5 results on '"Richenberg G"'
Search Results
2. Large-scale genome-wide association study of 398,238 women unveils seven novel loci associated with high-grade serous epithelial ovarian cancer risk.
- Author
-
Barnes DR, Tyrer JP, Dennis J, Leslie G, Bolla MK, Lush M, Aeilts AM, Aittomäki K, Andrieu N, Andrulis IL, Anton-Culver H, Arason A, Arun BK, Balmaña J, Bandera EV, Barkardottir RB, Berger LPV, de Gonzalez AB, Berthet P, Białkowska K, Bjørge L, Blanco AM, Blok MJ, Bobolis KA, Bogdanova NV, Brenton JD, Butz H, Buys SS, Caligo MA, Campbell I, Castillo C, Claes KBM, Colonna SV, Cook LS, Daly MB, Dansonka-Mieszkowska A, de la Hoya M, deFazio A, DePersia A, Ding YC, Domchek SM, Dörk T, Einbeigi Z, Engel C, Evans DG, Foretova L, Fortner RT, Fostira F, Foti MC, Friedman E, Frone MN, Ganz PA, Gentry-Maharaj A, Glendon G, Godwin AK, González-Neira A, Greene MH, Gronwald J, Guerrieri-Gonzaga A, Hamann U, Hansen TVO, Harris HR, Hauke J, Heitz F, Hogervorst FBL, Hooning MJ, Hopper JL, Huff CD, Huntsman DG, Imyanitov EN, Izatt L, Jakubowska A, James PA, Janavicius R, John EM, Kar S, Karlan BY, Kennedy CJ, Kiemeney LALM, Konstantopoulou I, Kupryjanczyk J, Laitman Y, Lavie O, Lawrenson K, Lester J, Lesueur F, Lopez-Pleguezuelos C, Mai PL, Manoukian S, May T, McNeish IA, Menon U, Milne RL, Modugno F, Mongiovi JM, Montagna M, Moysich KB, Neuhausen SL, Nielsen FC, Noguès C, Oláh E, Olopade OI, Osorio A, Papi L, Pathak H, Pearce CL, Pedersen IS, Peixoto A, Pejovic T, Peng PC, Peshkin BN, Peterlongo P, Powell CB, Prokofyeva D, Pujana MA, Radice P, Rashid MU, Rennert G, Richenberg G, Sandler DP, Sasamoto N, Setiawan VW, Sharma P, Sieh W, Singer CF, Snape K, Sokolenko AP, Soucy P, Southey MC, Stoppa-Lyonnet D, Sutphen R, Sutter C, Teixeira MR, Terry KL, Thomsen LCV, Tischkowitz M, Toland AE, Van Gorp T, Vega A, Velez Edwards DR, Webb PM, Weitzel JN, Wentzensen N, Whittemore AS, Winham SJ, Wu AH, Yadav S, Yu Y, Ziogas A, Berchuck A, Couch FJ, Goode EL, Goodman MT, Monteiro AN, Offit K, Ramus SJ, Risch HA, Schildkraut JM, Thomassen M, Simard J, Easton DF, Jones MR, Chenevix-Trench G, Gayther SA, Antoniou AC, and Pharoah PDP
- Abstract
Background: Nineteen genomic regions have been associated with high-grade serous ovarian cancer (HGSOC). We used data from the Ovarian Cancer Association Consortium (OCAC), Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA), UK Biobank (UKBB), and FinnGen to identify novel HGSOC susceptibility loci and develop polygenic scores (PGS)., Methods: We analyzed >22 million variants for 398,238 women. Associations were assessed separately by consortium and meta-analysed. OCAC and CIMBA data were used to develop PGS which were trained on FinnGen data and validated in UKBB and BioBank Japan., Results: Eight novel variants were associated with HGSOC risk. An interesting discovery biologically was finding that TP53 3'-UTR SNP rs78378222 was associated with HGSOC (per T allele relative risk (RR)=1.44, 95%CI:1.28-1.62, P=1.76×10
-9 ). The optimal PGS included 64,518 variants and was associated with an odds ratio of 1.46 (95%CI:1.37-1.54) per standard deviation in the UKBB validation (AUROC curve=0.61, 95%CI:0.59-0.62)., Conclusions: This study represents the largest GWAS for HGSOC to date. The results highlight that improvements in imputation reference panels and increased sample sizes can identify HGSOC associated variants that previously went undetected, resulting in improved PGS. The use of updated PGS in cancer risk prediction algorithms will then improve personalized risk prediction for HGSOC.- Published
- 2024
- Full Text
- View/download PDF
3. The tumor multi-omic landscape of endometrial cancers developed on a germline genetic background of adiposity.
- Author
-
Richenberg G, Francis A, Owen CN, Gray V, Robinson T, Gabriel AA, Lawrenson K, Crosbie EJ, Schildkraut JM, Mckay JD, Gaunt TR, Relton CL, Vincent EE, and Kar SP
- Abstract
High body mass index (BMI) is a causal risk factor for endometrial cancer but the tumor molecular mechanisms affected by adiposity and their therapeutic relevance remain poorly understood. Here we characterize the tumor multi-omic landscape of endometrial cancers that have developed on a background of lifelong germline genetic exposure to elevated BMI. We built a polygenic score (PGS) for BMI in women using data on independent, genome-wide significant variants associated with adult BMI in 434,794 women. We performed germline (blood) genotype quality control and imputation on data from 354 endometrial cancer cases from The Cancer Genome Atlas (TCGA). We assigned each case in this TCGA cohort their genetically predicted life-course BMI based on the BMI PGS. Multivariable generalized linear models adjusted for age, stage, microsatellite status and genetic principal components were used to test for associations between the BMI germline PGS and endometrial cancer tumor genome-wide genomic, transcriptomic, proteomic, epigenomic and immune traits in TCGA. High BMI germline PGS was associated with (i) upregulated tumor gene expression in the IL6-JAK - STAT3 pathway (FDR=4.2×10
-7 ); (ii) increased estimated intra-tumor activated mast cell infiltration (FDR=0.008); (iii) increased single base substitution (SBS) mutational signatures 1 (FDR=0.03) and 5 (FDR=0.09) and decreased SBS13 (FDR=0.09), implicating age-related and APOBEC mutagenesis, respectively; and (iv) decreased tumor EGFR protein expression (FDR=0.07). Alterations in IL6 - JAK - STAT3 signaling gene and EGFR protein expression were, in turn, significantly associated with both overall survival and progression-free interval. Thus, we integrated germline and somatic data using a novel study design to identify associations between genetically predicted lifelong exposure to higher BMI and potentially actionable endometrial cancer tumor molecular features. These associations inform our understanding of how high BMI may influence the development and progression of this cancer, impacting endometrial tumor biology and clinical outcomes.- Published
- 2023
- Full Text
- View/download PDF
4. Author Correction: Application of Mendelian randomization to explore the causal role of the human gut microbiome in colorectal cancer.
- Author
-
Hatcher C, Richenberg G, Waterson S, Nguyen LH, Joshi AD, Carreras-Torres R, Moreno V, Chan AT, Gunter M, Lin Y, Qu C, Song M, Casey G, Figueiredo JC, Gruber SB, Hampe J, Hampel H, Jenkins MA, Keku TO, Peters U, Tangen CM, Wu AH, Hughes DA, Rühlemann MC, Raes J, Timpson NJ, and Wade KH
- Published
- 2023
- Full Text
- View/download PDF
5. Application of Mendelian randomization to explore the causal role of the human gut microbiome in colorectal cancer.
- Author
-
Hatcher C, Richenberg G, Waterson S, Nguyen LH, Joshi AD, Carreras-Torres R, Moreno V, Chan AT, Gunter M, Lin Y, Qu C, Song M, Casey G, Figueiredo JC, Gruber SB, Hampe J, Hampel H, Jenkins MA, Keku TO, Peters U, Tangen CM, Wu AH, Hughes DA, Rühlemann MC, Raes J, Timpson NJ, and Wade KH
- Subjects
- Humans, Mendelian Randomization Analysis methods, Genome-Wide Association Study, Causality, Polymorphism, Single Nucleotide, Gastrointestinal Microbiome genetics, Colorectal Neoplasms genetics
- Abstract
The role of the human gut microbiome in colorectal cancer (CRC) is unclear as most studies on the topic are unable to discern correlation from causation. We apply two-sample Mendelian randomization (MR) to estimate the causal relationship between the gut microbiome and CRC. We used summary-level data from independent genome-wide association studies to estimate the causal effect of 14 microbial traits (n = 3890 individuals) on overall CRC (55,168 cases, 65,160 controls) and site-specific CRC risk, conducting several sensitivity analyses to understand the nature of results. Initial MR analysis suggested that a higher abundance of Bifidobacterium and presence of an unclassified group of bacteria within the Bacteroidales order in the gut increased overall and site-specific CRC risk. However, sensitivity analyses suggested that instruments used to estimate relationships were likely complex and involved in many potential horizontal pleiotropic pathways, demonstrating that caution is needed when interpreting MR analyses with gut microbiome exposures. In assessing reverse causality, we did not find strong evidence that CRC causally affected these microbial traits. Whilst our study initially identified potential causal roles for two microbial traits in CRC, importantly, further exploration of these relationships highlighted that these were unlikely to reflect causality., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.