16 results on '"Riascos, John J."'
Search Results
2. Assessing drought stress in sugarcane with gene expression and phenomic data using CSI-OC
- Author
-
Riccio-Rengifo, Camila, Ramirez-Castrillon, Mauricio, Sosa, Chrystian C., Aguilar, Fernando S., Trujillo-Montenegro, Jhon Henry, Riascos, John J., Finke, Jorge, and Rocha, Camilo
- Published
- 2024
- Full Text
- View/download PDF
3. Sequencing vs. amplification for the estimation of allele dosages in sugarcane (Saccharum spp.).
- Author
-
Jaimes, Hugo, Londoño, Alejandra, Saavedra‐Diaz, Carolina, Trujillo‐Montenegro, Jhon Henry, López‐Gerena, Jershon, Riascos, John J., and Aguilar, Fernando S.
- Subjects
PLANT breeding ,PEARSON correlation (Statistics) ,SINGLE nucleotide polymorphisms ,DNA sequencing ,ALLELES - Abstract
Copyright of Applications in Plant Sciences is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2024
- Full Text
- View/download PDF
4. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L.
- Author
-
Zhang, Jisen, Zhang, Xingtan, Tang, Haibao, Zhang, Qing, Hua, Xiuting, Ma, Xiaokai, Zhu, Fan, Jones, Tyler, Zhu, Xinguang, Bowers, John, Wai, Ching Man, Zheng, Chunfang, Shi, Yan, Chen, Shuai, Xu, Xiuming, Yue, Jingjing, Nelson, David R., Huang, Lixian, Li, Zhen, Xu, Huimin, Zhou, Dong, Wang, Yongjun, Hu, Weichang, Lin, Jishan, Deng, Youjin, Pandey, Neha, Mancini, Melina, Zerpa, Dessireé, Nguyen, Julie K., Wang, Liming, Yu, Liang, Xin, Yinghui, Ge, Liangfa, Arro, Jie, Han, Jennifer O., Chakrabarty, Setu, Pushko, Marija, Zhang, Wenping, Ma, Yanhong, Ma, Panpan, Lv, Mingju, Chen, Faming, Zheng, Guangyong, Xu, Jingsheng, Yang, Zhenhui, Deng, Fang, Chen, Xuequn, Liao, Zhenyang, Zhang, Xunxiao, Lin, Zhicong, Lin, Hai, Yan, Hansong, Kuang, Zheng, Zhong, Weimin, Liang, Pingping, Wang, Guofeng, Yuan, Yuan, Shi, Jiaxian, Hou, Jinxiang, Lin, Jingxian, Jin, Jingjing, Cao, Peijian, Shen, Qiaochu, Jiang, Qing, Zhou, Ping, Ma, Yaying, Zhang, Xiaodan, Xu, Rongrong, Liu, Juan, Zhou, Yongmei, Jia, Haifeng, Ma, Qing, Qi, Rui, Zhang, Zhiliang, Fang, Jingping, Fang, Hongkun, Song, Jinjin, Wang, Mengjuan, Dong, Guangrui, Wang, Gang, Chen, Zheng, Ma, Teng, Liu, Hong, Dhungana, Singha R., Huss, Sarah E., Yang, Xiping, Sharma, Anupma, Trujillo, Jhon H., Martinez, Maria C., Hudson, Matthew, Riascos, John J., Schuler, Mary, Chen, Li-Qing, Braun, David M., Li, Lei, Yu, Qingyi, Wang, Jianping, Wang, Kai, Schatz, Michael C., Heckerman, David, Van Sluys, Marie-Anne, Souza, Glaucia Mendes, Moore, Paul H., Sankoff, David, VanBuren, Robert, Paterson, Andrew H., Nagai, Chifumi, and Ming, Ray
- Published
- 2018
- Full Text
- View/download PDF
5. Corrigendum: The ÓMICAS alliance, an international research program on multi-omics for crop breeding optimization
- Author
-
Jaramillo-Botero, Andres, primary, Colorado, Julian, additional, Quimbaya, Mauricio, additional, Rebolledo, Maria Camila, additional, Lorieux, Mathias, additional, Ghneim-Herrera, Thaura, additional, Arango, Carlos A., additional, Tobón, Luis E., additional, Finke, Jorge, additional, Rocha, Camilo, additional, Muñoz, Fernando, additional, Riascos, John J., additional, Silva, Fernando, additional, Chirinda, Ngonidzashe, additional, Caccamo, Mario, additional, Vandepoele, Klaas, additional, and Goddard, William A., additional
- Published
- 2022
- Full Text
- View/download PDF
6. The ÓMICAS alliance, an international research program on multi-omics for crop breeding optimization
- Author
-
Jaramillo-Botero, Andres, primary, Colorado, Julian, additional, Quimbaya, Mauricio, additional, Rebolledo, Maria Camila, additional, Lorieux, Mathias, additional, Ghneim-Herrera, Thaura, additional, Arango, Carlos A., additional, Tobón, Luis E., additional, Finke, Jorge, additional, Rocha, Camilo, additional, Muñoz, Fernando, additional, Riascos, John J., additional, Silva, Fernando, additional, Chirinda, Ngonidzashe, additional, Caccamo, Mario, additional, Vandepoele, Klaas, additional, and Goddard, William A., additional
- Published
- 2022
- Full Text
- View/download PDF
7. The OMICAS alliance, an international research program on multi-omics for crop breeding optimization
- Author
-
Jaramillo-Botero, Andres, Colorado, Julian D., Quimbaya, Mauricio, Rebolledo Cid, Maria Camila, Lorieux, Mathias, Ghneim-Herrera, Thaura, Arango, Carlos A., Tobón, Luis E., Finke, Jorge, Rocha, Camilo, Muñoz, Fernando, Riascos, John J., Silva, Fernando, Chirinda, Ngonidzashe, Caccamo, Mario, Vandepoele, Klaas, Goddard, William A., Jaramillo-Botero, Andres, Colorado, Julian D., Quimbaya, Mauricio, Rebolledo Cid, Maria Camila, Lorieux, Mathias, Ghneim-Herrera, Thaura, Arango, Carlos A., Tobón, Luis E., Finke, Jorge, Rocha, Camilo, Muñoz, Fernando, Riascos, John J., Silva, Fernando, Chirinda, Ngonidzashe, Caccamo, Mario, Vandepoele, Klaas, and Goddard, William A.
- Abstract
The OMICAS alliance is part of the Colombian government's Scientific Ecosystem, established between 2017-2018 to promote world-class research, technological advancement and improved competency of higher education across the nation. Since the program's kick-off, OMICAS has focused on consolidating and validating a multi-scale, multi-institutional, multi-disciplinary strategy and infrastructure to advance discoveries in plant science and the development of new technological solutions for improving agricultural productivity and sustainability. The strategy and methods described in this article, involve the characterization of different crop models, using high-throughput, real-time phenotyping technologies as well as experimental tissue characterization at different levels of the omics hierarchy and under contrasting conditions, to elucidate epigenome-, genome-, proteome- and metabolome-phenome relationships. The massive data sets are used to derive in-silico models, methods and tools to discover complex underlying structure-function associations, which are then carried over to the production of new germplasm with improved agricultural traits. Here, we describe OMICAS' R&D trans-disciplinary multi-project architecture, explain the overall strategy and methods for crop-breeding, recent progress and results, and the overarching challenges that lay ahead in the field.
- Published
- 2022
8. Diversidad genética en variedades de caña de azúcar azúcar (Saccharum spp.) usando marcadores moleculares
- Author
-
Riascos John J., Victoria Jorge I., and Angel Fernando
- Subjects
Caña de azúcar ,diversidad genética ,microsatélites ,marcadores moleculares ,Saccharum officinarum ,Sugarcane ,genetic diversity ,microsatellites ,molecular markers ,Biotechnology ,TP248.13-248.65 - Abstract
Debido a que el conocimiento de la diversidad genética existente en las variedades modernas de caña de azúcar es de vital importancia para los procesos de mejoramiento, el presente estudio examinó 33 variedades usadas por los mejoradores en CENICAÑA, y cinco clones de Saccharum officinarum mediante la técnica de los microsatélites. Se evaluaron 63 iniciadores los cuales produjeron 263 fragmentos polimórficos. Los patrones electroforéticos generados mediante esta técnica fueron analizados usando los paquetes estadísticos SAS (Análisis de Correspondencia Múltiple) y NTSYS-pc (dendrograma y matriz de distancias genéticas). Los alelos generados por cada iniciador oscilaron entre 1 y 16 (media de 5). Las agrupaciones generadas mediante estos análisis lograron diferenciar las variedades cultivadas de caña de los clones de S. officinarum, y a su vez determinaron que la similitud promedio de todos los individuos fue 0.664. El análisis de diversidad genética mostró un grupo bastante diverso (Ht: 0.973) y logro identificar 38 genotipos en toda la población. Dentro de los resultados más sobresalientes se destaca la ubicación de la variedad CC 91-1880 muy cerca de las variedades Q provenientes de Australia, proponiendo a esta variedad como un buen candidato para ser analizado por los mejoradores. Los resultados de este trabajo son muy importantes, pues deja claro que a pesar de la homogeneidad genética presente en las variedades modernas de caña de azúcar, existen variantes alélicas que podrían ser utilizadas en los nuevos proyectos de mejoramiento de CENICAÑA. Palabras clave: Caña de azúcar, diversidad genética, microsatélites, marcadores moleculares, Saccharum officinarum.
- Published
- 2003
9. Publisher Correction: Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L
- Author
-
Zhang, Jisen, Zhang, Xingtan, Tang, Haibao, Zhang, Qing, Hua, Xiuting, Ma, Xiaokai, Zhu, Fan, Jones, Tyler, Zhu, Xinguang, Bowers, John, Wai, Ching Man, Zheng, Chunfang, Shi, Yan, Chen, Shuai, Xu, Xiuming, Yue, Jingjing, Nelson, David R., Huang, Lixian, Li, Zhen, Xu, Huimin, Zhou, Dong, Wang, Yongjun, Hu, Weichang, Lin, Jishan, Deng, Youjin, Pandey, Neha, Mancini, Melina, Zerpa, Dessireé, Nguyen, Julie K., Wang, Liming, Yu, Liang, Xin, Yinghui, Ge, Liangfa, Arro, Jie, Han, Jennifer O., Chakrabarty, Setu, Pushko, Marija, Zhang, Wenping, Ma, Yanhong, Ma, Panpan, Lv, Mingju, Chen, Faming, Zheng, Guangyong, Xu, Jingsheng, Yang, Zhenhui, Deng, Fang, Chen, Xuequn, Liao, Zhenyang, Zhang, Xunxiao, Lin, Zhicong, Lin, Hai, Yan, Hansong, Kuang, Zheng, Zhong, Weimin, Liang, Pingping, Wang, Guofeng, Yuan, Yuan, Shi, Jiaxian, Hou, Jinxiang, Lin, Jingxian, Jin, Jingjing, Cao, Peijian, Shen, Qiaochu, Jiang, Qing, Zhou, Ping, Ma, Yaying, Zhang, Xiaodan, Xu, Rongrong, Liu, Juan, Zhou, Yongmei, Jia, Haifeng, Ma, Qing, Qi, Rui, Zhang, Zhiliang, Fang, Jingping, Fang, Hongkun, Song, Jinjin, Wang, Mengjuan, Dong, Guangrui, Wang, Gang, Chen, Zheng, Ma, Teng, Liu, Hong, Dhungana, Singha R., Huss, Sarah E., Yang, Xiping, Sharma, Anupma, Trujillo, Jhon H., Martinez, Maria C., Hudson, Matthew, Riascos, John J., Schuler, Mary, Chen, Li-Qing, Braun, David M., Li, Lei, Yu, Qingyi, Wang, Jianping, Wang, Kai, Schatz, Michael C., Heckerman, David, Van Sluys, Marie-Anne, Souza, Glaucia Mendes, Moore, Paul H., Sankoff, David, VanBuren, Robert, Paterson, Andrew H., Nagai, Chifumi, and Ming, Ray
- Published
- 2018
- Full Text
- View/download PDF
10. Unraveling the Genome of a High Yielding Colombian Sugarcane Hybrid
- Author
-
Trujillo-Montenegro, Jhon Henry, primary, Rodríguez Cubillos, María Juliana, additional, Loaiza, Cristian Darío, additional, Quintero, Manuel, additional, Espitia-Navarro, Héctor Fabio, additional, Salazar Villareal, Fredy Antonio, additional, Viveros Valens, Carlos Arturo, additional, González Barrios, Andrés Fernando, additional, De Vega, José, additional, Duitama, Jorge, additional, and Riascos, John J., additional
- Published
- 2021
- Full Text
- View/download PDF
11. NGSEP3: accurate variant calling across species and sequencing protocols
- Author
-
Tello, Daniel, primary, Gil, Juanita, additional, Loaiza, Cristian D, additional, Riascos, John J, additional, Cardozo, Nicolás, additional, and Duitama, Jorge, additional
- Published
- 2019
- Full Text
- View/download PDF
12. The Seed Biotinylated Protein of Soybean (Glycine max): A Boiling-Resistant New Allergen (Gly m 7) with the Capacity To Induce IgE-Mediated Allergic Responses
- Author
-
Riascos, John J., primary, Weissinger, Sandra M., additional, Weissinger, Arthur K., additional, Kulis, Michael, additional, Burks, A. Wesley, additional, and Pons, Laurent, additional
- Published
- 2016
- Full Text
- View/download PDF
13. Genetic diversity among sugarcane (Saccharum spp.) varieties using molecular markers
- Author
-
Riascos, John J., Victoria, Jorge I., Angel, Fernando, Riascos, John J., Victoria, Jorge I., and Angel, Fernando
- Abstract
The genetic base of today's sugarcane cultivars appears to be narrow and could be the reason for current slow progress in improving sugarcane crops. Sixty-three primer pairs (producing 263 polymorphic fragments) flanking simple sequence repeats or micro-satellites were used for assessing the genetic variability of five S. officinarum clones and 33 sugarcane cultivars used in CENICAÑA breeding projects, selected for their economic and agronomic im-portance in several Central and South-American countries. NTSYS (Numerical Taxonomy and Multivariate Analy-sis System) and SAS (Statistical Analysis System) statistical software was used to analyse data. The number of alleles recorded per marker ranged from 1 to 16 (mean = 5). Cluster analysis showed a clear separation of cultivars from S. officinarum clones. The average of genetic similarity between sugarcane genotypes studied was 0.664, while genetic diversity analysis revealed a very different group (H: 0.973). An interesting results concerned CC 91-1880 distribu-tion very close to that of Q genotypes from Australia and also S. officinarum clones, suggesting that this cultivar would be a good candidate for further studies by breeders. The results obtained are useful for CENICAÑA's breeding program because, in spite of the genetic homogeneity present in today's sugarcane cultivars, it is clear that allelic variants are present in some of these cultivars and could be used in the new breeding projects. Key words: Sugarcane, genetic diversity, microsatellites, molecular markers, Saccharum officinarum., Debido a que el conocimiento de la diversidad genética existente en las variedades modernas de caña de azúcar es de vital importancia para los procesos de mejoramiento, el presente estudio examinó 33 variedades usadas por los mejoradores en CENICAÑA, y cinco clones de Saccharum officinarum mediante la técnica de los microsatélites. Se evaluaron 63 iniciadores los cuales produjeron 263 fragmentos polimórficos. Los patrones electroforéticos generados mediante esta técnica fueron analizados usando los paquetes estadísticos SAS (Análisis de Correspondencia Múltiple) y NTSYS-pc (dendrograma y matriz de distancias genéticas). Los alelos generados por cada iniciador oscilaron entre 1 y 16 (media de 5). Las agrupaciones generadas mediante estos análisis lograron diferenciar las variedades cultivadas de caña de los clones de S. officinarum, y a su vez determinaron que la similitud promedio de todos los individuos fue 0.664. El análisis de diversidad genética mostró un grupo bastante diverso (Ht: 0.973) y logro identificar 38 genotipos en toda la población. Dentro de los resultados más sobresalientes se destaca la ubicación de la variedad CC 91-1880 muy cerca de las variedades Q provenientes de Australia, proponiendo a esta variedad como un buen candidato para ser analizado por los mejoradores. Los resultados de este trabajo son muy importantes, pues deja claro que a pesar de la homogeneidad genética presente en las variedades modernas de caña de azúcar, existen variantes alélicas que podrían ser utilizadas en los nuevos proyectos de mejoramiento de CENICAÑA. Palabras clave: Caña de azúcar, diversidad genética, microsatélites, marcadores moleculares, Saccharum officinarum.
- Published
- 2003
14. Diversidad genética en variedades de caña de azúcar azúcar (Saccharum spp.) usando marcadores moleculares
- Author
-
Riascos, John J., Victoria, Jorge I., Angel, Fernando, Riascos, John J., Victoria, Jorge I., and Angel, Fernando
- Abstract
Debido a que el conocimiento de la diversidad genética existente en las variedades modernas de caña de azúcar es de vital importancia para los procesos de mejoramiento, el presente estudio examinó 33 variedades usadas por los mejoradores en CENICAÑA, y cinco clones de Saccharum officinarum mediante la técnica de los microsatélites. Se evaluaron 63 iniciadores los cuales produjeron 263 fragmentos polimórficos. Los patrones electroforéticos generados mediante esta técnica fueron analizados usando los paquetes estadísticos SAS (Análisis de Correspondencia Múltiple) y NTSYS-pc (dendrograma y matriz de distancias genéticas). Los alelos generados por cada iniciador oscilaron entre 1 y 16 (media de 5). Las agrupaciones generadas mediante estos análisis lograron diferenciar las variedades cultivadas de caña de los clones de S. officinarum, y a su vez determinaron que la similitud promedio de todos los individuos fue 0.664. El análisis de diversidad genética mostró un grupo bastante diverso (Ht: 0.973) y logro identificar 38 genotipos en toda la población. Dentro de los resultados más sobresalientes se destaca la ubicación de la variedad CC 91-1880 muy cerca de las variedades Q provenientes de Australia, proponiendo a esta variedad como un buen candidato para ser analizado por los mejoradores. Los resultados de este trabajo son muy importantes, pues deja claro que a pesar de la homogeneidad genética presente en las variedades modernas de caña de azúcar, existen variantes alélicas que podrían ser utilizadas en los nuevos proyectos de mejoramiento de CENICAÑA.
- Published
- 2003
15. Hypoallergenic Legume Crops and Food Allergy: Factors Affecting Feasibility and Risk
- Author
-
Riascos, John J., primary, Weissinger, Arthur K., additional, Weissinger, Sandra M., additional, and Burks, A. Wesley, additional
- Published
- 2009
- Full Text
- View/download PDF
16. Hypoallergenic legume crops and food allergy: factors affecting feasibility and risk.
- Author
-
Riascos JJ, Weissinger AK, Weissinger SM, and Burks AW
- Subjects
- Arachis genetics, Arachis immunology, Fabaceae genetics, Humans, Plant Proteins genetics, Plant Proteins immunology, Plants, Genetically Modified genetics, Glycine max genetics, Glycine max immunology, Fabaceae immunology, Food Hypersensitivity immunology, Plants, Genetically Modified immunology
- Abstract
Currently, the sole strategy for managing food hypersensitivity involves strict avoidance of the trigger. Several alternate strategies for the treatment of food allergies are currently under study. Also being explored is the process of eliminating allergenic proteins from crop plants. Legumes are a rich source of protein and are an essential component of the human diet. Unfortunately, legumes, including soybean and peanut, are also common sources of food allergens. Four protein families and superfamilies account for the majority of legume allergens, which include storage proteins of seeds (cupins and prolamins), profilins, and the larger group of pathogenesis-related proteins. Two strategies have been used to produce hypoallergenic legume crops: (1) germplasm lines are screened for the absence or reduced content of specific allergenic proteins and (2) genetic transformation is used to silence native genes encoding allergenic proteins. Both approaches have been successful in producing cultivars of soybeans and peanuts with reduced allergenic proteins. However, it is unknown whether the cultivars are actually hypoallergenic to those with sensitivity. This review describes efforts to produce hypoallergenic cultivars of soybean and peanut and discusses the challenges that need to be overcome before such products could be available in the marketplace.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.