Thanks to the work of thousands of physicists over the past 80 years, we now have a remarkable understanding of how nature behaves at high energies. Everything in the Universe, from the most distant quasar to the smallest atom, is made of what we call fundamental particles. These particles are governed by four different forces: strong, weak, electromagnetic and gravitational. Developed in the early 1970s, the so-called Standard Model of particle physics is capable of describing how particles are related to three of these forces. Since it was first proposed, the Standard Model has successfully explained several experimental results to an outstanding precision, and correctly predicted the existence of many new particles, including the famous Higgs boson. However, even though it is currently our best description of the subatomic world, the Standard Model does not explain the complete picture. One major problem is that the theory fails to describe gravity and to answer why this fundamental force is much weaker than the others. Another big difficulty is what physicists call the hierarchy problem, which refers to the sensitivity of the Higgs mass to new scales. Besides these two, there are many other questions left unanswered by the Standard Model, such as the matter-antimatter asymmetry, the nature of dark matter and dark energy, the strong CP problem, and the mass of neutrinos. Thus, it became clear there must be new physics hidden deep in the Universe. In the past few years, physicists have dedicated themselves to the development of different extensions of the Standard Model. Since precision experiments have been crucial in establishing the validity of our current description, they will also be instrumental to assess whether new physics is already manifesting itself in experimental data. Focusing on the phenomenological constraints that precision measurements can provide on the gauge sector of the electroweak group, we aim to pursue a new precision program in which the most generic modifications due to new physics will be considered. We intend to apply this formalism to theories that extend the Standard Model gauge symmetry by a new Abelian group called U(1)X. The gauge boson associated with U(1)X can mix with both the Standard Model Z boson and photon through the kinetic term. Furthermore, depending on how we choose to break this extra symmetry, the new gauge boson X can also have a mass mixing with them. As we will show, such mixings imply in three new eigenstates. The photon and Z boson we observe are now a mixture of the Standard Model fields and the X boson field. The same is true for the third observable eigenstate, which is known as Z\' boson. In this work, we propose the Z\' to be in the MeV-GeV mass range. Such mass range has been of great interest to physicists since they realized new particles can be quite light and still have evaded discovery in particle accelerators. Modifications of electroweak observables due to the presence of a light Z\' boson have not been studied systematically in the literature to date. Thus, our analysis consists in performing a global fit to the W boson mass and other eleven observables measured at the Z resonance. This allows us to determine an exclusion region in the parameter space of our model, and establish the mass range of the Z\' boson consistent with current experimental data. Finally, we can check whether our model is able to explain the tension between the theoretical and experimental values of the muon magnetic moment. Such discrepancy is now considered one of the most stringent constraints on potential new physics effects. Graças ao trabalho de milhares de físicos nos últimos 80 anos, atualmente nós temos uma compreensão extraordinária de como a natureza se comporta em altas energias. Tudo no Universo, do quasar mais distante ao menor átomo, é constituído do que chamamos de partículas fundamentais. Essas partículas são governadas por quatro diferentes forças: forte, fraca, eletromagnética e gravitacional. Desenvolvido no início da década de 1970, o chamado Modelo Padrão da física de partículas é capaz de descrever como as partículas estão relacionadas a três dessas forças. Desde que foi proposto, o Modelo Padrão conseguiu explicar diversos resultados experimentais com uma precisão excepcional. Além disso, foi capaz de prever corretamente a existência de muitas novas partículas, incluindo o famoso bóson de Higgs. No entanto, embora seja nossa melhor descrição do mundo subatômico até agora, o Modelo Padrão não explica o quadro completo. Um dos maiores problemas é que a teoria falha em descrever a gravidade e explicar o porquê dessa força fundamental ser muito mais fraca do que as demais. Outra grande dificuldade é o que os físicos chamam de problema da hierarquia, que se refere à sensibilidade da massa do Higgs à novas escalas. Há ainda muitas outras questões deixadas sem resposta pelo Modelo Padrão, como a assimetria entre matéria e antimatéria, a natureza da matéria escura e da energia escura, o problema da violação CP forte e a massa dos neutrinos. Assim, ficou claro que deve haver nova física escondida no Universo. Nos últimos anos, os físicos têm se dedicado ao desenvolvimento de diferentes extensões do Modelo Padrão. Como os testes de precisão foram cruciais para estabelecer a validade da nossa atual descrição, eles também serão importantes para determinar se nova física já está se manifestando nos dados experimentais. Focando nas restrições fenomenológicas que os testes de precisão podem impor sobre o setor eletrofraco, pretendemos buscar um novo programa de precisão no qual serão consideradas as modificações mais genéricas devido à nova física. Nós aplicaremos este formalismo à teorias que estendem a simetria de gauge do Modelo Padrão com um novo grupo Abeliano chamado U(1)X. O bóson de gauge associado a U(1)X pode se misturar com o bóson Z e o fóton do Modelo Padrão através de um termo cinético. Além disso, dependendo de como escolhemos quebrar essa simetria extra, o novo bóson de gauge X pode também se misturar com ambos a partir de um termo de massa. Como mostraremos, tais misturas implicam em três novos auto-estados. O fóton e o bóson Z que observamos agora serão uma mistura dos campos do modelo padrão e do bóson X. O mesmo é verdade para o terceiro auto-estado observável, conhecido como bóson Z\'. Neste trabalho, propomos que o Z\' tenha uma massa na região do MeV-GeV. Essa faixa de massa tem sido de grande interesse para os físicos, já que novas partículas podem ser muito leves e, ainda assim, não terem sido descobertas nos aceleradores de partículas. Acreditamos que as modificações dos observáveis eletrofracos devido à presença de um bóson Z\' leve não foram estudadas sistematicamente na literatura. Portanto, nossa análise consiste em realizar um fit global para a massa do bóson W e outros onze observáveis medidos na ressonância do Z. Isso nos permite determinar uma região de exclusão no espaço de parâmetros do nosso modelo, estabelecendo a faixa de massa do bóson Z\' que é consistente com os atuais dados experimentais. Finalmente, podemos verificar se nosso modelo é capaz de explicar a tensão entre os valores teórico e experimental do momento magnético do múon. Essa discrepância tem sido considerada uma das restrições mais rigorosas sobre os potenciais efeitos de nova física.