15 results on '"Rigaudeau D"'
Search Results
2. Identification of a new pharyngeal mucosal lymphoid organ in zebrafish and other teleosts: tonsils in fish?
- Author
-
Resseguier, J., Nguyen-chi, M., Wohlmann, J., Rigaudeau, D., Salinas, I., Oehlers, S.H., Wiegertjes, G.F., Johansen, F.E., Qiao, S.W., Koppang, E.O., Verrier, B., Boudinot, P., and Griffiths, G.
- Published
- 2023
- Full Text
- View/download PDF
3. Identification of a new pharyngeal mucosal lymphoid organ in zebrafish and other teleosts: tonsils in fish?
- Author
-
Resseguier, J, primary, Nguyen-Chis, M, additional, Wohlmann, J, additional, Rigaudeau, D, additional, Salinas, I, additional, Oehlers, SH, additional, Wiegertjes, GF, additional, Johansen, FE, additional, Qiao, SW, additional, Koppang, EO, additional, Verrier, B, additional, Boudinot, P, additional, and Griffiths, G, additional
- Published
- 2023
- Full Text
- View/download PDF
4. High-Resolution, 3D Imaging of the Zebrafish Gill-Associated Lymphoid Tissue (GIALT) Reveals a Novel Lymphoid Structure, the Amphibranchial Lymphoid Tissue
- Author
-
Dalum A.S., Kraus A., Khan S., Davydova E., Rigaudeau D., Bjørgen H., López-Porras A., Griffiths G., Wiegertjes G.F., Koppang E.O., Salinas I., Boudinot P. and Rességuier J
- Abstract
The zebrafish is extensively used as an animal model for human and fish diseases. However, our understanding of the structural organization of its immune system remains incomplete, especially the mucosa-associated lymphoid tissues (MALTs). Teleost MALTs are commonly perceived as diffuse and scattered populations of immune cells throughout the mucosa. Yet, structured MALTs have been recently discovered in Atlantic salmon (Salmo salar L.), including the interbranchial lymphoid tissue (ILT) in the gills. The existence of the ILT was only recently identified in zebrafish and other fish species, highlighting the need for in-depth characterizations of the gill-associated lymphoid tissue (GIALT) in teleosts. Here, using 3-D high-resolution microscopy, we analyze the GIALT of adult zebrafish with an immuno-histology approach that reveals the organization of lymphoid tissuesviathe labeling of T/NK cells with an antibody directed to a highly conserved epitope on the kinase ZAP70. We show that the GIALT in zebrafish is distributed over at least five distinct sub-regions, an organization found in all pairs of gill arches. The GIALT is diffuse in the pharyngeal part of the gill arch, the interbranchial septum and the filaments/lamellae, and structured in two sub-regions: the ILT, and a newly discovered lymphoid structure located along each side of the gill arch, which we named the Amphibranchial Lymphoid Tissue (ALT). Based on RAG2 expression, neither the ILT nor the ALT constitute additional thymi. The ALT shares several features with the ILT such as presence of abundant lymphoid cells and myeloid cells embedded in a network of reticulated epithelial cells. Further, the ILT and the ALT are also a site for T/NK cell proliferation. Both ILT and ALT show structural changes after infection with Spring Viraemia of Carp Virus (SVCV). Together, these data suggest that ALT and ILT play an active role in immune responses. Comparative studies show that whereas the ILT seems absent in most neoteleosts (“Percomorphs”), the ALT is widely present in cyprinids, salmonids and neoteleosts, suggesting that it constitutes a conserved tissue involved in the protection of teleostsviathe gills.  
- Published
- 2021
5. Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response
- Author
-
Embregts CWE, Rigaudeau D, Veselý T, Pokorová D, Lorenzen N, Petit J, Houel A, Dauber M, Schütze H, Boudinot P, Wiegertjes GF and Forlenza M
- Abstract
Although spring viremia of carp virus (SVCV) can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G) which, when injected in the muscle even at a single low dose of 0.1 µg DNA/g of fish, confers up to 100% protection against a subsequent bath challenge with SVCV. Importantly, to best validate vaccine efficacy, we also optimized a reliable bath challenge model closely mimicking a natural infection, based on a prolonged exposure of carp to SVCV at 15°C. Using this optimized bath challenge, we showed a strong age-dependent susceptibility of carp to SVCV, with high susceptibility at young age (3 months) and a full resistance at 9 months. We visualized local expression of the G protein and associated early inflammatory response by immunohistochemistry and described changes in the gene expression of pro-inflammatory cytokines, chemokines, and antiviral genes in the muscle of vaccinated fish. Adaptive immune responses were investigated by analyzing neutralizing titers against SVCV in the serum of vaccinated fish and thein vitroproliferation capacity of peripheral SVCV-specific T cells. We show significantly higher serum neutralizing titers and the presence of SVCV-specific T cells in the blood of vaccinated fish, which proliferated upon stimulation with SVCV. Altogether, this is the first study reporting on a protective DNA vaccine against SVCV in carp and the first to provide a detailed characterization of local innate as well as systemic adaptive immune responses elicited upon DNA vaccination that suggest a role not only of B cells but also of T cells in the protection conferred by the SVCV-G DNA vaccine.
- Published
- 2017
6. In vivo multiscale analyses of spring viremia of carp virus (SVCV) infection: From model organism to target species.
- Author
-
Souto S, Lama R, Mérour E, Mehraz M, Bernard J, Lamoureux A, Massaad S, Frétaud M, Rigaudeau D, Millet JK, Langevin C, and Biacchesi S
- Subjects
- Animals, Animals, Genetically Modified, Disease Models, Animal, Immunity, Innate, Viremia, Zebrafish virology, Rhabdoviridae physiology, Fish Diseases virology, Rhabdoviridae Infections virology, Rhabdoviridae Infections immunology, Carps virology
- Abstract
Spring viremia of carp virus (SVCV) has a broad fish host spectrum and is responsible for a disease that generally affects juvenile fishes with a mortality rate of up to 90%. In the absence of treatments or vaccines against SVCV, the search for prophylactic or therapeutic solutions is thus relevant, particularly to identify solutions compatible with mass vaccination. In addition to being a threat to aquaculture and ecosystems, SVCV is a unique pathogen to study virus-host interactions in the zebrafish model. Establishing the first reverse genetics system for SVCV and the design of recombinant SVCV (rSVCV) expressing fluorescent or bioluminescent proteins adds a new dimension for the study of these interactions using innovative imaging techniques. The infection by bath immersion of zebrafish larvae with rSVCV expressing mCherry allows us to define the first SVCV replication sites and the host innate immune responses using different transgenic lines of zebrafish. The fins were found as the main initial sites of infection in both zebrafish and carp, its natural host. Hence, new insights into the physiopathology of SVCV infection have been described. We report that neutrophils are recruited at the sites of infection and persist up to the death of the animal leading to an uncontrolled inflammation correlated with the expression of the pro-inflammatory cytokine IL1β. Tissue damage was observed at the site of initial replication, a likely consequence of virus-induced injury or the pro-inflammatory response. Interestingly, SVCV infection by bath immersion triggers a persistent pro-inflammatory response rather than activation of the antiviral IFN signaling pathway as observed following intravenous injection, highlighting the importance of the route of infection on the progression of pathogenicity. Thus, this model of zebrafish larvae infection by rSVCV offers new perspectives to study in detail virus-host interactions and to discover new prophylactic or therapeutic solutions., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Souto et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
7. Host specificity and virulence of Flavobacterium psychrophilum: a comparative study in ayu (Plecoglossus altivelis) and rainbow trout (Oncorhynchus mykiss) hosts.
- Author
-
Fujiwara-Nagata E, Rochat T, Lee BH, Lallias D, Rigaudeau D, and Duchaud E
- Subjects
- Animals, Virulence, Genotype, Flavobacterium pathogenicity, Flavobacterium physiology, Flavobacterium genetics, Fish Diseases microbiology, Flavobacteriaceae Infections veterinary, Flavobacteriaceae Infections microbiology, Oncorhynchus mykiss microbiology, Osmeriformes microbiology, Host Specificity
- Abstract
Flavobacterium psychrophilum, the causative agent of bacterial cold-water disease, is a devastating, worldwide distributed, fish pathogen causing significant economic loss in inland fish farms. Previous epidemiological studies showed that prevalent clonal complexes (CC) differ in fish species affected with disease such as rainbow trout, coho salmon and ayu, indicating significant associations between particular F. psychrophilum genotypes and host species. Yet, whether the population structure is driven by the trade of fish and eggs or by host-specific pathogenicity is uncertain. Notably, all F. psychrophilum isolates retrieved from ayu belong to Type-3 O antigen (O-Ag) whereas only very few strains retrieved from other fish species possess this O-Ag, suggesting a role in outbreaks affecting ayu. Thus, we investigated the links between genotype and pathogenicity by conducting comparative bath infection challenges in two fish hosts, ayu and rainbow trout, for a collection of isolates representing different MLST genotypes and O-Ag. Highly virulent strains in one host species exhibited low to no virulence in the other. F. psychrophilum strains associated with ayu and possessing Type-3 O-Ag demonstrated significant variability in pathogenicity in ayu, ranging from avirulent to highly virulent. Strikingly, F. psychrophilum strains retrieved from rainbow trout and possessing the Type-3 O-Ag were virulent for rainbow trout but not for ayu, indicating that Type-3 O-Ag alone is not sufficient for pathogenicity in ayu, nor does it prevent pathogenicity in rainbow trout. This study revealed that the association between a particular CC and host species partly depends on the pathogen's adaptation to specific host species., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
8. Identification of a pharyngeal mucosal lymphoid organ in zebrafish and other teleosts: Tonsils in fish?
- Author
-
Resseguier J, Nguyen-Chi M, Wohlmann J, Rigaudeau D, Salinas I, Oehlers SH, Wiegertjes GF, Johansen FE, Qiao SW, Koppang EO, Verrier B, Boudinot P, and Griffiths G
- Subjects
- Humans, Animals, Lymphoid Tissue, Pharynx, T-Lymphocytes, Mammals, Palatine Tonsil, Zebrafish
- Abstract
The constant exposure of the fish branchial cavity to aquatic pathogens causes local mucosal immune responses to be extremely important for their survival. Here, we used a marker for T lymphocytes/natural killer (NK) cells (ZAP70) and advanced imaging techniques to investigate the lymphoid architecture of the zebrafish branchial cavity. We identified a sub-pharyngeal lymphoid organ, which we tentatively named "Nemausean lymphoid organ" (NELO). NELO is enriched in T/NK cells, plasma/B cells, and antigen-presenting cells embedded in a network of reticulated epithelial cells. The presence of activated T cells and lymphocyte proliferation, but not V(D)J recombination or hematopoiesis, suggests that NELO is a secondary lymphoid organ. In response to infection, NELO displays structural changes including the formation of T/NK cell clusters. NELO and gill lymphoid tissues form a cohesive unit within a large mucosal lymphoid network. Collectively, we reveal an unreported mucosal lymphoid organ reminiscent of mammalian tonsils that evolved in multiple teleost fish families.
- Published
- 2023
- Full Text
- View/download PDF
9. Interplay between a bacterial pathogen and its host in rainbow trout isogenic lines with contrasted susceptibility to cold water disease.
- Author
-
Lee BH, Quillet E, Rigaudeau D, Dechamp N, Duchaud E, Bernardet JF, Boudinot P, and Rochat T
- Subjects
- Animals, Phenotype, Water, Oncorhynchus mykiss genetics, Oncorhynchus mykiss microbiology, Flavobacteriaceae Infections veterinary, Flavobacteriaceae Infections genetics, Bacteremia, Fish Diseases genetics, Fish Diseases microbiology
- Abstract
Infectious diseases are a major constraint on aquaculture. Genetic lines with different susceptibilities to diseases are useful models to identify resistance mechanisms to pathogens and to improve prophylaxis. Bacterial cold-water disease (BCWD) caused by Flavobacterium psychrophilum represents a major threat for freshwater salmonid farming worldwide. A collection of rainbow trout (Oncorhynchus mykiss) isogenic lines was previously produced from a French domestic population. Here, we compared BCWD resistance phenotypes using a subset of isogenic lines chosen for their contrasted susceptibilities to F. psychrophilum. We applied individual monitoring to document the infection process, including time-course quantification of bacteremia and innate immune response. Strikingly, BCWD resistance was correlated with a lower bacterial growth rate in blood. Several immune genes were expressed at higher levels in resistant fish regardless of infection: the Type II arginase (arg2), a marker for M2 macrophages involved in anti-inflammatory responses and tissue repair, and two Toll-like receptors (tlr2/tlr7), responsible for pathogen detection and inflammatory responses. This study highlights the importance of innate and intrinsic defense mechanisms in determining the outcome of F. psychrophilum infections, and illustrates that non-lethal time-course blood sampling for individual monitoring of bacteremia is a powerful tool to resolve within-host pathogen behavior in bacterial fish diseases., Competing Interests: Declaration of competing interest The authors declare no conflict of interest., (Copyright © 2023 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
10. Investigation of the Genus Flavobacterium as a Reservoir for Fish-Pathogenic Bacterial Species: the Case of Flavobacterium collinsii.
- Author
-
Lee BH, Nicolas P, Saticioglu IB, Fradet B, Bernardet JF, Rigaudeau D, Rochat T, and Duchaud E
- Subjects
- Animals, Humans, Flavobacterium, Phylogeny, Flavobacteriaceae Infections veterinary, Flavobacteriaceae Infections microbiology, Fish Diseases microbiology, Oncorhynchus mykiss microbiology
- Abstract
Bacteria of the genus Flavobacterium are recovered from a large variety of environments. Among the described species, Flavobacterium psychrophilum and Flavobacterium columnare cause considerable losses in fish farms. Alongside these well-known fish-pathogenic species, isolates belonging to the same genus recovered from diseased or apparently healthy wild, feral, and farmed fish have been suspected to be pathogenic. Here, we report the identification and genomic characterization of a Flavobacterium collinsii isolate (TRV642) retrieved from rainbow trout spleen. A phylogenetic tree of the genus built by aligning the core genome of 195 Flavobacterium species revealed that F. collinsii stands within a cluster of species associated with diseased fish, the closest one being F. tructae, which was recently confirmed as pathogenic. We evaluated the pathogenicity of F. collinsii TRV642 as well as of Flavobacterium bernardetii F-372
T , another recently described species reported as a possible emerging pathogen. Following intramuscular injection challenges in rainbow trout, no clinical signs or mortalities were observed with F. bernardetii . F. collinsii showed very low virulence but was isolated from the internal organs of survivors, indicating that the bacterium is able to survive inside the host and may provoke disease in fish under compromised conditions such as stress and/or wounds. Our results suggest that members of a phylogenetic cluster of fish-associated Flavobacterium species may be opportunistic fish pathogens causing disease under specific circumstances. IMPORTANCE Aquaculture has expanded significantly worldwide in the last decades and accounts for half of human fish consumption. However, infectious fish diseases are a major bottleneck for its sustainable development, and an increasing number of bacterial species from diseased fish raise a great concern. The current study revealed phylogenetic associations with ecological niches among the Flavobacterium species. We also focused on Flavobacterium collinsii, which belongs to a group of putative pathogenic species. The genome contents revealed a versatile metabolic repertoire suggesting the use of diverse nutrient sources, a characteristic of saprophytic or commensal bacteria. In a rainbow trout experimental challenge, the bacterium survived inside the host, likely escaping clearance by the immune system but without provoking massive mortality, suggesting opportunistic pathogenic behavior. This study highlights the importance of experimentally evaluating the pathogenicity of the numerous bacterial species retrieved from diseased fish.- Published
- 2023
- Full Text
- View/download PDF
11. Two functionally distinct heme/iron transport systems are virulence determinants of the fish pathogen Flavobacterium psychrophilum .
- Author
-
Zhu Y, Lechardeur D, Bernardet JF, Kerouault B, Guérin C, Rigaudeau D, Nicolas P, Duchaud E, and Rochat T
- Subjects
- Animals, Flavobacterium, Heme metabolism, Humans, Iron metabolism, Virulence, Virulence Factors genetics, Fish Diseases microbiology, Flavobacteriaceae Infections microbiology, Flavobacteriaceae Infections veterinary, Oncorhynchus mykiss metabolism, Oncorhynchus mykiss microbiology
- Abstract
Bacterial pathogens have a critical impact on aquaculture, a sector that accounts for half of the human fish consumption. Flavobacterium psychrophilum (phylum Bacteroidetes ) is responsible for bacterial cold-water disease in salmonids worldwide. The molecular factors involved in host invasion, colonization and haemorrhagic septicaemia are mostly unknown. In this study, we identified two new TonB-dependent receptors, HfpR and BfpR, that are required for adaptation to iron conditions encountered during infection and for virulence in rainbow trout. Transcriptional analyses revealed that their expression is tightly controlled and upregulated under specific iron sources and concentrations. Characterization of deletion mutants showed that they act without redundancy: BfpR is required for optimal growth in the presence of high haemoglobin level, while HfpR confers the capacity to acquire nutrient iron from haem or haemoglobin under iron scarcity. The gene hfpY , co-transcribed with hfpR , encodes a protein related to the HmuY family. We demonstrated that HfpY binds haem and contributes significantly to host colonization and disease severity. Overall, these results are consistent with a model in which both BfpR and Hfp systems promote haem uptake and respond to distinct signals to adapt iron acquisition to the different stages of pathogenesis. Our findings give insight into the molecular basis of pathogenicity of a serious pathogen belonging to the understudied family Flavobacteriaceae and point to the newly identified haem receptors as promising targets for antibacterial development.
- Published
- 2022
- Full Text
- View/download PDF
12. High-Resolution, 3D Imaging of the Zebrafish Gill-Associated Lymphoid Tissue (GIALT) Reveals a Novel Lymphoid Structure, the Amphibranchial Lymphoid Tissue.
- Author
-
Dalum AS, Kraus A, Khan S, Davydova E, Rigaudeau D, Bjørgen H, López-Porras A, Griffiths G, Wiegertjes GF, Koppang EO, Salinas I, Boudinot P, and Rességuier J
- Subjects
- Animals, Gills anatomy & histology, Gills diagnostic imaging, Lymphoid Tissue cytology, Viremia pathology, Zebrafish anatomy & histology, Fish Diseases pathology, Gills immunology, Imaging, Three-Dimensional methods, Lymphoid Tissue diagnostic imaging, Zebrafish immunology
- Abstract
The zebrafish is extensively used as an animal model for human and fish diseases. However, our understanding of the structural organization of its immune system remains incomplete, especially the mucosa-associated lymphoid tissues (MALTs). Teleost MALTs are commonly perceived as diffuse and scattered populations of immune cells throughout the mucosa. Yet, structured MALTs have been recently discovered in Atlantic salmon ( Salmo salar L. ), including the interbranchial lymphoid tissue (ILT) in the gills. The existence of the ILT was only recently identified in zebrafish and other fish species, highlighting the need for in-depth characterizations of the gill-associated lymphoid tissue (GIALT) in teleosts. Here, using 3-D high-resolution microscopy, we analyze the GIALT of adult zebrafish with an immuno-histology approach that reveals the organization of lymphoid tissues via the labeling of T/NK cells with an antibody directed to a highly conserved epitope on the kinase ZAP70. We show that the GIALT in zebrafish is distributed over at least five distinct sub-regions, an organization found in all pairs of gill arches. The GIALT is diffuse in the pharyngeal part of the gill arch, the interbranchial septum and the filaments/lamellae, and structured in two sub-regions: the ILT, and a newly discovered lymphoid structure located along each side of the gill arch, which we named the Amphibranchial Lymphoid Tissue (ALT). Based on RAG2 expression, neither the ILT nor the ALT constitute additional thymi. The ALT shares several features with the ILT such as presence of abundant lymphoid cells and myeloid cells embedded in a network of reticulated epithelial cells. Further, the ILT and the ALT are also a site for T/NK cell proliferation. Both ILT and ALT show structural changes after infection with Spring Viraemia of Carp Virus (SVCV). Together, these data suggest that ALT and ILT play an active role in immune responses. Comparative studies show that whereas the ILT seems absent in most neoteleosts ("Percomorphs"), the ALT is widely present in cyprinids, salmonids and neoteleosts, suggesting that it constitutes a conserved tissue involved in the protection of teleosts via the gills., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer FT declared a past co-authorship with one of the author IS to the handling editor at the time of review., (Copyright © 2021 Dalum, Kraus, Khan, Davydova, Rigaudeau, Bjørgen, López-Porras, Griffiths, Wiegertjes, Koppang, Salinas, Boudinot and Rességuier.)
- Published
- 2021
- Full Text
- View/download PDF
13. Sustainable plant-based diets promote rainbow trout gut microbiota richness and do not alter resistance to bacterial infection.
- Author
-
Pérez-Pascual D, Pérez-Cobas AE, Rigaudeau D, Rochat T, Bernardet JF, Skiba-Cassy S, Marchand Y, Duchaud E, and Ghigo JM
- Abstract
Background: Farmed fish food with reduced fish-derived products are gaining growing interest due to the ecological impact of fish-derived protein utilization and the necessity to increase aquaculture sustainability. Although different terrestrial plant proteins could replace fishmeal proteins, their use is associated with adverse effects. Here, we investigated how diets composed of terrestrial vegetal sources supplemented with proteins originating from insect, yeast or terrestrial animal by-products affect rainbow trout (Onchorynchus mykiss) gut microbiota composition, growth performance and resistance to bacterial infection by the fish pathogen Flavobacterium psychrophilum responsible for frequent outbreaks in aquaculture settings., Results: We showed that the tested regimes significantly increased gut bacterial richness compared to full vegetal or commercial-like diets, and that vegetal diet supplemented with insect and yeast proteins improves growth performance compared to full vegetal diet without altering rainbow trout susceptibility to F. psychrophilum infection., Conclusion: Our results demonstrate that the use of insect and yeast protein complements to vegetal fish feeds maintain microbiota functions, growth performance and fish health, therefore identifying promising alternative diets to improve aquaculture's sustainability.
- Published
- 2021
- Full Text
- View/download PDF
14. Gnotobiotic rainbow trout (Oncorhynchus mykiss) model reveals endogenous bacteria that protect against Flavobacterium columnare infection.
- Author
-
Pérez-Pascual D, Vendrell-Fernández S, Audrain B, Bernal-Bayard J, Patiño-Navarrete R, Petit V, Rigaudeau D, and Ghigo JM
- Subjects
- Animals, Aquaculture, Fresh Water, Fish Diseases microbiology, Flavobacterium physiology, Germ-Free Life, Host-Pathogen Interactions, Microbiota, Oncorhynchus mykiss microbiology
- Abstract
The health and environmental risks associated with antibiotic use in aquaculture have promoted bacterial probiotics as an alternative approach to control fish infections in vulnerable larval and juvenile stages. However, evidence-based identification of probiotics is often hindered by the complexity of bacteria-host interactions and host variability in microbiologically uncontrolled conditions. While these difficulties can be partially resolved using gnotobiotic models harboring no or reduced microbiota, most host-microbe interaction studies are carried out in animal models with little relevance for fish farming. Here we studied host-microbiota-pathogen interactions in a germ-free and gnotobiotic model of rainbow trout (Oncorhynchus mykiss), one of the most widely cultured salmonids. We demonstrated that germ-free larvae raised in sterile conditions displayed no significant difference in growth after 35 days compared to conventionally-raised larvae, but were extremely sensitive to infection by Flavobacterium columnare, a common freshwater fish pathogen causing major economic losses worldwide. Furthermore, re-conventionalization with 11 culturable species from the conventional trout microbiota conferred resistance to F. columnare infection. Using mono-re-conventionalized germ-free trout, we identified that this protection is determined by a commensal Flavobacterium strain displaying antibacterial activity against F. columnare. Finally, we demonstrated that use of gnotobiotic trout is a suitable approach for the identification of both endogenous and exogenous probiotic bacterial strains protecting teleostean hosts against F. columnare. This study therefore establishes an ecologically-relevant gnotobiotic model for the study of host-pathogen interactions and colonization resistance in farmed fish., Competing Interests: I have read the journal's policy and the authors of this manuscript have the following competing interests: a provisional patent application has been filed: “bacterial strains for use as probiotics, compositions thereof, deposited strains and method to identify probiotic bacterial strains” by J.-M.G, D.P.-P. and J.B.-B. The other authors declare no conflict of interest in relation to the submitted work.
- Published
- 2021
- Full Text
- View/download PDF
15. Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response.
- Author
-
Embregts CWE, Rigaudeau D, Veselý T, Pokorová D, Lorenzen N, Petit J, Houel A, Dauber M, Schütze H, Boudinot P, Wiegertjes GF, and Forlenza M
- Abstract
Although spring viremia of carp virus (SVCV) can cause high mortalities in common carp, a commercial vaccine is not available for worldwide use. Here, we report a DNA vaccine based on the expression of the SVCV glycoprotein (G) which, when injected in the muscle even at a single low dose of 0.1 µg DNA/g of fish, confers up to 100% protection against a subsequent bath challenge with SVCV. Importantly, to best validate vaccine efficacy, we also optimized a reliable bath challenge model closely mimicking a natural infection, based on a prolonged exposure of carp to SVCV at 15°C. Using this optimized bath challenge, we showed a strong age-dependent susceptibility of carp to SVCV, with high susceptibility at young age (3 months) and a full resistance at 9 months. We visualized local expression of the G protein and associated early inflammatory response by immunohistochemistry and described changes in the gene expression of pro-inflammatory cytokines, chemokines, and antiviral genes in the muscle of vaccinated fish. Adaptive immune responses were investigated by analyzing neutralizing titers against SVCV in the serum of vaccinated fish and the in vitro proliferation capacity of peripheral SVCV-specific T cells. We show significantly higher serum neutralizing titers and the presence of SVCV-specific T cells in the blood of vaccinated fish, which proliferated upon stimulation with SVCV. Altogether, this is the first study reporting on a protective DNA vaccine against SVCV in carp and the first to provide a detailed characterization of local innate as well as systemic adaptive immune responses elicited upon DNA vaccination that suggest a role not only of B cells but also of T cells in the protection conferred by the SVCV-G DNA vaccine.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.