental négatif. Ces deux éléments remettent en cause l’usage toujours en augmentation des intrants de synthèse. Afin de rendre les agroécosystèmes résilients et autonomes vis-à-vis des intrants de synthèse, un des paris de l’agroécologie est de mobiliser la biodiversité pour favoriser les régulations biologiques. En somme elle vise à concevoir des agroécosystèmes capables de s’autoréguler tout en restant suffisamment productifs. Nous commencerons par présenter les différentes acceptions de l’agroécologie et notre propre positionnement. Puis nous montrerons comment l’utilisation du levier que représente la biodiversité est possible en l’illustrant à différentes échelles depuis l’organe jusqu’au paysage. Dans un troisième temps, nous questionnerons les limites voire les inconnus de ces effets et les compromis vis à vis des autres services attendus des agroécosystèmes. En conclusion nous replacerons ces éléments dans un contexte de changement global et en particulier de changement climatique.
- Published
- 2018
28. Using crop-pathogen modeling to identify plant traits to control Zymoseptoria tritici epidemics on wheat
- Author
-
Gigot, Christophe, Claessen, David, Garin, Guillaume, Fournier, Christian, Pradal, Christophe, Robert, Corinne, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Université Paris-Saclay, Institut de biologie de l'ENS Paris (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), ITK, Écophysiologie des Plantes sous Stress environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut de Biologie Computationnelle (IBC), Institut National de la Recherche Agronomique (INRA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), ProdInra, Archive Ouverte, Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS), École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), and Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
- Subjects
consumer-resource dynamics ,tolerance ,[SDV]Life Sciences [q-bio] ,fungi ,food and beverages ,virulence ,[SDV] Life Sciences [q-bio] ,fertilization ,trait-based modeling ,wheat ,disease-escaping traits ,Septoria tritici blotch ,Zymoseptoria tritici ,epidemiology - Abstract
Diversification in pathogen control methods to reduce the severity of economically important foliar diseases such as Zymoseptoria tritici on wheat is needed. One way is to identify plant physiological and architectural traits that influence disease development and that can be selected in the process of crop breeding. Such traits may be used for improving tolerance or disease escape. Traits favoring disease escape, the focus of our work, may significantly decrease crop epidemics (Robert et al., 2018). However, understanding the role of such traits in crop-pathogen interactions is a daunting task because the interactions are multiple and dynamic in time. To characterize and quantify crop-pathogen interactions, an innovative trait-based and resource-based modeling framework was developed (Precigout et al., 2017). In this framework, the pathosystem is assumed to respond dynamically to both architecture and physiological status of the host canopy. A canopy consists of plenty of small patches, i.e. small functional and infectable units of leaf tissue. Production of new patches, for canopy growth and renewal of photosynthetically active plant tissues, is a function of the available resources produced by the other patches. Pathogen spores can contaminate nearby healthy patches. The definition of patch proximity depends on dispersal abilities of the pathogen and canopy architecture. We used and adapted this modeling framework to quantify the effects of several plant traits on Zymoseptoria tritici epidemics for varied climate scenarios. The complex infection cycle of Z. tritici characterized by a long symptomless incubation period was implemented in the model. We studied plant architectural traits such as leaf size or stem height, and plant physiological traits such as leaf lifespan or leaf metabolite contents. In our simulations, these traits impacted the epidemics dynamics though their effects on pathogen dispersal and on the amount of resources available for the pathogen. Sensitivity analyses showed how disease severity depended on plant traits and pathogen virulence. The importance of several plant and pathogen traits could be linked to the pathogen’s ability to manage the race for the colonization of the canopy in the face of canopy growth. Playing on host traits also made it possible to simulate different wheat varieties - with contrasted heights, pathogen resistance or precocity - to characterize the behavior of the pathosystem of interest for different host ideotypes. We argue that this kind of trait-based modeling approach is a valuable tool to identify plant traits promoting more resilient agroecosystems in particular for crop breeding in a context of innovative and sustainable crop protection.
- Published
- 2018
29. Questioning the sustainability of quantitative physiological resistance : epidemiological and evolutionary responses of foliar fungal pathogens to changes in wheat plant traits
- Author
-
Précigout, Pierre-Antoine, Claessen, David, Robert, Corinne, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Université Paris-Saclay, Institut de biologie de l'ENS Paris (IBENS), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS), Département de Biologie - ENS Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), and ProdInra, Archive Ouverte
- Subjects
[SDV] Life Sciences [q-bio] ,modelling ,brown rust ,plant traits ,ecophysiology ,plant pathogenic fungi ,[SDV]Life Sciences [q-bio] ,fungi ,evolutionary ecology ,latent period ,food and beverages ,epidemiology - Abstract
Crop pathogens are known to rapidly adapt to agricultural practices. Although cultivar resistance breakdown and resistance to pesticides have been broadly studied, little is known about the adaptation of crop pathogens to more quantitative traits such as quantitative resistance. Quantitative resistance could be more sustainable than gene for gene resistance because it exerts a lower selective pressure on pathogens and relies on a variety of plant traits (and probably genes) rather than on a single one. Using a modelling approach, in this study we address the epidemiological and evolutionary responses of the pathogen to changes in several plant traits that impact epidemic development. With the model, we study life history evolution of biotrophic fungal pathogens of wheat. We focus on a single pathogen life history trait, the latent period, which directly determines the amount of resource allocated to growth and reproduction alongside the speed of canopy colonization. We investigate the evolutionary response of pathogens to changing several plant traits such as leaf metabolite concentration, leaf dimension and leaf lifespan. These plant traits impact epidemic development: disease severity is predicted to increase with metabolite content and leaf lifespan. We compare predictions of latent period evolution based on different “empirical” fitness measures such as annual spore production or within-season exponential growth rate, with predictions based on the more rigorous concept of invasion fitness from adaptive dynamics theory. For each of the studied plant traits, we use pairwise invisibility plots to identify evolutionarily stable strategies of the latent period (ESS). The ESS latent period responds differently to the different plant traits: it is longer on plants with long-lasting leaves and shorter on plants with bigger leaves leading to denser canopies. Our results further reveal that early canopy colonization during crop development might be a critical factor determining the issue of between-strain competition and shaping pathogen adaptation in the context of plant quantitative resistance. Finally, we argue that landscape-level heterogeneity may induce maladaptation of the pathogen that may be useful in stalling the evolutionary breakdown of quantitative resistance
- Published
- 2018
30. Using physiologically and spatially structured consumer- resource population models to address current issues in plant pathology
- Author
-
Gigot, Christophe, Précigout, Pierre-Antoine, Robert, Corinne, Claessen, David, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Université Paris-Saclay, Institut de biologie de l'ENS Paris (UMR 8197/1024) (IBENS), Département de Biologie - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Paris (ENS Paris)-École normale supérieure - Paris (ENS Paris)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), ProdInra, Archive Ouverte, Institut de biologie de l'ENS Paris (IBENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Département de Biologie - ENS Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDV] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] - Abstract
Epidemiologists and pathologists for addressing topical questions about, for example, the efficiency of agroecological solutions to mitigating crop diseases or their impact on pathogen evolution. We propose here to showcase two modeling approaches that our team is currently using in this context. Firstly, based on the framework of physiologically structured population models and its numerical implementation (referred to as the EBTtool) we represent a (multi-) seasonally growing crop canopy as a dynamic collection of small infectable patches of leaf tissue with intrinsic and dynamic properties (e.g. age, position in the canopy, nutrient content, infection status). Dynamics of predicted disease epidemics depend on the dynamic properties of all the patches over time. Secondly, the agent-based modeling environment NetLogo provides a conceptual framework to model spatially extended dynamics of disease progression in explicit landscapes with different spatial arrangements of crops that are not necessarily static over the cropping seasons. We are using these two modeling approaches to study resource dynamics at the canopy and landscape scales as a way to explore the potential of regulating crop pathogens by reducing or diversifying nitrogen fertilization practices in the pathosystems wheat/rusts and wheat/septoria tritici blotch. These modeling approaches offer the opportunity to (1) predict short and long term epidemiological dynamics based on assumptions on the consumer-resource interactions at the lesion scale, (2) to reveal pathogen trade-offs (transmission, virulence, aggressiveness) that emerge from the interactions between the pathogen and ecophysiological and morphological dynamics of the crop canopy, (3) to study the effect of spatial resource heterogeneity on pathogen dynamics, adaptation and maladaptation.
- Published
- 2018
31. Does the long incubation period of Zymoseptoria tritici result from ecological constraints?
- Author
-
Gigot, Christophe, Claessen, David, and Robert, Corinne
- Published
- 2018
- Full Text
- View/download PDF
32. Using crop-pathogen modeling to identify plant traits to control Zymoseptoria tritici epidemics on wheat. PIV-58
- Author
-
Gigot, Christophe, Claessen, David, Garin, Guillaume, Fournier, Christian, Pradal, Christophe, and Robert, Corinne
- Subjects
fungi ,food and beverages - Abstract
Diversification in pathogen control methods to reduce the severity of economically important foliar diseases such as Zymoseptoria tritici on wheat is needed. One way is to identify plant physiological and architectural traits that influence disease development and that can be selected in the process of crop breeding. Such traits may be used for improving tolerance or disease escape. Traits favoring disease escape, the focus of our work, may significantly decrease crop epidemics (Robert et al., 2018). However, understanding the role of such traits in crop-pathogen interactions is a daunting task because the interactions are multiple and dynamic in time. To characterize and quantify crop-pathogen interactions, an innovative trait-based and resource-based modeling framework was developed (Precigout et al., 2017). In this framework, the pathosystem is assumed to respond dynamically to both architecture and physiological status of the host canopy. A canopy consists of plenty of small patches, i.e. small functional and infectable units of leaf tissue. Production of new patches, for canopy growth and renewal of photosynthetically active plant tissues, is a function of the available resources produced by the other patches. Pathogen spores can contaminate nearby healthy patches. The definition of patch proximity depends on dispersal abilities of the pathogen and canopy architecture. We used and adapted this modeling framework to quantify the effects of several plant traits on Zymoseptoria tritici epidemics for varied climate scenarios. The complex infection cycle of Z. tritici characterized by a long symptomless incubation period was implemented in the model. We studied plant architectural traits such as leaf size or stem height, and plant physiological traits such as leaf lifespan or leaf metabolite contents. In our simulations, these traits impacted the epidemics dynamics though their effects on pathogen dispersal and on the amount of resources available for the pathogen. Sensitivity analyses showed how disease severity depended on plant traits and pathogen virulence. The importance of several plant and pathogen traits could be linked to the pathogen's ability to manage the race for the colonization of the canopy in the face of canopy growth. Playing on host traits also made it possible to simulate different wheat varieties - with contrasted heights, pathogen resistance or precocity - to characterize the behavior of the pathosystem of interest for different host ideotypes. We argue that this kind of trait-based modeling approach is a valuable tool to identify plant traits promoting more resilient agroecosystems in particular for crop breeding in a context of innovative and sustainable crop protection.
- Published
- 2018
33. Using physiologically and spatially structured consumer- resource population models to address current issues in plant pathology
- Author
-
Précigout, Pierre-Antoine, Robert, Corinne, Claessen, David, and Gigot, Christophe
- Abstract
Epidemiologists and pathologists for addressing topical questions about, for example, the efficiency of agroecological solutions to mitigating crop diseases or their impact on pathogen evolution. We propose here to showcase two modeling approaches that our team is currently using in this context. Firstly, based on the framework of physiologically structured population models and its numerical implementation (referred to as the EBTtool) we represent a (multi-) seasonally growing crop canopy as a dynamic collection of small infectable patches of leaf tissue with intrinsic and dynamic properties (e.g. age, position in the canopy, nutrient content, infection status). Dynamics of predicted disease epidemics depend on the dynamic properties of all the patches over time. Secondly, the agent-based modeling environment NetLogo provides a conceptual framework to model spatially extended dynamics of disease progression in explicit landscapes with different spatial arrangements of crops that are not necessarily static over the cropping seasons. We are using these two modeling approaches to study resource dynamics at the canopy and landscape scales as a way to explore the potential of regulating crop pathogens by reducing or diversifying nitrogen fertilization practices in the pathosystems wheat/rusts and wheat/septoria tritici blotch. These modeling approaches offer the opportunity to (1) predict short and long term epidemiological dynamics based on assumptions on the consumer-resource interactions at the lesion scale, (2) to reveal pathogen trade-offs (transmission, virulence, aggressiveness) that emerge from the interactions between the pathogen and ecophysiological and morphological dynamics of the crop canopy, (3) to study the effect of spatial resource heterogeneity on pathogen dynamics, adaptation and maladaptation.
- Published
- 2018
34. Agroecology: biodiversity in agroecosystems to regulate pests and diseases?
- Author
-
Robert, Corinne, Doré, Thierry, and Jullien, Alexandra
- Abstract
Agroécologie : la biodiversité dans les agroécosystèmes pour réguler les bioagresseurs ? L’agriculture fait actuellement face à une stabilité des rendements et est source d’un impact environnemental négatif. Ces deux éléments remettent en cause l’usage toujours en augmentation des intrants de synthèse. Afin de rendre les agroécosystèmes résilients et autonomes vis-à-vis des intrants de synthèse, un des paris de l’agroécologie est de mobiliser la biodiversité pour favoriser les régulations biologiques. En somme elle vise à concevoir des agroécosystèmes capables de s’autoréguler tout en restant suffisamment productifs. Nous commencerons par présenter les différentes acceptions de l’agroécologie et notre propre positionnement. Puis nous montrerons comment l’utilisation du levier que représente la biodiversité est possible en l’illustrant à différentes échelles depuis l’organe jusqu’au paysage. Dans un troisième temps, nous questionnerons les limites voire les inconnus de ces effets et les compromis vis à vis des autres services attendus des agroécosystèmes. En conclusion nous replacerons ces éléments dans un contexte de changement global et en particulier de changement climatique., Agroecology: biodiversity in agroecosystems to regulate pests and diseases? Agriculture is currently facing yield stability and is causing a negative environmental impact. These two elements call into question the ever increasing use of synthetic inputs. In order to make agroecosystems resilient and autonomous with regard to synthetic inputs, one of the bets of agroecology is to mobilize biodiversity to promote biological regulation. In short, it aims to design agroecosystems capable of self-regulation while remaining sufficiently productive. We will begin by presenting the different meanings of agroecology and our own positioning. Then we will show how leveraging biodiversity is possible by illustrating it at different scales from organ to landscape. Thirdly, we will question the limits or unknowns of these effects and the compromises with respect to other services expected from agroecosystems. In conclusion, we will put these elements in a context of global change and in particular of climate change.
- Published
- 2018
35. Using crop-pathogen modeling to identify plant traits to control Zymoseptoria tritici epidemics on wheat
- Author
-
Claessen, David, Garin, Guillaume, Fournier, Christian, Pradal, Christophe, Robert, Corinne, and Gigot, Christophe
- Subjects
Septoria tritici blotch ,Zymoseptoria tritici ,wheat ,fertilization ,epidemiology ,tolerance ,trait-based modeling ,virulence ,consumer-resource dynamics ,disease-escaping traits ,fungi ,food and beverages - Abstract
Diversification in pathogen control methods to reduce the severity of economically important foliar diseases such as Zymoseptoria tritici on wheat is needed. One way is to identify plant physiological and architectural traits that influence disease development and that can be selected in the process of crop breeding. Such traits may be used for improving tolerance or disease escape. Traits favoring disease escape, the focus of our work, may significantly decrease crop epidemics (Robert et al., 2018). However, understanding the role of such traits in crop-pathogen interactions is a daunting task because the interactions are multiple and dynamic in time. To characterize and quantify crop-pathogen interactions, an innovative trait-based and resource-based modeling framework was developed (Precigout et al., 2017). In this framework, the pathosystem is assumed to respond dynamically to both architecture and physiological status of the host canopy. A canopy consists of plenty of small patches, i.e. small functional and infectable units of leaf tissue. Production of new patches, for canopy growth and renewal of photosynthetically active plant tissues, is a function of the available resources produced by the other patches. Pathogen spores can contaminate nearby healthy patches. The definition of patch proximity depends on dispersal abilities of the pathogen and canopy architecture. We used and adapted this modeling framework to quantify the effects of several plant traits on Zymoseptoria tritici epidemics for varied climate scenarios. The complex infection cycle of Z. tritici characterized by a long symptomless incubation period was implemented in the model. We studied plant architectural traits such as leaf size or stem height, and plant physiological traits such as leaf lifespan or leaf metabolite contents. In our simulations, these traits impacted the epidemics dynamics though their effects on pathogen dispersal and on the amount of resources available for the pathogen. Sensitivity analyses showed how disease severity depended on plant traits and pathogen virulence. The importance of several plant and pathogen traits could be linked to the pathogen’s ability to manage the race for the colonization of the canopy in the face of canopy growth. Playing on host traits also made it possible to simulate different wheat varieties - with contrasted heights, pathogen resistance or precocity - to characterize the behavior of the pathosystem of interest for different host ideotypes. We argue that this kind of trait-based modeling approach is a valuable tool to identify plant traits promoting more resilient agroecosystems in particular for crop breeding in a context of innovative and sustainable crop protection.
- Published
- 2018
36. Questioning the sustainability of quantitative physiological resistance : epidemiological and evolutionary responses of foliar fungal pathogens to changes in wheat plant traits
- Author
-
Claessen, David, Robert, Corinne, and Précigout, Pierre-Antoine
- Subjects
fungi ,food and beverages ,modelling ,epidemiology ,plant traits ,ecophysiology ,evolutionary ecology ,plant pathogenic fungi ,latent period ,brown rust - Abstract
Crop pathogens are known to rapidly adapt to agricultural practices. Although cultivar resistance breakdown and resistance to pesticides have been broadly studied, little is known about the adaptation of crop pathogens to more quantitative traits such as quantitative resistance. Quantitative resistance could be more sustainable than gene for gene resistance because it exerts a lower selective pressure on pathogens and relies on a variety of plant traits (and probably genes) rather than on a single one. Using a modelling approach, in this study we address the epidemiological and evolutionary responses of the pathogen to changes in several plant traits that impact epidemic development. With the model, we study life history evolution of biotrophic fungal pathogens of wheat. We focus on a single pathogen life history trait, the latent period, which directly determines the amount of resource allocated to growth and reproduction alongside the speed of canopy colonization. We investigate the evolutionary response of pathogens to changing several plant traits such as leaf metabolite concentration, leaf dimension and leaf lifespan. These plant traits impact epidemic development: disease severity is predicted to increase with metabolite content and leaf lifespan. We compare predictions of latent period evolution based on different “empirical” fitness measures such as annual spore production or within-season exponential growth rate, with predictions based on the more rigorous concept of invasion fitness from adaptive dynamics theory. For each of the studied plant traits, we use pairwise invisibility plots to identify evolutionarily stable strategies of the latent period (ESS). The ESS latent period responds differently to the different plant traits: it is longer on plants with long-lasting leaves and shorter on plants with bigger leaves leading to denser canopies. Our results further reveal that early canopy colonization during crop development might be a critical factor determining the issue of between-strain competition and shaping pathogen adaptation in the context of plant quantitative resistance. Finally, we argue that landscape-level heterogeneity may induce maladaptation of the pathogen that may be useful in stalling the evolutionary breakdown of quantitative resistance
- Published
- 2018
37. Modelling interaction dynamics between two foliar pathogens in wheat: A multi-scale approach
- Author
-
Garin, Guillaume, Pradal, Christophe, Fournier, Christian, Claessen, David, Houlès, Vianney, Robert, Corinne, Garin, Guillaume, Pradal, Christophe, Fournier, Christian, Claessen, David, Houlès, Vianney, and Robert, Corinne
- Abstract
Background and Aims Disease models can improve our understanding of dynamic interactions in pathosystems and thus support the design of innovative and sustainable strategies of crop protections. However, most epidemiological models focus on a single type of pathogen, ignoring the interactions between different parasites competing on the same host and how they are impacted by properties of the canopy. This study presents a new model of a disease complex coupling two wheat fungal diseases, caused by Zymoseptoria tritici (septoria) and Puccinia triticina (brown rust), respectively, combined with a functional–structural plant model of wheat. Methods At the leaf scale, our model is a combination of two sub-models of the infection cycles for the two fungal pathogens with a sub-model of competition between lesions. We assume that the leaf area is the resource available for both fungi. Due to the necrotic period of septoria, it has a competitive advantage on biotrophic lesions of rust. Assumptions on lesion competition are first tested developing a geometrically explicit model on a simplified rectangular shape, representing a leaf on which lesions grow and interact according to a set of rules derived from the literature. Then a descriptive statistical model at the leaf scale was designed by upscaling the previous mechanistic model, and both models were compared. Finally, the simplified statistical model has been used in a 3-D epidemiological canopy growth model to simulate the diseases dynamics and the interactions at the canopy scale. Key Results At the leaf scale, the statistical model was a satisfactory metamodel of the complex geometrical model. At the canopy scale, the disease dynamics for each fungus alone and together were explored in different weather scenarios. Rust and septoria epidemics showed different behaviours. Simulated epidemics of brown rust were greatly affected by the presence of septoria for almost all the tested scenarios, but the reverse was not the c
- Published
- 2018
38. IPSIM-Web, An Online Resource for Promoting Qualitative Aggregative Hierarchical Network Models to Predict Plant Disease Risk: Application to Brown Rust on Wheat
- Author
-
Robin, Marie-Hélène, primary, Bancal, Marie-Odile, additional, Cellier, Vincent, additional, Délos, Marc, additional, Felix, Irène, additional, Launay, Marie, additional, Magnard, Adèle, additional, Olivier, Axel, additional, Robert, Corinne, additional, Rolland, Bernard, additional, Sache, Ivan, additional, and Aubertot, Jean-Noël, additional
- Published
- 2018
- Full Text
- View/download PDF
39. Modelling interaction dynamics between two foliar pathogens in wheat: a multi-scale approach
- Author
-
Garin, Guillaume, primary, Pradal, Christophe, additional, Fournier, Christian, additional, Claessen, David, additional, Houlès, Vianney, additional, and Robert, Corinne, additional
- Published
- 2017
- Full Text
- View/download PDF
40. Modelling interaction dynamics between two foliar pathogens in wheat: A multi-scale approach
- Author
-
Garin, Guillaume, Pradal, Christophe, Fournier, Christian, Claessen, David, Houlès, Vianney, Robert, Corinne, Garin, Guillaume, Pradal, Christophe, Fournier, Christian, Claessen, David, Houlès, Vianney, and Robert, Corinne
- Abstract
Background and Aims Disease models can improve our understanding of dynamic interactions in pathosystems and thus support the design of innovative and sustainable strategies of crop protections. However, most epidemiological models focus on a single type of pathogen, ignoring the interactions between different parasites competing on the same host and how they are impacted by properties of the canopy. This study presents a new model of a disease complex coupling two wheat fungal diseases, caused by Zymoseptoria tritici (septoria) and Puccinia triticina (brown rust), respectively, combined with a functional–structural plant model of wheat. Methods At the leaf scale, our model is a combination of two sub-models of the infection cycles for the two fungal pathogens with a sub-model of competition between lesions. We assume that the leaf area is the resource available for both fungi. Due to the necrotic period of septoria, it has a competitive advantage on biotrophic lesions of rust. Assumptions on lesion competition are first tested developing a geometrically explicit model on a simplified rectangular shape, representing a leaf on which lesions grow and interact according to a set of rules derived from the literature. Then a descriptive statistical model at the leaf scale was designed by upscaling the previous mechanistic model, and both models were compared. Finally, the simplified statistical model has been used in a 3-D epidemiological canopy growth model to simulate the diseases dynamics and the interactions at the canopy scale. Key Results At the leaf scale, the statistical model was a satisfactory metamodel of the complex geometrical model. At the canopy scale, the disease dynamics for each fungus alone and together were explored in different weather scenarios. Rust and septoria epidemics showed different behaviours. Simulated epidemics of brown rust were greatly affected by the presence of septoria for almost all the tested scenarios, but the reverse was not the c
- Published
- 2017
41. Quantification of the architectural effects of wheat canopies on the interception of splash dispersed spores
- Author
-
Saint-Jean, Sébastien, Vidal, Tiphaine, Gigot, Christophe, Lusley, Pauline, Girardin, Guillaume, Robert, Corinne, Huber, Laurent, Pope De Vallavieille, Claude, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Université Paris-Saclay, BIOlogie et GEstion des Risques en agriculture (BIOGER), AgroParisTech-Institut National de la Recherche Agronomique (INRA), and FSPMA 2016.
- Subjects
[SDV]Life Sciences [q-bio] ,fungi ,food and beverages - Abstract
poster abstract; Crop canopy architecture affects the dispersal of airborne fungal spores of plant diseases, in particular in the case of septoria tritici blotch (STB) which is an important wheat disease mainly spread by rain splash. Therefore, the characteristics of canopy architecture (medium of dispersal of the pathogenic agent) can be taken into account to implement alternative disease control methods in order to slow down the vertical dispersal of STB in the field. And for the particular case of cultivar mixtures, different plant architectural traits can be used to improve the “barrier” effect on spore dispersal, which is provided by the most resistant components in the mixtures (see Vidal et al. in this issue). We investigated, by the mean of experiments under controlled conditions and modelling, the effects of the canopy architecture on one dispersal cycle of spores of Zymoseptoria tritici. The experiment was performed using a simulator of artificial rains on micro-canopies of wheat (1 m2), which were grown in a controlled greenhouse environment. A linear inoculum source of spores suspension was exposed to a simulated and calibrated rainfall event in order to get reproducible splash-dispersal towards four types of canopy differing by their architectures characterized by their leaf area densities (LAD). Splash droplets of the suspension were collected at different locations within the canopies to quantify spore fluxes and the resulting disease severity and incidence were assessed after the latency period. Based on a mechanistic modelling of spore dispersal and a 3D numerical reconstruction of the canopies, we quantified strong effects of the canopy structure on the spore dispersal. Denser canopies (i.e. with higher LAD) had a higher rate of spore interception that led, (i) for susceptible cultivars, to a higher disease severity, and (ii) for the resistant cultivars, to a higher spore trapping rate and therefore to a better “barrier” effect in the case of cultivar mixtures.
- Published
- 2016
42. Modeling and simulating the distribution of fungicide among leaves in wheat
- Author
-
Fournier , Christian, Danthony , Anne, Pointet , Stéphanie, Perriot , Benjamin, Abichou , Mariem, Poidevin , Samuel, Da Costa , Jessica, Cotteux , Eric, Andrieu , Bruno, Saint-Jean , Sébastien, Robert , Corinne, Écophysiologie des Plantes sous Stress environnementaux (LEPSE), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), ARVALIS - Institut du végétal [Paris], Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Université Paris-Saclay, FSPMA 2016., Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Écophysiologie des Plantes sous Stress environnementaux ( LEPSE ), Centre international d'études supérieures en sciences agronomiques ( Montpellier SupAgro ) -Institut National de la Recherche Agronomique ( INRA ) -Institut national d’études supérieures agronomiques de Montpellier ( Montpellier SupAgro ), ARVALIS - Institut du Végétal, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes ( ECOSYS ), AgroParisTech-Institut National de la Recherche Agronomique ( INRA ), and Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture ( IRSTEA )
- Subjects
[ SDV ] Life Sciences [q-bio] ,[SDV]Life Sciences [q-bio] ,food and beverages - Abstract
poster abstract; International audience; The upper leaves of wheat are the main sources of assimilate for grain production. As such, they are a specific target for fungicide treatments. The efficacy of a treatment can be assessed by the quantity of fungicide deposited on target leaves relative to the spraying application rate per unit area. For a given spraying system and under favorable meteorological conditions, foliar deposit depends on the individual areas and spatial arrangement of leaves within the canopy, which determine the interception of the spray; and on the physio-chemical characteristics of the product, which determine its fate on leaf surfaces. The objectives of this study are to model the deposition of pesticide on the upper leaves of wheat and to identify the plant architectural traits that influence the foliar deposit as the plant develops. For this we couple a 3D architectural model of wheat (ADEL-Wheat), which captures the dynamics of the spatial arrangement of individual leaves at different stages of plant development, with the projection algorithm of the Caribu light interception model that allows estimating the deposit of fungicide within the canopy. A three-year experiment was performed (ECHAP project), with detailed assessments of plant architecture for three genotypes, and of tracer-deposit (tartrazine) on the four upper leaves, for two spraying dates. The architectural measurements were used to calibrate the wheat model that was tested against the foliar deposit data. We used the model to further analyse the origin of the differences of deposit between leaves and between treatment dates observed in the experiments. The analyses reveal that the dynamics of leaf bending, assumed to be a function of leaf age, has a strong influence in spraying efficacy, especially for the upper two leaves. We therefore propose that optimal application strategy could be reasoned not only by considering the degree of expansion of targeted leaves, but also their dynamic of bending.
- Published
- 2016
43. Using combined virtual plant - pathogen models to compare the influence of wheat architecture on epidemics of two contrasted foliar fungi
- Author
-
Garin, Guillaume, Fournier, Christian, Pradal, Christophe, Houlès, Vianney, Robert, Corinne, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Écophysiologie des Plantes sous Stress environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), ITK, Université Paris-Saclay, Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), Département Systèmes Biologiques (Cirad-BIOS), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad), and FSPMA 2016.
- Subjects
[SDV]Life Sciences [q-bio] ,fungi ,food and beverages - Abstract
Book of abstracts-posters; It is urgent for agriculture to adopt new methods of crop protection that use less pesticide. In the perspective of agroecology, a solution is to regulate the pathogen populations via the properties of plant canopies. Here, we focus on the effects of plant architecture on foliar fungal epidemics. Combined FSPM-epidemic models are potential good tools to simulate these effects and to identify the most influential plant traits on epidemics. In wheat, the main fungal foliar diseases are septoria and brown rust. Both diseases develop lesions on leaves but the symptoms, the infection cycles and the dispersal types are different. Zymoseptoria tritici is a hemi-biotrophic fungus with sporulation occurring on necrotic leaf tissue after a biotrophic colonization phase, and it is mainly dispersed by rain-splash. Puccinia triticina is a strictly biotrophic fungus that grows and sporulates only on living tissues and spores are mainly dispersed by wind. The effects of architecture may depend on the dispersal strategy and infection cycle. This raises questions on the influence of plant architecture on these varied types of foliar fungi: do architectural traits impact their epidemics in the same way? Are there plant traits with opposite effects on the diseases? Answering these questions is crucial in the perspective of controlling fungi complexes on the same host. Several wheat architectural traits, such as stem height and plant development rate, are known to influence septoria. However, only very few studies are available on leaf rust. Our objective is to compare the effects of wheat architecture on epidemics of septoria and brown rust. For this, two FSPM models (Wheat-septoria and Wheat-brown rust) were developed and used to compare the effects of wheat properties on epidemics. The tested plant traits are phenology, organ growth rates (stems and leaves), organ dimensions, leaf curvature, and timing of leaf senescence. The outputs compared are the disease severity on each leaf rank of the canopy. The analysis is done for different climates. The results show that the two pathogens are impacted differently by plant architectural traits, even if they are both very sensitive to leaf green life span. The interaction with climate is also different. This work is an important step in developing methods to study varied pathosystems using FSPMs. This is also a first step to establish a more generic understanding of how different types of fungus are influenced by plant architecture
- Published
- 2016
44. Simulation of the effects of leaf bending dynamics on fungicide deposit on individual leaves of wheat using a 3D architectural model
- Author
-
Fournier, Christian, Danthony, Anne, Perriot, Benjamin, Abichou, Mariem, Poidevin, Samuel, Da Costa, Jessica, Cotteux, Eric, Andrieu, Bruno, Saint-Jean, Sébastien, Robert, Corinne, Écophysiologie des Plantes sous Stress environnementaux (LEPSE), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), ARVALIS - Institut du végétal [Paris], Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Université Paris-Saclay, Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), and FSPMA 2016.
- Subjects
[SDV]Life Sciences [q-bio] ,food and beverages - Abstract
oral communication abstract; The upper leaves of wheat are the main sources of assimilate for grain production. As such, they are a specific target for fungicide treatments. The efficacy of a treatment can be assessed by the quantity of fungicide deposited on target leaves relative to the spraying application rate per unit area. For a given spraying system and under favorable meteorological conditions, foliar deposit depends on the individual areas and spatial arrangement of leaves within the canopy, which determine the interception of the spray; and on the physio-chemical characteristics of the product, which determine its fate on leaf surfaces. The objectives of this study are to model the deposition of pesticide on the upper leaves of wheat and to identify the plant architectural traits that influence the foliar deposit as the plant develops. For this we couple a 3D architectural model of wheat (ADEL-Wheat), which captures the dynamics of the spatial arrangement of individual leaves at different stages of plant development, with the projection algorithm of the Caribu light interception model that allows estimating the deposit of fungicide within the canopy. A three-year experiment was performed (ECHAP project), with detailed assessments of plant architecture for three genotypes, and of tracer-deposit (tartrazine) on the four upper leaves, for two spraying dates. The architectural measurements were used to calibrate the wheat model that was tested against the foliar deposit data. We used the model to further analyse the origin of the differences of deposit between leaves and between treatment dates observed in the experiments. The analyses reveal that the dynamics of leaf bending, assumed to be a function of leaf age, has a strong influence in spraying efficacy, especially for the upper two leaves. We therefore propose that optimal application strategy could be reasoned not only by considering the degree of expansion of targeted leaves, but also their dynamic of bending.
- Published
- 2016
45. ECHAP : un projet pour identifier les possibilités de réduction de l’utilisation des fongicides en utilisant l’architecture des couverts
- Author
-
Robert, Corinne, Fournier, Christian, Abichou, Mariem, Andrieu, Bruno, Bancal, Marie-Odile, Barriuso, Enrique, Bedos, Carole, Benoit, Pierre, Bergheaud, Valerie, Bidon, Marc, Bonicelli, Bernard, Chambon, Camille, Chapuis, R., Cotteux, Eric, Da Costa, J., Durand, Brigitte, Gagnaire, Nathalie, Gaudillat, Damien, Gigot, Christophe, Girardin, Guillaume, Gouache, David, Jean-Jacques, Josiane, Mamy, Laure, Ney, Bertrand, Paveley, N., Perriot, Benjamin, Poidevin, Samuel, Pointet, Stéphanie, Pot, Valerie, Pradal, Christophe, Richard, Saint-Jean, Sebastien, Salse, Jérôme, Sinfort, Carole, Smith, Ter Halle, A., Van Den Berg, E., and Walker, Anne-Sophie
- Subjects
fongicides ,architecture ,septoriose ,blé ,modélisation ,traitements - Published
- 2016
46. Crop Fertilization Impacts Epidemics and Optimal Latent Period of Biotrophic Fungal Pathogens
- Author
-
Précigout, Pierre-Antoine, primary, Claessen, David, additional, and Robert, Corinne, additional
- Published
- 2017
- Full Text
- View/download PDF
47. ECHAP « L’architecture des couverts végétaux : un levier pour réduire l’utilisation des fongicides ? »
- Author
-
Robert, Corinne, Fournier, Christian, Bedos, Carole, Gouache, David, Perriot, Benjamin, Environnement et Grandes Cultures (EGC), Institut National de la Recherche Agronomique (INRA)-AgroParisTech, Modeling plant morphogenesis at different scales, from genes to phenotype (VIRTUAL PLANTS), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)-Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Écophysiologie des Plantes sous Stress environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), AVALIS Institut du Végétal, Direction Scientifique, Action pilotée par le Ministère chargé du développement durable, avec l’appui financier de l’Office national de l’eau et des milieux aquatiques, par les crédits issus de la redevance pour pollutions diffuses attribués au financement du Plan Ecophyto, INRA, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), AgroParisTech-Institut National de la Recherche Agronomique (INRA), Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Inria Sophia Antipolis - Méditerranée (CRISAM), and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation - Abstract
L’objectif du projet ECHAP est d’identifier les possibilités de réduction de traitements fongicides via l’utilisation de l’architecture des couverts. Le projet a tout d’abord apporté des connaissances qui ont levé des verrous sur les mécanismes d’interaction. Il combine également 3 expérimentations opérationnelles au champ et un travail de modélisation du système. Les expérimentations au champ confirment l’effet de l’architecture sur le développement épidémique ainsi que l’effet marqué sur l’interception des fongicides et qui s’exprime clairement entre les variétés. Un modèle innovant et original simulant le système « architecture–épidémie-fongicide », septo3dfongi, a été développé. Il est opérationnel et permet de simuler et de raisonner des stratégies de traitements. Des critères d’évaluation multicritères des stratégies ont été également proposés.
- Published
- 2015
48. ECHAP : un projet pour identifier les possibilités de réduction de l'utilisation des fongicides en utilisant l'architecture des couverts
- Author
-
Robert, Corinne, Fournier, Christian, Abichou, Mariem, Andrieu, Bruno, Bancal, Marie-Odile, Barriuso, Enrique, Bedos, Carole, Benoit, Pierre, Bergheaud, V., Bidon, M., Bonicelli, Bernard, Chambon, Camille, Chapuis, Romain, Cotteux, Eric, Da Costa, J., Durand, Brigitte, Gagnaire, Nathalie, Gaudillat, Damien, Gigot, Christophe, Girardin, Guillaume, Gouache, David, Jean Jacques, Josiane, Mamy, Laure, Ney, Bertrand, Paveley, Neil, Perriot, Benjamin, Poidevin, Samuel, Pointet, Stéphanie, Pot, Valérie, Pradal, Christophe, Richard, C., Saint-Jean, Sébastien, Salse, Jérôme, Sinfort, Carole, Smith, J., Ter Halle, Alexandra, Van Den Berg, Eric, and Walker, Anne Sophie
- Abstract
ECHAP : un projet pour identifier les possibilités de réduction de l'utilisation des fongicides en utilisant l'architecture des couverts. 45e Congrès du Groupe Français des Pesticides Devenir et impact des pesticides : verrous à lever et nouveaux enjeux
- Published
- 2015
49. ECHAP : Réduire l’utilisation des fongicides en associant stratégies de traitement optimales et couverts échappant aux maladies (¨PR 2009)
- Author
-
Robert, Corinne, Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS), and Institut National de la Recherche Agronomique (INRA)-AgroParisTech
- Subjects
impact environnement ,fongicides ,réduction des traitements ,architecture ,blé ,[SDV]Life Sciences [q-bio] ,[SDE]Environmental Sciences ,modalité d'application ,échappement ,septoriose ,interception ,date de traitement ,ComputingMilieux_MISCELLANEOUS - Abstract
National audience
- Published
- 2014
50. Pulvérisation en grandes cultures: Comprendre le dépôt pour mieux cibler l’application
- Author
-
Perriot, Benjamin, Gaudillat, Damien, Robert, Corinne, ARVALIS - Institut du végétal [Paris], Environnement et Grandes Cultures (EGC), AgroParisTech-Institut National de la Recherche Agronomique (INRA), and Institut National de la Recherche Agronomique (INRA)-AgroParisTech
- Subjects
[SDV]Life Sciences [q-bio] - Abstract
La pulvérisation en grandes cultures se résume, le plus souvent, à un choix de buse, un volume de bouillie et une dose de produit associé. Le dépôt des fongicides sur les organes ciblés est un sujet aujourd’hui peu connu.Sa compréhension est pourtant capitale pour améliorer l’efficacité des traitements et réduire l’impact environnemental.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.