154 results on '"Reynolds, William T. Jr."'
Search Results
2. Kinetic pathways of ordering and phase separation using classical solid state models within the steepest-entropy-ascent quantum thermodynamic framework
- Author
-
Yamada, Ryo, von Spakovsky, Michael R., and Reynolds, William T., Jr.
- Published
- 2020
- Full Text
- View/download PDF
3. Assessing the influence of processing parameters and external loading on the nanoporous structure and morphology of nanoporous gold toward catalytic applications
- Author
-
Stuckner, Joshua, Frei, Katherine, Corcoran, Sean G., Reynolds, William T., Jr., and Murayama, Mitsuhiro
- Published
- 2020
- Full Text
- View/download PDF
4. Methodology of an application of the steepest-entropy-ascent quantum thermodynamic framework to physical phenomena in materials science
- Author
-
Yamada, Ryo, von Spakovsky, Michael R., and Reynolds, William T., Jr.
- Published
- 2019
- Full Text
- View/download PDF
5. Broadband dual phase energy harvester: Vibration and magnetic field
- Author
-
Song, Hyun-Cheol, Kumar, Prashant, Sriramdas, Rammohan, Lee, Hyeon, Sharpes, Nathan, Kang, Min-Gyu, Maurya, Deepam, Sanghadasa, Mohan, Kang, Hyung-Won, Ryu, Jungho, Reynolds, William T., Jr., and Priya, Shashank
- Published
- 2018
- Full Text
- View/download PDF
6. Effect of Laves Phase on High-Temperature Deformation and Microstructure Evolution in an 18Cr-2Mo-0.5Nb Ferritic Stainless Steel
- Author
-
Ikeda, Ken-ichi, Yamoah, Nana Kwame Gyan, Reynolds, William T., Jr., Hamada, Jun-Ichi, and Murayama, Mitsuhiro
- Subjects
Laves phase ,Ferritic stainless steel ,high-temperature deformation ,precipitation hardening ,solution hardening - Abstract
Niobium-containing ferritic stainless steels are finding new applications in automotive exhaust components because of their oxidation resistance, thermal fatigue resistance, and high-temperature strength. The mechanical behavior of Nb-containing ferritic steels at service temperatures of 973 K (700 A degrees C) and higher results from the convolution of dynamic microstructural changes including precipitation, precipitate coarsening, strain hardening, recovery, and recrystallization. The relative contributions of these competing processes have yet to be clarified. In this study, the high-temperature flow strength of an 18Cr-2Mo-0.5Nb ferritic stainless steel (SUS 444) was correlated with microstructure under different strain and initial precipitate distributions to clarify the relative role of the strengthening and softening processes. High-temperature tensile tests at 1023 K (750 A degrees C) of un-aged (initial microstructure is precipitate-free) and pre-aged (initial microstructure contains precipitates) samples were carried out and transmission electron microscopy was used to assess dislocation distributions and precipitate morphology. The difference in the stress-strain curves between un-aged and pre-aged samples was drastic; the yield strength of the un-aged sample was twice that of the pre-aged sample, and the un-aged sample exhibits a noticeable yield drop. Transmission electron microscopy revealed a Laves phase nucleated and grew during the high-temperature tensile test in the un-aged sample and the majority of the precipitates in the pre-aged sample were the same Laves phase. Furthermore, a strain effect on precipitate growth was recognized in un-aged and pre-aged conditions by comparing grip (no strain) and gage (strained) sections of tensile samples. The dominant strengthening contribution in un-aged samples is initially the precipitate shearing mechanism and it changes to Orowan strengthening beyond the ultimate tensile strength, whereas the dominant contribution in the pre-aged samples appears to be Orowan strengthening throughout the stress-strain curve.
- Published
- 2015
7. Assessment of the Risks Associated with Thin Film Solar Panel Technology
- Author
-
Reynolds, William T. Jr., Karmis, Michael E., Reynolds, William T. Jr., and Karmis, Michael E.
- Abstract
This report reviews the environmental risk profile of utility-scale cadmium telluride (CdTe) photovoltaic installations with relevant information from the scientific literature and an audit of the manufacturing and recycling facilities of a domestic manufacturer. Current photovoltaic technologies are described, and the environmental and health issues associated with CdTe are identified. Solubility measurements, bioavailability, acute aquatic toxicity, oral and inhalation toxicity, and mutagenicity studies all confirm CdTe has different physical, chemical, and toxicological properties than Cd. The CdTe compound is less leachable and less toxic than elemental Cd. The risks to the environment arising from broken solar panels during adverse events are considered by reviewing experimental results, theoretical worstcase modeling, and observational data from historical events. In each case considered, the potential negative health and safety impacts of utility-scale photovoltaic installations are low. The need for end-of-life management of solar panels is highlighted in the context of recycling to recover valuable and environmentally sensitive materials. Based upon the potential environmental health and safety impacts of CdTe photovoltaic installations across their life cycle, it is concluded they pose little to no risk under normal operating conditions and foreseeable accidents such as fire, breakage, and extreme weather events like tornadoes and hurricanes.
- Published
- 2019
8. Effect of Laves Phase on High-Temperature Deformation and Microstructure Evolution in an 18Cr-2Mo-0.5Nb Ferritic Stainless Steel
- Author
-
1000050080164, Ikeda, Ken-ichi, Yamoah, Nana Kwame Gyan, Reynolds, William T., Jr., Hamada, Jun-Ichi, Murayama, Mitsuhiro, 1000050080164, Ikeda, Ken-ichi, Yamoah, Nana Kwame Gyan, Reynolds, William T., Jr., Hamada, Jun-Ichi, and Murayama, Mitsuhiro
- Abstract
Niobium-containing ferritic stainless steels are finding new applications in automotive exhaust components because of their oxidation resistance, thermal fatigue resistance, and high-temperature strength. The mechanical behavior of Nb-containing ferritic steels at service temperatures of 973 K (700 A degrees C) and higher results from the convolution of dynamic microstructural changes including precipitation, precipitate coarsening, strain hardening, recovery, and recrystallization. The relative contributions of these competing processes have yet to be clarified. In this study, the high-temperature flow strength of an 18Cr-2Mo-0.5Nb ferritic stainless steel (SUS 444) was correlated with microstructure under different strain and initial precipitate distributions to clarify the relative role of the strengthening and softening processes. High-temperature tensile tests at 1023 K (750 A degrees C) of un-aged (initial microstructure is precipitate-free) and pre-aged (initial microstructure contains precipitates) samples were carried out and transmission electron microscopy was used to assess dislocation distributions and precipitate morphology. The difference in the stress-strain curves between un-aged and pre-aged samples was drastic; the yield strength of the un-aged sample was twice that of the pre-aged sample, and the un-aged sample exhibits a noticeable yield drop. Transmission electron microscopy revealed a Laves phase nucleated and grew during the high-temperature tensile test in the un-aged sample and the majority of the precipitates in the pre-aged sample were the same Laves phase. Furthermore, a strain effect on precipitate growth was recognized in un-aged and pre-aged conditions by comparing grip (no strain) and gage (strained) sections of tensile samples. The dominant strengthening contribution in un-aged samples is initially the precipitate shearing mechanism and it changes to Orowan strengthening beyond the ultimate tensile strength, whereas the dominant con
- Published
- 2015
9. One-step synthesis of TiO 2–SnO 2 solid solution nanoparticles in a premixed H 2–air CCVD reactor
- Author
-
Yang, Hongyun, Sathitsuksanoh, Noppadon, Reynolds, William T., Jr., and Li, Chunzhong
- Published
- 2011
- Full Text
- View/download PDF
10. Quality Assurance Testing of a High Performance Steel Bridge in Virginia
- Author
-
Duke, John C. Jr., Reynolds, William T. Jr., Materials Science and Engineering (MSE), Virginia Transportation Research Council, and Virginia Tech
- Subjects
Hydrogen induced microcracking ,HPS 70W ,Acoustic emission monitoring ,High performance steel - Abstract
One of the original objectives of this study was to recommend appropriate procedures for welding bridge members of high performance steel HPS70W to assure quality welds. The final objective was to determine whether hydrogen-induced microcracking might occur and go undetected using the standard welding and weld inspection processes. Laboratory testing of steel specimens A588 and HPS70W with and without hydrogen charging were conducted. A588 was selected in part due to material availability and because its mechanical properties were reasonably close to under matched weld metals used with HPS70W. Acoustic emission (AE) monitoring was used as the means of detecting plastic zone formation, crack extension, and possible microcracking due hydrogen embrittlement. Although there is strong evidence to suggest that hydrogen-induced microcracking can occur in weld metal of bridge steels, including HPS70W, AE monitoring did not detect the formation of such damage in this study. The following recommendations are offered: (1) If the costs associated with detecting and repairing delayed, or cold, cracking due to hydrogen embrittlement are considered too high despite infrequent occurrence, every precaution possible should be taken. This would include preheating the steel, either baking the consumables or using specially packaged consumables, and post heating to drive off excess hydrogen absorbed during welding. (2) To reduce the added cost associated with the welding procedure precautions for every bridge project, an effort should be undertaken to develop a nondestructive weld inspection procedure that can reliably detect the presence of hydrogen-induced microcracking. The one-time cost of the enhanced AE system developed in this study is approximately $25,000. This system could be incorporated with VDOT's current procedures to ensure the quality of welded structural steel bridge elements. Quality assurance of welded steel elements prior to erection is critical. Crack detection and repair in service may cost on the order of hundreds of thousands of dollars, depending upon the severity of the crack and the criticality of the element to the bridge structure. Virginia Department of Transportation 21560 FHWA 21560
- Published
- 2005
11. Origin of high piezoelectric response in A-site disordered morphotropic phase boundary composition of lead-free piezoelectric 0.93(Na0.5Bi0.5)TiO3-0.07BaTiO(3)
- Author
-
Maurya, Deepam, Murayama, Mitsuhiro, Pramanick, A., Reynolds, William T. Jr., An, Ke, Priya, Shashank, Maurya, Deepam, Murayama, Mitsuhiro, Pramanick, A., Reynolds, William T. Jr., An, Ke, and Priya, Shashank
- Abstract
Perovskite piezoelectric compositions near the morphotropic phase boundary (MPB) are known to exhibit high piezoelectric response. In lead-based ABO(3) compound with B-site disorder, the origin of this enhancement has been associated with the presence of an intermediate monoclinic/orthorhombic state that bridges the adjacent ferroelectric rhombohedral and tetragonal phases. However, the origin of high piezoelectric response in lead-free ABO(3) compounds with A-site disorder has not been conclusively established. We describe a microscopic model derived from comparative analyses of high resolution transmission electron microscopy and neutron diffraction that explains the origin of high piezoelectric response in lead-free MPB compositions of 0.93(Na0.5Bi0.5)TiO3-0.07BaTiO3. Direct observation of nanotwins with monoclinic symmetry confirmed the presence of an intermediate bridging phase that facilitates a pathway for polarization reorientation. Monoclinic distortions of an average rhombohedral phase are attributed to localized displacements of atoms along the non-polar directions. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4792729]
- Published
- 2013
- Full Text
- View/download PDF
12. Role of coexisting tetragonal regions in the rhombohedral phase of Na0.5Bi0.5TiO3-xat.%BaTiO3 crystals on enhanced piezoelectric properties on approaching the morphotropic phase boundary
- Author
-
Civil and Environmental Engineering, Institute for Critical Technology and Applied Science (ICTAS), Materials Science and Engineering (MSE), Yao, Jianjun, Monsegue, Niven, Murayama, Mitsuhiro, Leng, W. N., Reynolds, William T. Jr., Zhang, Qinhui, Luo, Haosu, Li, Jiefang, Ge, Wenwei, Viehland, Dwight D., Civil and Environmental Engineering, Institute for Critical Technology and Applied Science (ICTAS), Materials Science and Engineering (MSE), Yao, Jianjun, Monsegue, Niven, Murayama, Mitsuhiro, Leng, W. N., Reynolds, William T. Jr., Zhang, Qinhui, Luo, Haosu, Li, Jiefang, Ge, Wenwei, and Viehland, Dwight D.
- Abstract
The ferroelectric domain and local structures of Na0.5Bi0.5TiO3-xat.%BaTiO3 (NBT-x%BT) crystals for x = 0, 4.5, and 5.5 have been investigated by transmission electron microscopy. The results show that the size of polar nano-regions was refined with increasing xat. %BT. The tetragonal phase volume fraction, as identified by in-phase octahedral tilting, was found to be increased with BT. The findings indicate that the large electric field induced strains in morphotropic phase boundary compositions of NBT-x%BT originate not only from polarization rotation but also polarization extension. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3673832]
- Published
- 2012
13. The influence of Mn substitution on the local structure of Na0.5Bi0.5TiO3 crystals: Increased ferroelectric ordering and coexisting octahedral tilts
- Author
-
Materials Science and Engineering (MSE), Yao, Jianjun, Ge, Wenwei, Yan, Li, Reynolds, William T. Jr., Li, Jiefang, Viehland, Dwight D., Kiselev, Dmitry A., Kholkin, Andrei L., Zhang, Qinhui, Luo, Haosu, Materials Science and Engineering (MSE), Yao, Jianjun, Ge, Wenwei, Yan, Li, Reynolds, William T. Jr., Li, Jiefang, Viehland, Dwight D., Kiselev, Dmitry A., Kholkin, Andrei L., Zhang, Qinhui, and Luo, Haosu
- Abstract
The ferroelectric domain structure of pure Na1/2Bi1/2TiO3 (NBT) and 1 at.% Mn-doped NBT (Mn-NBT) crystals was investigated by piezoresponse force microscopy. The correlation length of the polar regions was found to increase upon Mn substitution. High resolution transmission electron microscopy revealed that the coherency of the lattice across the domain boundaries between polar regions was also enhanced. Selected area electron diffraction showed that Mn favored coexisting 1/2 (ooo) and 1/2 (ooe) oxygen octahedral tiltings, over only 1/2 (ooo) for pure NBT. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3699010]
- Published
- 2012
14. Quality Assurance Testing of a High Performance Steel Bridge in Virginia
- Author
-
Materials Science and Engineering (MSE), Duke, John C. Jr., Reynolds, William T. Jr., Materials Science and Engineering (MSE), Duke, John C. Jr., and Reynolds, William T. Jr.
- Abstract
One of the original objectives of this study was to recommend appropriate procedures for welding bridge members of high performance steel HPS70W to assure quality welds. The final objective was to determine whether hydrogen-induced microcracking might occur and go undetected using the standard welding and weld inspection processes. Laboratory testing of steel specimens A588 and HPS70W with and without hydrogen charging were conducted. A588 was selected in part due to material availability and because its mechanical properties were reasonably close to under matched weld metals used with HPS70W. Acoustic emission (AE) monitoring was used as the means of detecting plastic zone formation, crack extension, and possible microcracking due hydrogen embrittlement. Although there is strong evidence to suggest that hydrogen-induced microcracking can occur in weld metal of bridge steels, including HPS70W, AE monitoring did not detect the formation of such damage in this study. The following recommendations are offered: (1) If the costs associated with detecting and repairing delayed, or cold, cracking due to hydrogen embrittlement are considered too high despite infrequent occurrence, every precaution possible should be taken. This would include preheating the steel, either baking the consumables or using specially packaged consumables, and post heating to drive off excess hydrogen absorbed during welding. (2) To reduce the added cost associated with the welding procedure precautions for every bridge project, an effort should be undertaken to develop a nondestructive weld inspection procedure that can reliably detect the presence of hydrogen-induced microcracking. The one-time cost of the enhanced AE system developed in this study is approximately $25,000. This system could be incorporated with VDOT's current procedures to ensure the quality of welded structural steel bridge elements. Quality assurance of welded steel elements prior to erection is critical. Crack detection and
- Published
- 2005
15. Effect of temperature and percent cold work on the mechanical properties of aluminum alloy 3104
- Author
-
Materials Science and Engineering, Reynolds, William T. Jr., Gordon, Ronald S., Halley, William G., Eaton, James Allen, Materials Science and Engineering, Reynolds, William T. Jr., Gordon, Ronald S., Halley, William G., and Eaton, James Allen
- Abstract
The effect of fourth pass cold reduction and final anneal temperature were investigated for aluminum alloy 3104. The material was received at 0.019" (82% reduction) and further reduced to: 84%, 86%, 88%, and 89%. The material was then heated for 2 hours between 85°C and 160°C. Samples were uniaxially tensile tested at 0.0167 per second for yield strength, ultimate strength, and total percent elongation. Samples showed an increase in ductility with increasing temperature. This is believed to be the result of recovery. Prior processing limited the possibility that age hardening effects would occur. No age hardening was found. TEM micrographs showed no evidence for the presence of GP zones or the S' Al₂CuMg metastable phase.
- Published
- 1992
16. Dynamic and Post-Dynamic Microstructure Evolution in Additive Friction Stir Deposition
- Author
-
Griffiths, Robert Joseph, Materials Science and Engineering, Yu, Hang, Dickenson, Roger Conley, Reynolds, William T. Jr., and Cai, Wenjun
- Subjects
Additive manufacturing ,metals ,severe plastic deformation ,thermomechanical processing - Abstract
Metal additive manufacturing stands poised to disrupt multiple industries with high material use efficiency and complex part production capabilities, however many technologies deposit material with sub-optimal properties, limiting their use. This decrease in performance largely stems from porosity laden parts, and asymmetric solidification-based microstructures. Solid-state additive manufacturing techniques bypass these flaws, using deformation and diffusion phenomena to bond material together layer by layer. Among these techniques, Additive Friction Stir Deposition (AFSD), stands out as unique for its freeform nature, and thermomechanical conditions during material processing. Leveraging its solid-state behavior, optimized microstructures produced by AFSD can reach performance levels near, at, or even above traditionally prepared metals. A strong understanding of the material conditions during AFSD and the phenomena responsible for microstructure evolution. Here we discuss two works aimed at improving the state of knowledge surrounding AFSD, promoting future microstructure optimization. First, a parametric study is performed, finding a wide array of producible microstructures across two material systems. In the second work, a stop-action type experiment is employed to observe the dynamic microstructure evolution across the AFSD material flow pathway, finding specific thermomechanical regimes that occur within. Finally, multiple conventional alloy systems are discussed as their microstructure evolution pertains to AFSD, as well as some more unique systems previously limited to small lab scale techniques, but now producible in bulk due to the additive nature of AFSD. Doctor of Philosophy The microstructure of a material describes the atomic behavior at multiple length scales. In metals this microstructure generally revolves around the behavior of millions of individual crystals of metal combined to form the bulk material. The state and behavior of these crystals and the atoms that make them up influence the strength and usability of the material and can be observed using various high fidelity characterization techniques. In metal additive manufacturing (i.e. 3D printing) the microstructure experiences rapid and severe changes which can alter the final properties of the material, typical to a detrimental effect. Given the other benefits of additive manufacturing such as reduced costs and complex part creation, there is desire to predict and control the microstructure evolution to maximize the usability of printed material. Here, the microstructure evolution in a solid-state metal additive manufacturing, Additive Friction Stir Deposition (AFSD), is investigated for different metal material systems. The solid-state nature of AFSD means no melting of the metal occurs during processing, with deformation forcing material together layer by layer. The conditions experienced by the material during printing are in a thermomechanical regime, with both heating and deformation applied, akin to common blacksmithing. In this work specific microstructure evolution phenomena are discussed for multiple materials, highlighting how AFSD processing can be adjusted to change the resulting microstructure and properties. Additionally, specific AFSD process interactions are studied and described to provide better insight into cumulative microstructure evolution throughout the process. This work provides the groundwork for investigating microstructure evolution in AFSD, as well as evidence and results for a number of popular metal systems.
- Published
- 2021
17. Structure Characterization and Electronic Properties Investigation of Two-Dimensional Materials
- Author
-
Baniasadi, Fazel, Materials Science and Engineering, Tao, Chenggang, Park, Kyungwha, Suchicital, Carlos T. A., Reynolds, William T. Jr., and Murayama, Mitsuhiro
- Subjects
Raman Spectroscopy ,STM ,Defects ,SEAQT ,2D Materials ,DFT ,STS - Abstract
This dissertation will have three chapters. In chapter one, a comprehensive review on defects in two dimensional materials will be presented. The aim of this review is to elaborate on different types of defects in two dimensional (2D) materials like graphene and transition metal dichalcogenides (TMDs). First, different types of point and line defects, e.g. vacancies, anti-sites, guest elements, adatoms, vacancy clusters, grain boundaries, and edges, in these materials are categorized in terms of structure. Second, interactions among defects are discussed in terms of their rearrangement for low-energy configurations. Before studying the electronic and magnetic properties of defective 2D materials, some of the structures are considered in order to see how defect structure evolves to a stable defect configuration. Next, the influence of defects on electronic and magnetic properties of 2D materials is discussed. Finally, the dynamic behavior of defects and 2D structures under conditions such as electron beam irradiation, heat treatment, and ambient conditions, is discussed. Later as a case study, defects in a two dimensional transition metal dichalcogenide will be presented. Among two-dimensional (2D) transition metal dichalcogenides (TMDs), platinum diselenide (PtSe2) stands at a unique place in the sense that it undergoes a phase transition from type-II Dirac semimetal to indirect-gap semiconductor as thickness decreases. Defects in 2D TMDs are ubiquitous and play crucial roles in understanding and tuning electronic, optical, and magnetic properties. Here intrinsic point defects in ultrathin 1T-PtSe2 layers grown on mica were investigated through the chemical vapor transport (CVT) method, using scanning tunneling microscopy and spectroscopy (STM/STS) and first-principles calculations. Five types of distinct defects were observed from STM topography images and the local density of states of the defects were obtained. By combining the STM results with first-principles calculations, the types and characteristics of these defects were identified, which are Pt vacancies at the topmost and next monolayers, Se vacancies in the topmost monolayer, and Se antisites at Pt sites within the topmost monolayer. Our study shows that the Se antisite defects are the most abundant with the lowest formation energy in a Se-rich growth condition, in contrast to cases of 2D molybdenum disulfide (MoS2) family. Our findings would provide critical insight into tuning of carrier mobility, charge carrier relaxation, and electron-hole recombination rates by defect engineering or varying growth condition in few-layer 1T-PtSe2 and other related 2D materials. Also, in order to investigate the layer dependency of vibrational and electronic properties of two dimensional materials, 2M-WS2 material was selected. Raman spectroscopy and DFT calculation proved that all Raman active modes have a downshift when material is thinned to few layers (less than 5 layers). It was proven that there is a strong interaction between layers such that by decreasing the number of layers, the downshift in Raman active modes is mostly for the ones which belong to out-of-plane atomic movements and the most downshift is for the Ag2 Raman active mode. Also, I investigated the effect of number of layers on the band structure and electronic properties of this material. As the number of layers decreases, band gap does not change until the materials is thinned down to only a single monolayer. For a single monolayer of 2M-WS2, there is an indirect band gap of 0.05eV; however, with applying in-plane strain to this monolayer, the material takes a metallic behavior as the strain goes beyond ±1%. Doctor of Philosophy Graphite (consisting of graphene as building blocks) and TMDS in bulk form are layered and with exfoliation one can reach to few layers which is called two-dimension. Two dimensional materials like graphene have been used in researches vastly due to their unique properties, e.g. high carrier mobility, and tunable electronic properties. Transition metal dichalcogenides (TMDs) with a general formula of MX2, where M represents transition metal elements (groups 4-10) and X represents chalcogen elements (S, Se or Te), are another family of two-dimensional materials which have been extensively studied in the past few years. Besides exfoliation, there are also synthesis methods to produce two dimensional materials, e.g. chemical vapor deposition and chemical vapor transport. Normally, after synthesizing these materials, researchers investigate structure and electronic properties of these materials. There might be some atoms which no longer exist in the structure; hence, those are replaced by either vacancies or other elements which all of them are called defects. In chapter 1, defects in graphene and transition metal dichacolgenides were investigated, carefully. Later, dynamic behavior of defects in these materials were investigated and finally, the effect of defects on the electronic properties of the two dimensional materials were investigated. Chapter two talks about a case study which is two dimensional 1T-PtSe2. In this chapter, 5 different kinds of defects were studied using scanning tunneling microscopy and spectroscopy investigations and density functional theory was used to prove our assumptions of the origin of defects. Also, another thing which is investigated by researcher is that how atoms in two dimensional materials vibrate and how the number of layers in the two dimensional material influences vibrations of atoms. Other than this, electronic properties of these materials is dependent upon the number of layers. When these materials are synthesized, there is a stress applied to the material due the mismatch between the material and its substrate, so it is worth investigating the effect of stress (strain) on the structure, and electronic properties of the material of interest. For this purpose, 2M-WS2 was exfoliated on Si/SiO2 substrate and the layer dependency of its vibrational modes was investigated using Raman spectroscopy and density functional theory calculation. Also, in order to investigate the influence of stress (strain) on the electronic properties of two dimensional 2M-WS2, a single monolayer of this materials underwent a series of strains in density functional theory calculations and the effect of strain on the electronic properties of this material was investigated.
- Published
- 2021
18. Fundamental Understanding and Functionality of Silicon Oxycarbide
- Author
-
Yang, Ni, Materials Science and Engineering, Lu, Peizhen, Pickrell, Gary R., Reynolds, William T. Jr., and Bortner, Michael J.
- Subjects
thermophysical property ,silicon oxycarbide ,high-temperature pyrolysis ,Polymer-derived ceramics ,phase evolution - Abstract
Silicon oxycarbide (SiOC) is a unique polymer-derived ceramic (PDC) containing silicon, oxygen, and carbon atoms in the form of an amorphous network structure. The phase separation of SiOC is determined by polymeric precursors, pyrolysis temperatures, and atmosphere, which results in different compositions and microstructures. Because of its unique properties (high thermal stability, corrosion resistance, among others), SiOC has numerous applications in fields such as additive manufacturing, lithium-ion batteries, and advanced optics. In the SiOC system, SiO2 nanoclusters can be removed through the etching process, to create nanopores for increasing the surface area. By introducing the SiO2-forming filler (perhydropolysilazane) into SiOC, more SiO2 nanodomains with an average size of 1.72 nm were generated for an ultrahigh surface area of ~2100 m2/g material. Meanwhile, the distributions of domain wall thickness and pore distribution can be calculated by our modified model, to further understand the pore formation. The formation of porous SiOC ceramics with ultrahigh surface areas is greatly desired in numerous applications. Transition metal-containing SiOC composites have more functional properties over pure SiOC and receive more attention in different areas. High-temperature resistant TiC/SiOC was successfully synthesized by pyrolysis of polysiloxane (PSO) and titanium isopropoxide at 1200-1400 °C in argon. It had the first reported conductivity of >1000 S/m for TiC/SiOC ceramics. Nickel-containing SiOC magnetoceramics with soft ferromagnetism was fabricated from a base PSO with the addition of nickel 2,4‐pentanedionate. The effect of water vapor on the phase evolution of Ni/SiOC composites was studied at different pyrolysis temperatures, and the formation of nickel silicides was suppressed by the effect of water vapor during the pyrolysis. Our investigation showed the catalysts from transition metals induced the generation of metal silicides, silicon carbide, and turbostratic carbon with the catalytic activity corresponding to Fe > Co > Ni, which agrees with the activation energy calculation. Also, the phase separation of SiOC was proved to be predominant than local carbothermal reduction. In addition to these findings, a novel approach was developed through the Gibbs free energy minimization method to predict the phase content in PDCs with transition metal additives. And this work provides useful guidance to fabricate the transition metal-containing SiOCs with the desired phase content. Last, the state-of-the-art 4D-STEM technique, collaborated with Lawrence Berkeley National Laboratory, was applied to SiOC ceramics containing amorphous phase. The results showed that 4D-STEM is a valid approach to characterize the nanostructure of the amorphous phase as well as the crystallites. It solves the problem of analyzing SiOC materials at nanoscale due to the disordered atomic arrangement and properties. Doctor of Philosophy With the development of science and technology, some novel ceramics have begun to attract attention and become alternatives, such as polymer-derived ceramics (PDCs), due to more advantages over traditional ceramics. Silicon oxycarbide (SiOC) is the main part of the PDC family and possessing good combined thermophysical and mechanical properties. Highly porous SiOC ceramic has broad applications in the fields of catalyst, filters, and thermal insulation. A novel preparation to synthesize SiOC with a specific surface area above 2000 m2/g was investigated. Adding transition metals into the SiOC system can enlarge its application potentials to some extent. The bright spot of nickel-containing SiOC (Ni/SiOC) composites is in the magnetic area. Ni/SiOC composites show soft ferromagnetism and can be used as magnetic sensors, transformers, and so on. In this dissertation, the effect of water vapor on the phase evolution of Ni/SiOC was illustrated. The fabrication of high-temperature-resistant Ti/SiOC composite with large than 1000 S/m conductivity was studied. To further uncover the influence of transition metals on SiOC ceramics, the effects of transition metals on the phase and microstructure evolution of polysiloxane-derived SiOC ceramics were deeply demonstrated. A novel method was even developed to predict the phase content in SiOC ceramic with different transition metals. By working with Lawrence Berkeley National Laboratory, the nanoscale structures of SiOC ceramic was studied using state-of-the-art 4D-STEM. The findings of this dissertation shed light on more potential applications for SiOC ceramics in the future.
- Published
- 2021
19. Novel Synthesis of Bulk Nanocarbon (BNC)
- Author
-
Tamakloe, Senam, Materials Science and Engineering, Aning, Alexander O., Suchicital, Carlos T. A., and Reynolds, William T. Jr.
- Subjects
Activated carbon ,carbon nanomaterials - Abstract
Carbonized organic precursors such as wood, shells and some plant seeds are very porous. They are nanostructured and tend to be hard, but have pure mechanical properties as a result of their porosities. An attempt was made to carbonize an organic precursor to produce a bulk material with much less porosity for possible use in structural applications such as reinforcement in metal and polymer matrices. A bulk nanocarbon (BNC) material was synthesized using high energy ball milling and the carbonization of corn cob. Corn cob was mechanically milled for up to 20 hours by applying high energy ball milling to produce the milled powder. The milled powder was cold-compacted and carbonized at up to 1500°C to fabricate the BNC material. The material revealed both micro and nano-porosities; the porosities decreased with carbonizing temperature and hold time. Micropores were mostly closed for samples carbonized above 1300oC, whereas they formed interconnected network at lower carbonization temperatures. BNC has a young's modulus of 120 GPa, about ten times that of extruded graphite. Master of Science Wood, shells, and plant seeds are examples of organic precursors. When organic precursors are carbonized, they can become very porous, nanostructured, and hard, but deliver pure mechanical properties because of their porosities. A selected organic precursor was carbonized, in an attempt, to produce a bulk material with much less porosity for possible use in structural applications such as reinforcement in metal and polymer matrices. A bulk nanocarbon (BNC) material was made using high energy ball milling and the carbonization of corn cob (the selected organic precursor). This bulk material revealed both micro and nano-porosities, and a young's modulus of 120 GPa, about ten times that of extruded graphite.
- Published
- 2020
20. Theoretical Study of Semiconductor Quantum Dot Lasers with Asymmetric Barrier Layers
- Author
-
Monk, John Lawrence III, Materials Science and Engineering, Asryan, Levon V., Khodaparast, Giti, and Reynolds, William T. Jr.
- Subjects
Semiconductor Laser ,Quantum Dot ,Physics::Optics ,Semiconductor ,Asymmetric Barrier Layer - Abstract
Small-signal dynamic response of semiconductor quantum dot (QD) lasers with asymmetric barrier layers was studied. Semiconductor lasers are used in many communication systems. Fiber optic communication systems use semiconductor lasers in order to transmit information. DVD and Blu-ray disk players feature semiconductor lasers as their readout source. Barcode readers and laser pointers also use semiconductor lasers. A medical application of semiconductor lasers is for minor soft tissue procedures. Semiconductor lasers are also used to pump solid-state and fiber lasers. Semiconductor lasers are able to transmit telephone, internet, and television signals through fiber optic cables over long distances. The amount of information able to be transferred is directly related to the bandwidth of the laser. By introducing asymmetric barrier layers, the modulation bandwidth of the laser will improve, allowing for more information to be transferred. Also, by introducing asymmetric barrier layers, the output power will be unrestricted, meaning as more current is applied to the system, the laser will get more powerful. An optimum pumping current was found which maximized modulation bandwidth at -3dB, and is lower in QD lasers with asymmetric barrier layers (ABL) as opposed to conventional QD lasers. Modulation bandwidth was found to increase with cross section of carrier capture before reaching an asymptote. Both surface density of QDs and cavity length had optimum values which maximized modulation bandwidth. Relative QD size fluctuation was considered in order to see how variation in QD sizes effects the modulation bandwidth of the semiconductor QD laser with ABLs. These calculations give a good starting point for fabricating semiconductor QD lasers with ABLs featuring the largest modulation bandwidth possible for fiber optic communication systems. In semiconductor QD lasers, the electrons and holes may be captured into excited states within the QDs, rather than the ground state. The particles may also jump from the ground state up to an excited state, or drop from the excited state to the ground state. Recombination of electron-hole pairs can occur from the ground state to the ground state or from an excited state to an excited state. In the situation if the capture of charge carriers into the ground state in QDs takes place via the excited-state, then this two-step capture process makes the output power from ground-state lasing to saturate in conventional QD lasers. By using ABLs in the QD laser, it is predicted that the output power of ground-state lasing will continue to rise with applied current, as the ABLs will stop the electrons and holes from recombining in the optical confinement layer. Thus, ABL QD lasers will be able to be used in applications that require large energy outputs. Master of Science Semiconductor lasers (also known as diode lasers) have been used in numerous applications ranging from communication to medical applications. Among all applications of diode lasers, of particular importance is their use for high speed transmission of information and data in fiber optic communication systems. This is accomplished by direct conversion of the diode laser input (electrical current) to its output (optical power). Direct modulation of the laser optical output through varying electrical current helps cut costs by not requiring other expensive equipment in order to perform modulation. The performance of conventional semiconductor lasers suffers from parasitic recombination outside of the active region – an unwanted process that consumes a considerable fraction of the laser input (injection current) while not contributing to the useful output and thus damaging its performance. Asymmetric barrier layers were proposed as a way to suppress parasitic recombination in semiconductor lasers. In this study, the optimal conditions for semiconductor quantum dot lasers with asymmetric barrier layers were calculated in order to maximize their modulation bandwidth – the parameter that determines the highest speed of efficient information transmission. This includes finding the optimal values of the dc component of the pump current, quantum dot surface density and size fluctuations, and cavity length. As compared to conventional quantum dot lasers, the optimal dc current maximizing the modulation bandwidth is shown to be considerably lower in quantum dot lasers with asymmetric barrier layers thus proving their outperforming efficiency. In the presence of extra states in quantum dots in conventional lasers, the optical output of needed ground-state lasing may be heavily impacted – it may remain almost unchanged with increasing the laser input current. As opposed to conventional lasers, the output power of ground-state lasing in devices with asymmetric barrier layers will continue growing as more input current is applied to the system.
- Published
- 2020
21. Silicon Carbide - Nanostructured Ferritic Alloy Composites for Nuclear Applications
- Author
-
Bawane, Kaustubh Krishna, Materials Science and Engineering, Lu, Peizhen, Bai, Xianming, Reynolds, William T. Jr., and Case, Scott W.
- Subjects
silicon carbide ,in-situ irradiation damage ,Nanostructured ferritic alloys ,high temperature corrosion ,metal matrix composite - Abstract
Silicon carbide and nanostructured ferritic alloy (SiC-NFA) composites have the potential to maintain the outstanding high temperature corrosion and irradiation resistance and enhance the mechanical integrity for nuclear cladding. However, the formation of detrimental silicide phases due to reaction between SiC and NFA remains a major challenge. By introducing a carbon interfacial barrier on NFA (C@NFA), SiC-C@NFA composites are investigated to reduce the reaction between SiC and NFA. In a similar way, the effect of chromium carbide (Cr3C2) interfacial barrier on SiC (Cr3C2@SiC) is also presented for Cr3C2@SiC-NFA composites. Both the coatings were successful in suppressing silicide formation. However, despite the presence of coatings, SiC was fully consumed during spark plasma sintering process. TEM and EBSD investigations revealed that spark plasma sintered SiC-C@NFA and Cr3C2@SiC-NFA formed varying amounts of different carbides such as (Fe,Cr)7C3, (Ti,W)C and graphite phases in their microstructure. Detailed microstructural examinations after long term thermal treatment at 1000oC on the microstructure of Cr3C2@SiC-NFA showed precipitation of new (Fe,Cr)7C3, (Ti,W)C carbides and also the growth of existing and new carbides. The results were successfully explained using ThermoCalc precipitation and coarsening simulations respectively. The oxidation resistance of 5, 15 and 25 vol% SiC@NFA and Cr3C2@SiC-NFA composites at 500-1000oC temperature under air+45%water vapor containing atmosphere is investigated. Oxidation temperature effects on surface morphologies, scale characteristics, and cross-sectional microstructures were investigated and analyzed using XRD and SEM. SiC-C@NFA showed reduced weight gain but also showed considerable internal oxidation. Cr3C2@SiC-NFA composites showed a reduction in weight gain with the increasing volume fraction of Cr3C2@SiC (5, 15 and 25) without any indication of internal oxidation in the microstructure. 25 vol% SiC-C@NFA and 25 vol% Cr3C2@SiC-NFA showed over 90% and 97% increase in oxidation resistance (in terms of weight gain) as compared to NFA. The results were explained using the fundamental understanding of the oxidation process and ThermoCalc/DICTRA simulations. Finally, the irradiation performance of SiC-C@NFA and Cr3C2@SiC-NFA composites was assessed in comparison with NFA using state-of-the-art TEM equipped with in-situ ion irradiation capability. Kr++ ions with 1 MeV energy was used for irradiation experiments. The effect of ion irradiation was recorded after particular dose levels (0-10 dpa) at 300oC and 450oC temperatures. NFA sample showed heavy dislocation damage at both 300oC and 450oC increasing gradually with dose levels (0-10 dpa). Cr3C2@SiC-NFA showed similar behavior as NFA at 300oC. However, at 450oC, Cr3C2@SiC-NFA showed remarkably low dislocation loop density and loop size as compared to NFA. At 300oC, microstructures of NFA and Cr3C2@SiC-NFA show predominantly 1/2 type dislocation loops. At 450oC, NFA showed predominantly type loops, however, Cr3C2@SiC-NFA composite was still predominant in ½ loops. The possible reasons for this interesting behavior were discussed based on the large surface sink effects and enhanced interstitial-vacancy recombination at higher temperatures. The molecular dynamics simulations did not show considerable difference in formation energies of ½ and loops for NFA and Cr3C2@SiC-NFA composites. The additional Si element in the SiC-NFA sample could have been an important factor in determining the dominant loop types. SiC-C@NFA composites showed heavy dislocation damage during irradiation at 300oC. At 450oC, SiC-C@NFA showed high dislocation damage in thicker regions. Thinner regions near the edge of TEM samples were largely free from dislocation loops. The precipitation and growth of new (Ti,W)C carbides were observed at 450oC with increasing irradiation dose. (Fe,Cr)7C3 precipitates were largely free from any dislocation damage. Some Kr bubbles were observed inside (Fe,Cr)7C3 precipitates and at the interface between α-ferrite matrix and carbides ((Fe,Cr)7C3, (Ti,W)C). The results were discussed using the fundamental understanding of irradiation and ThermoCalc simulations. Doctor of Philosophy With the United Nations describing climate change as 'the most systematic threat to humankind', there is a serious need to control the world's carbon emissions. The ever increasing global energy needs can be fulfilled by the development of clean energy technologies. Nuclear power is an attractive option as it can produce low cost electricity on a large scale with greenhouse gas emissions per kilowatt-hour equivalent to wind, hydropower and solar. The problem with nuclear power is its vulnerability to potentially disastrous accidents. Traditionally, fuel claddings, rods which encase nuclear fuel (e.g. UO2), are made using zirconium based alloys. Under 'loss of coolant accident (LOCA) scenarios' zirconium reacts with high temperature steam to produce large amounts of hydrogen which can explode. The risks associated with accidents can be greatly reduced by the development of new accident tolerant materials. Nanostructured ferritic alloys (NFA) and silicon carbide (SiC) are long considered are leading candidates for replacing zirconium alloys for fuel cladding applications. In this dissertation, a novel composite of SiC and NFA was fabricated using spark plasma sintering (SPS) technology. Chromium carbide (Cr3C2) and carbon (C) coatings were employed on SiC and NFA powder particles respectively to act as reaction barrier between SiC and NFA. Microstructural evolution after spark plasma sintering was studied using advanced characterization tools such as scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) techniques. The results revealed that the Cr3C2 and C coatings successfully suppressed the formation of detrimental reaction products such as iron silicide. However, some reaction products such as (Fe,Cr)7C3 and (Ti,W)C carbides and graphite retained in the microstructure. This novel composite material was subjected to high temperature oxidation under a water vapor environment to study its performance under the simulated reactor environment. The degradation of the material due to high temperature irradiation was studied using state-of-the-art TEM equipped with in-situ ion irradiation capabilities. The results revealed excellent oxidation and irradiation resistance in SiC-NFA composites as compared to NFA. The results were discussed based on fundamental theories and thermodynamic simulations using ThermoCalc software. The findings of this dissertation imply a great potential for SiC-NFA based composites for future reactor material designs.
- Published
- 2020
22. Low Impurity Content GaN Prepared via OMVPE for Use in Power Electronic Devices: Connection Between Growth Rate, Ammonia Flow, and Impurity Incorporation
- Author
-
Ciarkowski, Timothy A., Materials Science and Engineering, Guido, Louis J., Reynolds, William T. Jr., Suchicital, Carlos T. A., and Khodaparast, Giti A.
- Subjects
High Power Electronics ,Carbon Contamination ,Silicon Doping ,GaN ,OMVPE - Abstract
GaN has the potential to revolutionize the high power electronics industry, enabling high voltage applications and better power conversion efficiency due to its intrinsic material properties and newly available high purity bulk substrates. However, unintentional impurity incorporation needs to be reduced. This reduction can be accomplished by reducing the source of contamination and exploration of extreme growth conditions which reduce the incorporation of these contaminants. Newly available bulk substrates with low threading dislocations allow for better study of material properties, as opposed to material whose properties are dominated by structural and chemical defects. In addition, very thick films can be grown without cracking due to exact lattice and thermal expansion coefficient match. Through chemical and electrical measurements, this work aims to find growth conditions which reduces contamination without a severe impact on growth rate, which is an important factor from an industry standpoint. The proposed thicknesses of these devices are on the order of one hundred microns and requires tight control of the intentional dopants. Doctor of Philosophy GaN is a compound semiconductor which has the potential to revolutionize the high power electronics industry, enabling new applications and energy savings due to its inherent material properties. However, material quality and purity requires improvement. This improvement can be accomplished by reducing contamination and growing under extreme conditions. Newly available bulk substrates with low defects allow for better study of material properties. In addition, very thick films can be grown without cracking on these substrates due to exact lattice and thermal expansion coefficient match. Through chemical and electrical measurements, this work aims to find optimal growth conditions for high purity GaN without a severe impact on growth rate, which is an important factor from an industry standpoint. The proposed thicknesses of these devices are on the order of one hundred microns and requires tight control of impurities.
- Published
- 2019
23. Synthesis and Characterization of Si, Ge, and SixGe1-x Nanowires by Fiber Drawing
- Author
-
Floyd, Adam R., Materials Science and Engineering, Pickrell, Gary R., Clark, David E., and Reynolds, William T. Jr.
- Subjects
Silicon ,germanium ,optical fiber ,nanowires ,SiGe alloys - Abstract
This research provides a method of using a mixed powder in tube approach for producing and characterizing large quantities of highly oriented, high aspect ratio semiconductor nanowires in an inherently safe and contained manner. This work modifies the previously used mixed powder method to produce significantly smaller features below 100nm in diameter. For the first time SiGe alloys are produced in optical fiber from a mixture of the two powders across the entire compositional range. A discussion of the properties of silicon and germanium and their alloys is given with emphasis on the differences between properties at the bulk scale and at the nanoscale. The limitations of silicon and germanium for photonic applications, due to their indirect band gap nature, is removed when these materials are reduced to the nanoscale. A brief discussion of ways that these properties can be modified is given with size, composition, and strain all being viable factors of control. The optical and electrical properties of these nanowire arrays is evaluated as a function of the size, number of wires, and composition. A clear dependence between size and quantity of wires was observed with respect to composition. The nanowires were found to have complex interactions with light showing high absorption as well as unique transmission characteristics. Arrays of these fibers were able to create a measurable photocurrent and provide potential uses for detection of light and other photonic applications. An understanding of the etching necessary to both expose these nanowires for analysis as well as completely remove them from the glass matrix was developed. Etch rates in these areas was observed to be higher than reported etch values. Etching with dilute solutions was found to allow removal of the wires cleanly and allow recovery of them for other applications. Master of Science This research provides a method of using a mixed powder in tube approach for producing and characterizing large quantities of highly oriented, high aspect ratio semiconductor nanowires in an inherently safe and contained manner. These wires are over 1000 times smaller than thickness of a human hair are made using traditional fiber drawing methods or pulling at high temperatures. These fibers differ from traditional optical fibers in that they are produced from a tube filled with powder instead of a solid glass rod. This is similar to the same method used to produce wires in other materials such as copper. The use of the glass to contain the semiconductor material allows us to increase the temperature it is pulled at above the melting point. The liquid material is then drawn into the very small sizes using pores in the glass powder it is mixed with. This allows these wires to be produced in much longer lengths, larger quantities, and easier than previous methods. These nanowires are produced from silicon and germanium, which are two of the most important materials currently used in electronics. These semiconductors are used in most electronics, solar cells, and LEDs that are used in everyday life. Silicon and germanium while very important materials have limitations in photonic applications, interactions with light. The properties of the materials for these applications can be improved by reducing them in size to the nanoscale. The wires produced in this research were evaluated to determine if they possessed the more ideal properties. The wires were found to have detectable photocurrent, electricity generated from light. This is the primary property that is needed in solar cells. The wires produced in this method are an important early step to improving solar cells efficiency and reliability. These v wires have benefits over other forms of silicon because they are produced with protective glass coating in a single step.
- Published
- 2019
24. Investigating the origin of localized plastic deformation in nanoporous gold by in situ electron microscopy and automatic structure quantification
- Author
-
Stuckner, Joshua Andrew, Materials Science and Engineering, Murayama, Mitsuhiro, Corcoran, Sean G., Reynolds, William T. Jr., and Mirzaeifar, Reza
- Subjects
synthesis ,mechanical behavior ,nanoporous gold ,in situ TEM ,computer vision - Abstract
Gold gains many useful properties when it is formed into a nanoporous structure, but it also becomes macroscopically brittle due to flow localization and may therefore be unreliable for many applications. The goal of this work was to establish processing/structure/property relationships of nanoporous gold, discover controllable structure features, and understand the role of structure on flow localization. The nanoporous gold structure, consisting of a 3D network of nanoscale gold ligaments, was quantified with an automatic software developed for this work called AQUAMI, which uses computer vision techniques to make statistically reliable numbers of repeatable and unbiased measurements per image. AQUAMI increased the efficiency and accuracy of characterization in this work, allowed for the conduction of more experiments, and provided better confidence in morphology and size distribution of the complex NPG microstructural features. Nanoporous gold was synthesized while varying numerous processing factors such as dealloying time, annealing time, and mechanical agitation. Through the expanded scope of synthesis experiments and detailed analysis, it was discovered that the curvature of the ligaments and the distribution width of ligament diameters could be controlled through processing. In situ tensile experiments in SEM and TEM revealed that large ligaments arrested crack propagation while curved ligaments increase ductility by straightening in the tensile direction and forming geometrically required defects, which inhibit dislocation activity. Through synthesis and microstructure characterization, two new controllable structure features were discovered experimentally. In situ mechanical testing revealed the role these structures play on the deformation behavior and flow localization of nanoporous gold. Doctor of Philosophy Nanoporous gold contains a network of connected pores running through and between at network of solid gold ligaments or struts. It somewhat resembles the structure of coral. The nanoscale pores and ligaments give the material many useful properties. However, this structure also makes the material very fragile and unreliable in many potential application environments. The goal of this research is to investigate how the structure makes the material so fragile and look for ways the material might be made less fragile while still preserving its useful properties. The material properties are controlled through the material’s structure, which in turn is controlled by processing. To control the structure of nanoporous gold, the structure first had to be characterized. A software called AQUAMI was developed, which uses computer vision, to automatically calculate many features of the structure by looking at an image of it. This software was much faster and more accurate than making hundreds of hand measurements on each image. To find new ways to control the structure through processing, nanoporous gold was synthesized in many different conditions and then the structure was analyzed to determine the effect of each synthesis condition. It was discovered that a single specimen could be given a larger variety of ligament thicknesses by making it with a weaker acid or a smaller variety by heating the structure after forming it. Stirring during synthesis resulted in a structure with curvier ligaments. Mechanical tests were performed in electron microscopes to see how these features affected deformation. Large ligaments slowed crack propagation suggesting that a larger variety of ligament diameters could increase strength by having more large ligaments. Curved ligaments deformed more without breaking by straightening during deformation. Through this work, new ways of controlling the nanoporous gold structure were found and mechanical tests suggest that controlling these features may increase the material’s strength making it reliable in more environments
- Published
- 2019
25. Al-Ga Sacrificial Anodes: Understanding Performance via Simulation and Modification of Alloy Segregation
- Author
-
Kidd, Michael Scott Jr., Materials Science and Engineering, Druschitz, Alan P., Reynolds, William T. Jr., and Corcoran, Sean G.
- Subjects
Corrosion ,Al-Ga ,Diffusion Simulation ,Cathodic Protection ,Galvanostatic ,Sacrificial Anode - Abstract
Marine structures must withstand the corrosive effects of salt water in a way that is low cost, reliable, and environmentally friendly. Aluminum satisfies these conditions, and would be a good choice for a sacrificial anode to protect steel structures if it did not passivate. However, various elements can be added to aluminum to prevent this passivation. Currently, Al-Ga alloys are used commercially as sacrificial anodes but their performance is not consistent. In this research, Thermo-Calc software was used to simulate various aspects of the Al-Ga system in an attempt to understand and potentially correct this reliability issue. Simulations showed that gallium segregates to the grain boundaries during solidification and then diffuses back into the grains during cooling to room temperature. Simulations also suggest that faster cooling rates and larger grains cause the potential segregation of gallium at the grain boundaries to remain after cooling. A set of aluminum plus 0.1% weight percent gallium alloy plates were produced with varying cooling rates, along with a control set (cooled slowly in a sand mold). Some samples were later homogenized via annealing. Samples were subjected to a 168 hour long galvanostatic test to assess voltage response. The corrosion performance of samples was found to have both consistent and optimal voltage range when subjected to quick cooling rates followed by annealing. Testing samples at near freezing temperature seems to completely remove optimal corrosion behavior, suggesting that there are multiple causes for the voltage behavior. Master of Science Ships must withstand the corrosive effects of salt water in a way that is low cost, reliable, and environmentally friendly. Aluminum has properties which could allow a plate of it to rust instead of a ship it is attached to, thus protecting the ships from rusting. However, because aluminum usually does not rust, gallium can be added to aluminum to allow it to rust. Currently, aluminum-gallium alloys are used commercially to protect ships, but their performance is not consistent. In this research, various aspects of the aluminum-gallium system were simulated in an attempt to understand and potentially correct this reliability issue. Simulations showed that the gallium concentration may not be uniform in the alloy, and various conditions can cause the gallium concentration to be inconsistent. A set of aluminum-gallium alloy plates were cast in molds from liquid aluminum. Some of the plates were cooled quickly, and some cooled slowly. Some samples were later heated in an oven at high temperatures in an attempt to even out the gallium concentration. Samples were subjected to tests to observe corrosion behavior. The corrosion performance of samples was found to be best when subjected to quick cooling rates followed by the oven heating. Testing the samples in cold temperatures seemed to remove the desired corrosion behavior, suggesting that there are multiple reasons for the inconsistent corrosion behavior of aluminum gallium.
- Published
- 2019
26. Processing, Structure and Properties of High Temperature Thermoelectric Oxide Materials
- Author
-
Song, Myung-Eun, Materials Science and Engineering, Priya, Shashank, Maurya, Deepam, Aning, Alexander O., Guido, Louis J., and Reynolds, William T. Jr.
- Subjects
nanostructure ,doping ,anisotropy ,nanoinclusion ,thermoelectric ,texturing - Abstract
High temperature thermal energy harvesting has attracted much attention recently. In order to achieve stable operation at high temperatures there is emerging need to develop efficient and oxidation-resistant materials. Most of the well-known materials with high dimensionless figure of merit (ZT) values such as Bi2Te3, PbTe, skutterudites, and half-Heusler alloys, are not thermally stable at temperatures approaching 500°C or higher, due to the presence of volatile elements. Oxide thermoelectric materials are considered to be potential candidates for high temperature applications due to their robust thermal and chemical stability in oxidizing atmosphere along with the reduced toxicity, relatively simpler fabrication, and cost. In this dissertation, nanoscale texturing and interface engineering were utilized for enhancing the thermoelectric performance of oxide polycrystalline Ca3Co4O9 materials, which were synthesized using conventional sintering and spark plasma sintering (SPS) techniques. In order to tailor the electrical and thermal properties, Lu and Ga co-doping was investigated in Ca3Co4O9 system. The effect of co-doping at Ca and Co sites on the thermoelectric properties was quantified and the anisotropic behavior was investigated. Because of the effective scattering of phonons by doping-induced defects, lower thermal conductivity and higher ZT were achieved. The layered structure of Ca3Co4O9 has strong anisotropy in the transport properties. For this reason, the thermoelectric measurements were conducted for the samples along both vertical and horizontal directions. The ZT value along the vertical direction was found to be 3 to 4 times higher than that along the horizontal direction. Metallic inclusions along with ionic doping were also utilized in order to enhance the ZT of Ca3Co4O9. The texturing occurring in the nanostructured Ca3Co4O9 through ion doping and Ag inclusions was studied using microscopy and diffraction analysis. Multi-length scale inclusions and heavier ion doping in Ca3Co4O9 resulted in higher electrical conductivity and reduced thermal conductivity. The maximum ZT of 0.25 at 670°C was found in the spark plasma sintered Ca2.95Ag0.05Co4O9 sample. In literature, limited number of studies have been conducted on understanding the anisotropic thermoelectric performance of Ca3Co4O9, which often results in erroneous estimation of ZT. This study addresses this limitation and provides systematic evaluation of the anisotropic response with respect to platelet microstructure. Textured Ca3Co4O9/Ag nanocomposites were fabricated using spark plasma sintering (SPS) technique and utilized for understanding the role of microstructure towards anisotropic thermoelectric properties. The thermoelectric response was measured along both vertical and horizontal direction with respect to the SPS pressure axis. In order to achieve enhanced degree of texturing and increase electrical conductivity along ab planes, a two-step SPS method was developed. Ag nanoinclusions was found to increase the overall electrical conductivity and the thermoelectric power factor because of improved electrical connections among the grains. Through two-step SPS method, 28% improvement in the average ZT values below 400°C and 10% improvement above 400°C in Ca3Co4O9/Ag nanocomposites was achieved. Lastly, this dissertation provides significant progress towards understanding the effect of synthesis method on thermoelectric properties and evolution of textured microstructure. The anisotropy resulting from the crystal structure and microstructural features is systematically quantified. Results reported in this study will assist the continued progress in developing Ca3Co4O9 materials for practical thermoelectric applications. PHD Among the wide range of renewable energy sources, wasted thermal energy has attracted worldwide interest as it is freely available from most of the industrial and natural processes. Among various choices for converting thermal energy into electricity, thermoelectric devices are attractive as they are solid state, noiseless, no moving parts, and can be easily integrated with most of the heat sources. Thus, there has been significant efforts to develop high efficiency thermoelectric energy harvesting devices. However, currently available thermoelectric materials are not thermally stable in oxidizing environments because of heavy metals’ evaporation and reactivity. In order to overcome this limitation of thermoelectric materials, in this dissertation, the focus is on developing calcium cobalt oxide (Ca₃Co₄O₉) materials through innovation in the processing, composition design, and modulation of the thermal transport mechanism by exploiting the anisotropy. Ca₃Co₄O₉ is promising candidate for high temperature thermoelectric applications due to its thermal and chemical stability in oxidizing atmosphere, reduced toxicity, easy fabrication, and low cost. Its main disadvantages are the high thermal conductivity and low electrical conductivity. In order to tailor the electrical and thermal properties, Lu and Ga co-doped Ca₃Co₄O₉ were synthesized and characterized. The thermoelectric measurements were conducted along both vertical and horizontal directions with respect to pressure axis during spark plasma sintering. Layered structure of Ca₃Co₄O₉ induces strong anisotropy in the transport properties which indicates that textured microstructure will result in better properties. Texturing and interface engineering were employed to control the grain orientation and thereby improve the electrical and thermal properties. In textured and nanostructured Ca₃Co₄O₉, Ag inclusions along with ionic doping was utilized to enhance the thermoelectric performance. In literature, the importance of the anisotropy in Ca₃Co₄O₉ has been less emphasized, which has restricted accurate thermoelectric evaluation of this material for practical application. In order to address this issue, first textured Ca₃Co₄O₉/Ag nanocomposites were fabricated using spark plasma sintering (SPS) techniques and next detailed investigation was conducted on correlation between microstructure and anisotropic thermoelectric properties. The power factor of the Ca₃Co₄O₉/Ag nanocomposites at high temperatures was almost 50% enhanced, as compared to the pure Ca₃Co₄O₉, which resulted in 50% improvement in ZT both horizontal and vertical directions. The samples with texturing along the vertical direction were used to perform the long-term durability test and almost same value of resistivity was maintained after a long-term heating. Two-step SPS method was developed to improve the in-plane electrical conductivity. Through this newly proposed synthesis process, 28% improvement in the average ZT values below 400°C and 10% improvement above 400°C was obtained in Ca₃Co₄O₉/Ag nanocomposites. Using a wide range of composition and synthesis process, the anisotropy and microstructural effects clarified in this study provides promising pathway towards enhance the thermoelectric performance of Ca₃Co₄O₉ materials.
- Published
- 2018
27. Application of Steepest-Entropy-Ascent Quantum Thermodynamics to Solid-State Phenomena
- Author
-
Yamada, Ryo, Materials Science and Engineering, Reynolds, William T. Jr., von Spakovsky, Michael R., Murayama, Mitsuhiro, and Heremans, Jean J.
- Subjects
order-disorder phase transformation ,non-equilibrium calculation ,steepest-entropy-ascent ,magnetization ,spinodal decomposition ,thermal expansion - Abstract
Steepest-entropy-ascent quantum thermodynamics (SEAQT) is a mathematical and theoretical framework for intrinsic quantum thermodynamics (IQT), a unified theory of quantum mechanics and thermodynamics. In the theoretical framework, entropy is viewed as a measure of energy load sharing among available energy eigenlevels, and a unique relaxation path of a system from an initial non-equilibrium state to a stable equilibrium is determined from the greatest entropy generation viewpoint. The SEAQT modeling has seen a great development recently. However, the applications have mainly focused on gas phases, where a simple energy eigenstructure (a set of energy eigenlevels) can be constructed from appropriate quantum models by assuming that gas-particles behave independently. The focus of this research is to extend the applicability to solid phases, where interactions between constituent particles play a definitive role in their properties so that an energy eigenstructure becomes quite complicated and intractable from quantum models. To cope with the problem, a highly simplified energy eigenstructure (so-called ``pseudo-eigenstructure") of a condensed matter is constructed using a reduced-order method, where quantum models are replaced by typical solid-state models. The details of the approach are given and the method is applied to make kinetic predictions in various solid-state phenomena: the thermal expansion of silver, the magnetization of iron, and the continuous/discontinuous phase separation and ordering in binary alloys where a pseudo-eigenstructure is constructed using atomic/spin coupled oscillators or a mean-field approximation. In each application, the reliability of the approach is confirmed and the time-evolution processes are tracked from different initial states under varying conditions (including interactions with a heat reservoir and external magnetic field) using the SEAQT equation of motion derived for each specific application. Specifically, the SEAQT framework with a pseudo-eigenstructure successfully predicts: (i) lattice relaxations in any temperature range while accounting explicitly for anharmonic effects, (ii) low-temperature spin relaxations with fundamental descriptions of non-equilibrium temperature and magnetic field strength, and (iii) continuous and discontinuous mechanisms as well as concurrent ordering and phase separation mechanisms during the decomposition of solid-solutions. Ph. D. Many engineering materials have physical and chemical properties that change with time. The tendency of materials to change is quantified by the field of thermodynamics. The first and second laws of thermodynamics establish conditions under which a material has no tendency to change; these conditions are called equilibrium states. When a material is not in an equilibrium state, it is able to change spontaneously. Classical thermodynamics reliably identifies whether a material is susceptible to change, but it is incapable of predicting how change will take place or how fast it will occur. These are kinetic questions that fall outside the purview of thermodynamics. A relatively new theoretical treatment developed by Hatsopoulos, Gyftopoulos, Beretta and others over the past forty years extends classical thermodynamics into the kinetic realm. This framework, called steepest-entropy-ascent quantum thermodynamics (SEAQT), combines the tools of thermodynamics with quantum mechanics through a postulated equation of motion. Solving the equation of motion provides a kinetic description of the path a material will take as it changes from a non-equilibrium state to stable equilibrium. To date, the SEAQT framework has been applied primarily to systems of gases. In this dissertation, solid-state models are employed to extend the SEAQT approach to solid materials. The SEAQT framework is used to predict the thermal expansion of silver, the magnetization of iron, and the kinetics of atomic clustering and ordering in binary solid-solutions as a function of time or temperature. The model makes it possible to predict a unique kinetic path from any arbitrary, non-equilibrium, initial state to a stable equilibrium state. In each application, the approach is tested against experimental data. In addition to reproducing the qualitative kinetic trends in the cases considered, the SEAQT framework shows promise for modeling the behavior of materials far from equilibrium.
- Published
- 2018
28. Effect of a Simulated Butterfly Valve on the Erosion-Corrosion Rate of Nickel Aluminum Bronze Alloys in Highly Turbulent Seawater
- Author
-
Taylor, Ryan Chandler, Materials Science and Engineering, Hendricks, Robert Wayne, Reynolds, William T. Jr., and Corcoran, Sean G.
- Subjects
erosion-corrosion ,Turbulence ,Cavitation ,seawater corrosion ,corrosion loop ,nickel aluminum bronze - Abstract
Nickel aluminum bronze (NAB) alloys are used in naval and maritime applications for their excellent corrosion resistance under the influence of seawater. One application involves the use of a NAB butterfly valve within a NAB fluid line to control fluid flow of seawater. Due to the chaotic environment, the corrosion rate of the NAB tubing downstream from the valve increases significantly. The disc angle at which the valve alters fluid flow causes an increase in the fluid velocity and an increase in the turbulence produced on the downstream side of the valve. These fluid conditions contribute to the increase in the corrosion rate of the NAB piping downstream from the valve. This thesis aims to characterize how the change in the disc angle of the butterfly valve causes a change in the erosion-corrosion rate of NAB downstream from the valve. A butterfly valve is simulated using orifice plates of varying diameters to mimic flow conditions at different disc angles. An orifice plate is a simple device with a hole in its center that is designed to restrict fluid flow across a fluid line. Under the same hydrodynamic conditions, the orifice produces nearly the exact same flow coefficients as the valve. At a volumetric flowrate of 0.00757 m^3/s a total of eight locations found along the liquid/metal interface produced pitting sites. The average passivation layer thickness is also measured. Master of Science
- Published
- 2018
29. Biaxial Mechanical Evaluation of Uterosacral and Cardinal Ligaments
- Author
-
Baah-Dwomoh, Adwoa Sarpong, Materials Science and Engineering, De Vita, Raffaella, Davalos, Rafael V., Whittington, Abby R., and Reynolds, William T. Jr.
- Subjects
Histology ,Smooth Muscle ,Uterosacral Ligament ,Cardinal Ligament ,Viscoelasticity ,Collagen ,Creep ,Elastin - Abstract
The uterosacral ligament (USL) and the cardinal ligament (CL) are two major suspensory tissues that provide structural support to the vagina/cervix/uterus complex. These ligaments have been studied mainly due for their role in the surgical repair for pelvic organ prolapse (POP). POP, which is the descent of a pelvic organ from its normal place towards the vaginal walls and into the vaginal cavity, affects an estimated 3.3 million women in the United States annually. Despite their important mechanical function, little is known about the elastic and viscoelastic properties of the USL and CL due to ethical concerns with in vivo testing of human tissues and the lack of accepted animal models. The goal of this first study is to help establish an appropriate animal model for studying the mechanics of these pelvic supportive ligaments. To achieve this, the first rigorous comparison of histological and planar equi-biaxial mechanical properties of the swine and human USLs was completed. Relative collagen, smooth muscle, and elastin contents were quantified from histological sections and the USL was found to have similar components in both species, with a comparable relative collagen content. Using the digital image correlation (DIC) method to calculate the in-plane Lagrangian strain, no differences in the peak strain during precon- ditioning/cyclic loading tests, secant modulus of the pre-creep/elastic response, and strain at the end of creep tests were detected in the USLs from the two species along both axial loading directions (the main in vivo loading direction and the direction that is perpendicular to it). Because these ligaments are subjected to repeated constant loads in vivo, the effect of re- peated biaxial loads at three different load levels (1 N, 2 N, or 3 N) on elastic and creep properties of the swine CL was investigated. The results showed that CL was elastically anisotropic, as statistical differences were found between the mean strains along the two axial loading directions for specimens at all three different load levels. The increase in strain over time by the end of the 3rd creep test was comparable along the axial loading direc- tions. The greatest mean normalized strain (or, equivalently, the largest increase in strain over time) was measured at the end of the 1st creep test, regardless of the equi-biaxial load magnitude or loading direction. Overall, these experimental findings validate the use of swine as an appropriate animal model and offer new knowledge of the mechanical properties of the USL and CL that can guide the development of better treatment methods such as surgical reconstruction for POP. Ph. D.
- Published
- 2018
30. Morphology Tuning and Mechanical Properties of Nanoporous Gold
- Author
-
Frei, Katherine Rebecca, Materials Science and Engineering, Murayama, Mitsuhiro, Corcoran, Sean G., and Reynolds, William T. Jr.
- Subjects
nanoporous gold ,morphology tuning ,tensile testing - Abstract
Nanoporous gold is an exciting topic that has been highly researched due to its potential in applications including sensing, catalysts, gas storage, and heat exchangers, made possible by its high surface area to volume ratio and high porosity. However, these applications tend to require a specific morphology, which is often difficult to control. In this work, significant strides have been made in tuning the morphology of nanoporous gold by studying the effect of different fabrication parameters on the ligament diameter, pore diameter, and ligament length, three characteristics which are most discussed in previous studies concerning nanoporous gold. This material also, generally shows a brittle behavior despite it consisting of a normally ductile constituent element, limiting many commercial applications. There have been multiple simulated studies on the tensile mechanical properties and the fracture mode of this material, but limited experimental tensile testing research exists due to technical difficulty of conducting such experiments with small fragile samples. We examine the tensile mechanical behavior of nanoporous gold with ligament sizes ranging from 10 to 30 nm using in situ tensile testing under an environmental scanning electron microscope (ESEM). A specially designed tensile stage and sample holders are used to deform the sample inside the ESEM, allowing us to observing both the macro and microscopic structure changes. Our experimental results advance our understandings of how porous structure influence the mechanical properties of nanoporous gold, and they also serve to increase the accuracy of future simulation studies that will take this material a step towards commercial use by providing a thorough understanding of its structural mechanical limitations. MS
- Published
- 2018
31. The Effect of Milling Time on the Structure and the Properties of Mechanically Alloyed High Carbon Iron-Carbon Alloys
- Author
-
Khalfallah, Ibrahim Youniss A., Materials Science and Engineering, Aning, Alexander O., Winkler, Christopher Reid, Reynolds, William T. Jr., and Lu, Guo Quan
- Subjects
High-carbon Fe-C alloys ,Powder processing and characterization ,Mechanical alloying - Abstract
The effects of mechanical alloying milling time and carbon concentration on microstructural evolution and hardness of high-carbon Fe-C alloys were investigated. Mechanical alloying and powder metallurgy methods were used to prepare the samples. Mixtures of elemental powders of iron and 1.4, 3, and 6.67 wt.% pre-milled graphite were milled in a SPEX mill with tungsten milling media for up to 100h. The milled powders were then cold-compacted and pressure-less sintered between 900°C and 1200°C for 1h and 5h followed by furnace cooling. Milled powders and sintered samples were characterized using X-ray diffraction, differential scanning calorimetry, Mossbauer spectroscopy, scanning and transmission electron microscopes. Density and micro-hardness were measured. The milled powders and sintered samples were studied as follows: In the milled powders, the formation of Fe_3 C was observed through Mossbauer spectroscopy after 5h of milling and its presence increased with milling time and carbon concentration. The particle size of the milled powders decreased and tended to become more equi-axed after 100h of milling. Micro-hardness of the milled powders drastically increased with milling time as well as carbon concentration. A DSC endothermic peak around 600°C was detected in all milled powders, and its transformation temperature decreased with milling time. In the literature, no explanation was found. In this work, this peak was found to be due to the formation of Fe_3 C phase. A DSC exothermic peak around 300°C was observed in powders milled for 5h and longer; its transformation temperature decreased with milling time. This peak was due to the recrystallization and/or recovery α-Fe and growth of Fe_3 C . In the sintered samples, almost 100% of pearlitic structure was observed in sintered samples prepared from powders milled for 0.5h. The amount of the pearlite decreased with milling time, contrary to what was found in the literature. The decrease in pearlite occurred at the same time as an increase in graphite-rich areas. With milling, carbon tended to form graphite instead of Fe_3 C. Longer milling time facilitated the nucleation of graphite during sintering. High mount of graphite-rich areas were observed in sintered samples prepared from powders milled for 40h and 100h. Nanoparticles of Fe_3 C were observed in a ferrite matrix and the graphite-rich areas in samples prepared from powders milled for 40h and 100h. Micro-hardness of the sintered samples decreased with milling time as Fe_3 C decreased. The green density of compacted milled powders decreased with milling time and the carbon concentration that affected the density of sintered samples. Ph. D.
- Published
- 2017
32. Modeling the Role of Surfaces and Grain Boundaries in Plastic Deformation
- Author
-
Kuhr, Bryan Richard, Materials Science and Engineering, Farkas, Diana, Corcoran, Sean G., Hin, Celine, and Reynolds, William T. Jr.
- Subjects
Condensed Matter::Materials Science ,Grain Boundaries ,Plasticity ,FCC Metals ,Molecular Dynamics ,Deformation - Abstract
In this dissertation, simulation techniques are used to understand the role of surfaces and grain boundaries in the deformation response of metallic materials. This research utilizes atomistic scale modeling to study nanoscale deformation phenomena with time and spatial resolution not available in experimental testing. Molecular dynamics techniques are used to understand plastic deformation of grain boundaries and surfaces in metals under different configurations and loading procedures. Stress and strain localization phenomena are investigated at plastically deformed boundaries in axially strain thin film samples. Joint experimental and modelling work showed increased stress states at the intersections of slip planes and grain boundaries. This effect, as well as several other differences related to stress and strain localization are thoroughly examined in digital samples with two different grain boundary relaxation states. It is found that localized stress and strain is exacerbated by initial boundary disorder. Dislocation content in the randomly generated boundaries of these samples was quantified via the dislocation extraction algorithm. Significant numbers of lattice dislocations were present in both deformed and undeformed samples. Trends in dislocation content during straining were identified for individual samples and boundaries but were not consistent across all examples. The various contributions to dislocation content and the implications on material behavior are discussed. The effects of grain boundary hydrogen on the deformation response of a digital Ni polycrystalline thin film sample is reported. H content is found to change the structure of the boundaries and effect dislocation emission. The presence of dispersed hydrogen caused a slight increase in yield strength, followed by an increase in grain boundary dislocation emission and an increase in grain boundary crack formation and growth. An atomistic nano indenter is employed to study the nanoscale contact behavior of the indenter-surface interface during nano-indentation. Several indentation simulations are executed with different interatomic potentials and different indenter orientations. A surface structure is identified that forms consistently regardless of these variables. This structure is found to affect several atomic layers of the sample. The implications of this effect on the onset of plasticity are discussed. Finally, the implementation of an elastic/plastic continuum contact solution for use in mesoscale molecular dynamics simulations of solid spheres is discussed. The contact model improves on previous models for the forces response of colliding spheres by accounting for a plastic regime after the point of yield. The specifics of the model and its implementation are given in detail. Overall, the dissertation presents insights into basic plastic deformation phenomena using a combination of experiment and theory. Despite the limitations of atomistic techniques, current computational power allows meaningful comparison with experiments. Ph. D.
- Published
- 2017
33. Piezoelectric-based Multi-Scale Multi-Environment Energy Harvesting
- Author
-
Song, Hyun-Cheol, Materials Science and Engineering, Priya, Shashank, Reynolds, William T. Jr., Lu, Peizhen, Heremans, Jean J., and Aning, Alexander O.
- Subjects
energy harvesting ,magneto-thermoelectric generator ,MEMS ,nanostructure ,nanowire ,piezoelectric material - Abstract
Energy harvesting is a technology for generating electrical power from ambient or wasted energy. It has been investigated extensively as a means of powering small electronic devices. The recent proliferation of devices with ultra-low power consumption - devices such as RF transmitters, sensors, and integrated chipsets - has created new opportunities for energy harvesters. There is a variety of ambient energies such as vibration, thermal, solar, stray current, etc. Depending on energy sources, different kinds of energy conversion mechanism should be employed. For energy harvesters to become practical, their energy conversion efficiency must improve. This efficiency depends upon advances in two areas: the system or structural design of the energy harvester, and the properties of the materials employed in energy conversion. This dissertation explores developments in both areas. In the first area, the role of nano-, micro-, and bulk structure of the energy conversion materials were investigated. In the second area, piezoelectric energy harvesters and a magneto-thermoelectric generator are treated from the perspective of system design. In the area of materials development, PbTiO3 (PTO) nanostructures consisting of nanofibers and three-dimensional (3-D) nanostructure arrays were hydrothermally synthesized. The growth mechanism of the PTO nanofibers and 3-D nanostructures were investigated experimentally and theoretically. The PTO nanostructures were composed of oriented PTO crystals with high tetragonality; these arrays could be promising candidates for nanogenerators. Different designs for energy harvesters were explored as a means of improving energy conversion efficiency. Piezoelectric energy harvesters were designed and constructed for applications with a low frequency vibrational energy and for applications with a broadband energy spectrum. A spiral MEMS piezoelectric energy harvester design was fabricated using a silicon MEMS process and demonstrated to extract high power density at ultra-low resonance frequencies and low acceleration conditions. For a broadband energy harvester, a magnetically-coupled array of oscillators was designed and built that broadened the harvester's effective resonance frequency with considerably improved output power. A new design concept for thermal energy harvesting that employs a magneto-thermoelectric generator (MTG) design was proposed. The MTG exploits a thermally-induced second order phase transition in a soft magnetic material near the Curie temperature. The MTG harvested electric power from oscillations of the soft magnet between hot and cold sources. For the MTG design, suitable soft magnetic materials were selected and developed using La0.85Sr0.15MnO3-Ni0.6Cu0.2Zn0.2Fe2O4 magnetic composites. The MTG was fabricated from a PVDF cantilever and a gadolinium (Gd) soft magnetic material. The feasibility of the design for harvesting energy from the waste heat was demonstrated by attaching an MTG array to a computer CPU. PHD
- Published
- 2017
34. Design Methodology and Materials for Additive Manufacturing of Magnetic Components
- Author
-
Yan, Yi, Materials Science and Engineering, Lu, Guo Quan, Reynolds, William T. Jr., Aning, Alexander O., Guido, Louis J., and Ngo, Khai D.
- Subjects
power electronics integration ,low-temperature curable ,design methodology ,magnetic paste ,nanosilver paste ,magnetic components ,additive manufacturing - Abstract
Magnetic components such as inductors and transformers are generally the largest circuit elements in switch-mode power systems for controlling and processing electrical energy. To meet the demands of higher conversion efficiency and power density, there is a growing need to simplify the process of fabricating magnetics for better integration with other power electronics components. The potential benefits of additive manufacturing (AM), or more commonly known as three-dimensional (3D) printing technologies, include shorter lead times, mass customization, reduced parts count, more complex shapes, less material waste, and lower life-cycle energy usage—all of which are needed for manufacturing power magnetics. In this work, an AM technology for fabricating and integrating magnetic components, including the design of manufacturing methodology and the development of the feedstock material, was investigated. A process flow chart of additive manufacturing functional multi-material parts was developed and applied for the fabrication of magnetic components. One of the barriers preventing the application of 3D-printing in power magnetics manufacturing is the lack of compatible and efficient magnetic materials for the printer's feedstock. In this work, several magnetic-filled-benzocyclobutene (BCB) pastes curable below 250 degree C were formulated for a commercial multi-material extrusion-based 3D-printer to form the core part. Two magnetic fillers were used: round-shaped particles of permalloy, and flake-shaped particles of Metglas 2750M. To guide the formulation, 3D finite-element models of the composite, consisting of periodic unit cells of magnetic particles and flakes in the polymer-matrix, was constructed. Ansoft Maxwell was used to simulate magnetic properties of the composite. Based on the simulation results, the pastes consisted of 10 wt% of BCB and 90 wt% of magnetic fillers—the latter containing varying amounts of Metglas from 0 to 12.5 wt%. All the pastes displayed shear thinning behavior and were shown to be compatible with the AM platform. However, the viscoelastic behavior of the pastes did not exhibit solid-like behavior, instead requiring layer-by-layer drying to form a thick structure during printing. The key properties of the cured magnetic pastes were characterized. For example, bulk DC electrical resistivity approached 107 Ω⋅cm, and the relative permeability increased with Metglas addition, reaching a value of 26 at 12.5 wt%. However, the core loss data at 1 MHz and 5 MHz showed that the addition of Metglas flakes also increased core loss density. To demonstrate the feasibility of fabricating magnetic components via 3D-printing, several inductors of differing structural complexities (planar, toroid, and constant-flux inductors) were designed. An AM process for fabricating magnetic components by using as-prepared magnetic paste and a commercial nanosilver paste was developed and optimized. The properties of as-fabricated magnetic components, including inductance and DC winding resistance, were characterized to prove the feasibility of fabricating magnetic components via 3D-printing. The microstructures of the 3D-printed magnetic components were characterized by Scanning-electron-microscope (SEM). Results indicate that both the winding and core magnetic properties could be improved by adjusting the formulation and flow characteristics of the feed paste, by fine-tuning printer parameters (e.g., motor speed, extrusion rate, and nozzle size), and by updating the curing profile in the post-process. The main contributions of this study are listed below: 1. Developed a process flow chart for additive manufacturing of functional multi-material components. This methodology can be used as a general reference in any other research area targeting the utilization of AM technology. 2. Designed, formulated and characterized low-temperature curable magnetic pastes. The pastes are physically compatible with the additive manufacturing platform and have applications in the area of power electronics integration. 3. Provided an enhanced understanding of the core-loss mechanisms of soft magnetic materials and soft magnetic composites at high frequency applications. Ph. D.
- Published
- 2017
35. Mode Volume Reduction in Single Crystal Sapphire Optical Fibers
- Author
-
Cheng, Yujie, Materials Science and Engineering, Pickrell, Gary R., Reynolds, William T. Jr., Wang, Anbo, and Suchicital, Carlos T. A.
- Subjects
mode volume reduction ,single crystal sapphire - Abstract
This research provides the original work on the geometry factors selection for single crystal sapphire optical fiber (SCSF) to improve the optical property in sensing applications. Single crystal sapphire fibers were fabricated with a Laser Heated Pedestal Growth (LHPG) system, which was constructed in-house at Virginia Tech. The cost effective, high efficiency and fully operational Laser-heated Pedestal Growth (LHPG) system as well as the fiber fabrication process were also demonstrated in this research. The results indicated the windmill single crystal sapphire optical fiber (SCSF) will readily improve the performance of current fiber optic sensors in the harsh environment and potentially enable those that are limited by the optical property of unclad single crystal sapphire optical fiber (SCSF). Ph. D.
- Published
- 2017
36. Study of Perovskite Structure Cathode Materials and Protective Coatings on Interconnect for Solid Oxide Fuel Cells
- Author
-
Shen, Fengyu, Materials Science and Engineering, Lu, Peizhen, Reynolds, William T. Jr., Aning, Alexander O., and von Spakovsky, Michael R.
- Subjects
Chromium Poisoning ,Protective Coating ,Single cell ,Perovskite ,Solid Oxide Fuel Cell - Abstract
Solid oxide fuel cells (SOFCs) are promising devices to convert chemical energy to electrical energy due to their high efficiency, fuel flexibility, and low emissions. However, there are still some drawbacks hindering its wide application, such as high operative temperature, electrode degradation, chromium poisoning, oxidization of interconnect, and so on. Cathode plays a major role in determining the electrochemical performance of a single cell. In this dissertation, three perovskite cathode materials, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), Ba0.5Sr0.5Co0.2Fe0.8O3 (BSCF), and Sm0.5Sr0.5Co0.2Fe0.8O3 (SSCF), are comparatively studied through half-cells in the temperature range of 600-800 ºC. Sm0.2Ce0.8O1.9 (SDC) block layer on the yttria-stabilized zirconia (YSZ) electrolyte can lead to smaller polarization resistances of the three cathode materials through stopping the reaction between the cathodes and the YSZ electrolyte. SDC is also used as a catalyst to increase the oxygen reduction reaction (ORR) rate in the LSCF cathode. In addition, interconnect is protected by CoxFe1-x oxide and Co3O4/SDC/Co3O4 tri-layer coatings separately. These coatings are demonstrated to be effective in decreasing the area specific resistance (ASR) of the interconnect, inhibiting the Cr diffusion/evaporation, leading higher electrochemical performance of the SSCF-based half-cell. Only 1.54 at% of Cr is detected on the surface of the SSCF cathode with the Co0.8Fe0.2 oxide coated interconnect and no Cr is detected with the Co3O4/SDC/Co3O4 tri-layer coated interconnect. Finally, single cells with LSCF, BSCF, and SSCF as the cathodes are operated in the temperature range of 600-800 °C fueled by natural gas. BSCF has the highest power density of 39 mW cm-2 at 600 °C, 88 mW cm-2 at 650 °C, and 168 mW cm-2 at 700 °C; LSCF has the highest power density of 263 mW cm-2 at 750 °C and 456 mW cm-2 at 800 °C. Activation energies calculated from the cathode ASR are 0.44 eV, 0.38 eV, and 0.52 eV for the LSCF, BSCF, and SSCF cathodes respectively, which means the BSCF cathode is preferred. The stability test shows that the BSCF-based single cell is more stable at lower operative temperature (600 °C) while the LSCF-based single cell is more stable at higher operative temperature (800 °C). Ph. D.
- Published
- 2017
37. Structural Study of Heterogeneous States in Lead-free NBT-based Single Crystals
- Author
-
Luo, Chengtao, Materials Science and Engineering, Viehland, Dwight D., Reynolds, William T. Jr., Li, Jie-Fang, and Lu, Guo Quan
- Subjects
x-ray diffraction ,neutron inelastic scattering ,transmission electron microscopy ,lead-free ferroelectrics ,heterogeneous structure ,single crystal ,diffuse scattering ,polar nanoregion - Abstract
Growing environmental concerns, coupled with increasing regulatory restrictions, are requiring industries to develop non-lead-based compositions of ferroelectric and piezoelectric materials. These materials—now widely used in sensors, actuators, and transducers—are for the most part lead-based compounds such as Pb(Zr,Ti)O₃ (PZT). Indeed, PZT represents the dominant market share for use in these technologies. Moreover, next generation compounds, which include Pb(Mg1/3Nb2/3)O₃-xat%PbTiO₃ (PMN-x%PT) crystals with ultrahigh piezo-/electromechanical properties, are also Pb-based systems and thus are problematic for meeting more restrictive environmental standards. As alternative, Pb-free ferroelectrics such as NBT-derived single crystals represent viable next-generation materials for use in ferro-/piezoelectric applications. Development of these types of NBT-based crystals has made important advancements in the last decade. In fact, the performances of NBT-based materials are beginning to approach the properties of the widely used commercial PZT ceramic material. Nonetheless, additional studies are needed before it being able to compete with PMN-x%PT and PZN-x%PT crystals in next-generation applications. As a new type of piezoelectric material, much remains to be learned about Pb-free piezoelectric crystals. For instance, in addition to enhancing our understanding the nature of the piezoelectric third-rank tensor coefficients such as d₃₃ and d₁₅, a thorough knowledge of the Curie temperature, leakage current, and electromechanical properties is also essential for increasing the applications potential of these crystals. As detailed herein, multiple dopants may have to be incorporated into NBT to modify its microstructure and properties to meet these specific requirements, which may further complicate its chemical structure-property relationships. This study, therefore, was designed to investigate the heterogeneous structure of NBT-based single crystals, using x-ray diffraction, transmission electron microscopy, and neutron inelastic scattering, with the goal of investigating the mechanism coupling of morphotropic phase boundary (MPB) and the maximum property responses in A-site disordered perovskite Pb-free piezoelectric systems. Using the framework of polar nanoregions and adaptive phase theory, I sought to determine how the nanostructure of these single crystals change with temperature and composition—and how these factors impact its properties. Diffuse scattering, domain morphology, and phonon dispersions were used to investigate both the static and dynamic properties of these heterogeneous structures. Ph. D.
- Published
- 2016
38. Designing Microstructure through Reverse Peritectoid Phase Transformation in Ni₃Mo Alloy
- Author
-
Khalfallah, Ibrahim, Materials Science and Engineering, Aning, Alexander O., Reynolds, William T. Jr., and Suchicital, Carlos T. A.
- Subjects
Age Hardening ,Reverse Peritectoid ,Ni3Mo Alloy ,Bulk Processing - Abstract
High-energy ball milling and powder metallurgy methods were used to produce a partially alloyed nickel and molybdenum of γ-Ni₃Mo composition (Ni-25at.%Mo). Milled powders were cold-compacted, sintered/solutionized at 1300°C for 100h sintering followed by quenching. Three transformation studies were performed. First, the intermetallic γ-Ni₃Mo was formed from the supersaturated solution at temperatures ranging between 600°C and 900°C for up to 100h. The 100% stable γ-Ni₃Mo phase was formed at 600°C after 100h, while aging at temperatures ranging between 650°C and 850°C for 25h was not sufficient to complete the transformation. The δ-NiMo phase was observed only at 900°C as cellular and basket strands precipitates. Second, the reversed peritectoid transformation from γ-Ni₃Mo to α-Ni and δ-NiMo was performed. Supersaturated solid solution samples were first aged at 600C for 100h followed by quenching to form the equilibrium γ-Ni₃Mo phase. After that, the samples were heat treated between 910°C and 1050°C for up to 10h followed by quenching. Regardless of heat-treatment temperature, samples heat-treated for shorter times exhibited small precipitates of δ-NiMo along and within grain boundaries of α-Ni phase, and it coarsened with time. Third, the transformation from the supersaturated solution α-Ni to the peritectoid two-phase region was performed. The samples were aged between 910°C and 1050°C for up to 10h followed by quenching. Precipitates of δ-NiMo were observed in the α-Ni matrix as small particles and then coarsened with aging time. In all three cases, hardness values increased and peaked in a way similar to that of traditional aging, except that the peak occurred much rapidly in the second and third cases. In the first case, hardness increased by about 113.6% due to the development of the new phases, while the hardness increased by 90.5% and 77.2% in the second and third cases, respectively. Master of Science
- Published
- 2016
39. Three-Dimensional Morphology of Polymer Nanocomposites Characterized by Transmission Electron Tomography
- Author
-
Yu, Ya-Peng, Materials Science and Engineering, Murayama, Mitsuhiro, Reynolds, William T. Jr., and Corcoran, Sean G.
- Subjects
polymer nanocomposites ,three-dimensional morphology ,electron tomography - Abstract
Electron tomography is an invaluable technique with the capability of carrying out thorough 3D structural, chemical and morphological characterization of materials at nanometer scale. Tilting range, increment and reconstruction algorithms are three of the main factors affecting the quality of tomograms. An anisotropic degradation can be observed with restricted tilting range and increment. Therefore, this study was carried out to investigate the accuracy of the reconstruction results of MgO (cube-shape) generated by FBP, SART and SIRT tomographic algorithms under various reconstruction conditions, i.e. tilting range and increment. Examining the experimental data with known morphology permits quantitative determination of the accuracy of the reconstruction results by measuring the distortion of the cube in all directions. Moreover, distortion measurements in all directions reveal the relationship between level of distortion and the alpha tilt angle. Master of Science
- Published
- 2016
40. Investigation of Static and Dynamic Reaction Mechanisms at Interfaces and Surfaces Using Density Functional Theory and Kinetic Monte Carlo Simulations
- Author
-
Danielson, Thomas Lee, Materials Science and Engineering, Hin, Celine, Reynolds, William T. Jr., Clark, David E., and Farkas, Diana
- Subjects
Condensed Matter::Materials Science ,Nuclear Materials ,Reaction Rates ,Adsorption Isotherm ,Embrittlement ,Steady-State ,Density functional theory ,Nanostructured Ferritic Alloy ,Kinetic Monte Carlo ,Catalysis - Abstract
The following dissertation is divided into two parts. Part I deals with the modeling of helium trapping at oxide-iron interfaces in nanostructured ferritic alloys (NFAs) using density functional theory (DFT). The modelling that has been performed serves to increase the knowledge and understanding of the theory underlying the prevention of helium embrittlement in materials. Although the focus is for nuclear reactor materials, the theory can be applied to any material that may be in an environment where helium embrittlement is of concern. In addition to an improved theoretical understanding of helium embrittlement, the following DFT models will provide valuable thermodynamic and kinetic information. This information can be utilized in the development of large-scale models (such as kinetic Monte Carlo simulations) of the microstructural evolution of reactor components. Accurate modelling is an essential tool for the development of new reactor materials, as experiments for components can span decades for the lifetime of the reactor. Part II of this dissertation deals with the development, and use of, kinetic Monte Carlo (KMC) simulations for improved efficiency in investigating catalytic chemical reactions on surfaces. An essential technique for the predictive development and discovery of catalysts relies on modelling of large-scale chemical reactions. This requires multi-scale modelling where a common sequence of techniques would require parameterization obtained from DFT, simulation of the chemical reactions for millions of conditions using KMC (requiring millions of separate simulations), and finally simulation of the large scale reactor environment using computational fluid dynamics. The tools that have been developed will aid in the predictive discovery, development and modelling of catalysts through the use of KMC simulations. The algorithms that have been developed are versatile and thus, they can be applied to nearly any KMC simulation that would seek to overcome similar challenges as those posed by investigating catalysis (such as the need for millions of simulations, long simulation time and large discrepancies in transition probabilities). Ph. D.
- Published
- 2016
41. A Fundamental Study on the Relocation, Uptake, and Distribution of the Cs⁺ Primary Ion Beam During the Secondary Ion Mass Spectrometry Analysis
- Author
-
Giordani, Andrew J., Materials Science and Engineering, Guido, Louis J., Hunter, Jerry L., Reynolds, William T. Jr., and Suchicital, Carlos T. A.
- Subjects
MCs+ ,Secondary Ion Mass Spectrometry ,Cs+ ,Temperature ,Cs Relocation - Abstract
Combining cesium (Cs) bombardment with positive secondary molecular ion detection (MCs+) can extend the analysis capability of Secondary Ion Mass Spectrometry (SIMS) from the dilute limit (
- Published
- 2016
42. Low Modal Volume Single Crystal Sapphire Optical Fiber
- Author
-
Hill, William Cary, Materials Science and Engineering, Pickrell, Gary R., Reynolds, William T. Jr., Wang, Anbo, and Staley, Thomas W.
- Subjects
single mode ,optical fiber ,Sapphire ,Physics::Optics ,modal volume ,etching ,optical sensor ,single crystal - Abstract
This research provides the first known procedure for cleanly and consistently reducing the diameter of single-crystal sapphire optical fiber (SCSF) below the limits of standard production methods, including the first production of subwavelength-diameter optical fiber (SDF) composed of single-crystal sapphire. The first known demonstration of an air-clad single crystal sapphire optical fiber demonstrating single-mode behavior is also presented, and the single-mode cutoff wavelength and diameter are determined. Theoretical models describing and predicting the optical behavior of low modal volume sapphire optical fibers are also presented. These models are built upon standard weakly-guiding optical fiber theory, which is found to be accurate once experimentally-determined properties of the SCSF are substituted for theoretical values. Reduced modal dispersion is also observed in the form of decreased laser pulse broadening in reduced-diameter SCSF. The improvements in spatial resolution for distributed sensing systems such as Raman distributed temperature sensing are also predicted based on the measured decrease in pulse duration. This research also provides an enhanced understanding of the etching behavior of sulfuric and phosphoric acids on sapphire surfaces, including the first reporting of etching rates and activation energies for a-plane sapphire surfaces. Morphological changes of sulfuric and phosphoric acids at and beyond the temperature ranges used in etching were also tested and discussed in detail, especially regarding their practical impact on observed etching behavior. The demonstration of LMV single-crystal sapphire optical fibers enables the adaptation of numerous sensing schemes requiring low modal volume or single-mode behavior to be utilized in extreme environments. Ph. D.
- Published
- 2016
43. Nanoscale structural/chemical characterization of manganese oxide surface layers and nanoparticles, and the associated implications for drinking water
- Author
-
Vargas Vallejo, Michel Eduardo, Materials Science and Engineering, Murayama, Mitsuhiro, Corcoran, Sean G., Reynolds, William T. Jr., Knocke, William R., and Michel, Frederick Marc
- Subjects
MnOx(s) Coating ,Characterization ,Water Filtration ,Nanomaterial - Abstract
Water treatment facilities commonly reduce soluble contaminants, such as soluble manganese (Mn2+), in water by oxidation and subsequent filtration. Previous studies have shown that conventional porous filter system removes Mn2+ from drinking water by developing Mn-oxides (MnOx(s)) bearing coating layers on the surface of filter media. Multiple models have been developed to explain this Mn2+ removal process and the formation mechanism of MnOx(s) coatings. Both, experimental and theoretical studies to date have been largely focused on the micrometer to millimeter scale range; whereas, coating layers are composed of nanoscale particles and films. Hence, understanding the nanoscale particle and film formation mechanisms is essential to comprehend the complexity of soluble contaminant removal processes. The primary objective of this study was to understand the initial MnOx(s) coating formation mechanisms and evaluate the influence of filter media characteristics on these processes. We pursued this objective by characterizing at the micro and nanoscale MnOx(s) coatings developed on different filter media by bench-scale column tests with simulating inorganic aqueous chemistry of a typical coagulation fresh water treatment plant, where free chlorine is present across filter bed. Analytical SEM and TEM, powder and synchrotron-based XRD, XPS, and ICPMS were used for characterization of coatings, filter media and water solution elemental chemistry. A secondary objective was to model how surface coating formation occurred and its correlation with experimentally observed physical characteristics. This modeling exercise indicates that surface roughness and morphology of filtering media are the major contributing factors in surface coating formation process. Contrary to previous models that assumed a uniform distribution and growth of surface coating, the experimental results showed that greater amounts of coating were developed in rougher areas. At the very early stage of coating formation, unevenly distributed thin films and/or particle aggregates were observed, which provided active sites for further surface coating growth. The predominant MnOx(s) phase in the surface coatings was identified to be poorly crystalline birnessite having scavenging activity by intercalation and/or sorption. This would explain the enhancement of efficiency in removing soluble manganese and other contaminants during water filtration. Moreover, the increased Mn2+ removal effect of having aluminum (Al) in pre-treated water is explained. These results indicate that the surface roughness and morphology need to be incorporated into particle capture models to more precisely describe the soluble manganese removal process. Ph. D.
- Published
- 2016
44. Microstructure and Mechanical Properties of WE43 Alloy Produced Via Additive Friction Stir Technology
- Author
-
Calvert, Jacob Rollie, Materials Science and Engineering, Reynolds, William T. Jr., Kandasamy, Kumar, and Williams, Christopher B.
- Subjects
Additive manufacturing ,Friction Stir ,Magnesium ,WE43 - Abstract
In an effort to save weight, transportation and aerospace industries have increasing investigated magnesium alloys because of their high strength-to-weight ratio. Further efforts to save on material use and machining time have focused on the use of additive manufacturing. However, anisotropic properties can be caused by both the HCP structure of magnesium alloys as well as by layered effects left by typical additive manufacturing processes. Additive Friction Stir (AFS) is a relatively new additive manufacturing technology that yields wrought microstructure with isotropic properties. In this study, Additive Friction Stir (AFS) fabrication was used to fabricate WE43 magnesium alloy, with both atomized powder and rolled plate as filler material, into multilayered structures. It was found that the WE43 alloy made by AFS exhibited nearly isotropic tensile properties. With aging these properties exceeded the base material in the T5 condition. The toughness measured by Charpy impact testing also showed an increase over the base material. The relationships among tensile properties, Vickers microhardness, impact toughness, microstructure and thermal history are developed and discussed. Master of Science
- Published
- 2015
45. Understanding the Corrosion of Low-Voltage Al-Ga Anodes
- Author
-
Baker, Devon Scott, Materials Science and Engineering, Druschitz, Alan P., Corcoran, Sean G., and Reynolds, William T. Jr.
- Subjects
gallium ,corrosion ,aluminum ,anodes ,seawater - Abstract
Aluminum is an attractive metal for use as an anode in the cathodic protection of steels in seawater due to its low cost and high current capacity. Zinc is often used for its ability to readily corrode, but it has a low current capacity and it operates at very negative voltages, leading to hydrogen generation at the steel cathode, which may cause hydrogen embrittlement. Aluminum can operate at less-negative voltages, therefore reducing hydrogen generation, but it forms a passive oxide film, preventing the anode from corroding. Ga is added to aluminum in small amounts (0.1 wt%) to destabilize this oxide film and allow for active corrosion. The mechanism of how Ga activates Al is still not well-known, though there are prevailing proposals. A previous study noted a difference in behavior between Al-Ga master heats and the alloys that were later produced by re-melting them. This study is focused on characterizing the corrosion behavior of Al-0.1 wt% Ga in synthetic seawater, with samples from a master heat and two subsequent remelts. Galvanostatic, potentiostatic, and open-circuit tests were run, as well as galvanic coupling with 1123 steel. It was found that the remelted anodes behaved more consistently and maintained stable corrosion behavior for longer times than the master heat. X-ray Photoelectron Spectroscopy analysis showed elevated concentrations of Ga inside the oxide layer. The findings support the mechanism in the literature of discrete particles of Ga forming under the oxide film but do not support the mechanism of an amalgam layer formation. This project was funded by NACE International, Virginia Tech project number 457789. Master of Science
- Published
- 2015
46. Simulated Material Erosion from Plasma Facing Components in Tokomak Reactors
- Author
-
Echols, John Russell, Materials Science and Engineering, Winfrey, Leigh, Reynolds, William T. Jr., and Hin, Celine
- Subjects
Plasma Facing Components ,Plasma Facing Materials ,equipment and supplies ,Fusion Materials ,High Heat Flux ,Tungsten - Abstract
Material erosion, melting, splashing, bubbling, and ejection during disruption events in future large tokamak reactors are of serious concern to component longevity. The majority of the heat flux during disruptions will be incident on the divertor, which will be made from tungsten in the future large tokamak ITER. Electrothermal plasma sources operating in the confined controlled arc discharge regime produce heat fluxes in the range expected for hard disruptions in future large tokamaks. The radiative heat flux produced inside of the capillary discharge channel is from the formed high density (10^23 - 10^27/m^3) plasma with heat fluxes of up to 125 GW/m^2 over a period of 100s of microseconds, making such sources excellent simulators for ablation studies of plasma-facing materials in tokamaks during hard disruptions. Experiments have been carried out with the PIPE device exposing tungsten to these high heat flux plasmas. SEM images have been taken of the tungsten surfaces, cross sections of tungsten surfaces, and ejected material. Melting and bubble/void formation has been observed on the tungsten surface. The tungsten surface shows evidence of melt-layer flow and the existence of voids and cracks in the exposed material. The ejected material does not show direct evidence of liquid material ejection which would lead to splashing. EDS analysis has been performed on the ejected material which demonstrates a lack of deposited solid tungsten particulates greater than micron size. Master of Science
- Published
- 2015
47. Correlation between structure, doping and performance of thermoelectric materials
- Author
-
Zhao, Yu, Materials Science and Engineering, Priya, Shashank, Reynolds, William T. Jr., Huxtable, Scott T., and Aning, Alexander O.
- Subjects
nanostructure ,electrical properties ,thermal conductivity ,doping ,thermoelectric - Abstract
Thermoelectric materials can convert thermal energy into electrical energy and vice-versa. They are widely used in energy harvesters, thermal sensors, and cooling systems. However, the low efficiency and high cost of the known material compositions limit their widespread utilization in electricity generation applications. Therefore, there is a strong interest in identifying new thermoelectric materials with high figure of merit. In response to this need, this dissertation works on the synthesis, structure, doping mechanism, and thermoelectric properties of zinc oxide (ZnO) and lead tellurium (PbTe). The main focus is on ZnO based materials and in improving their performance. The influences of micro- or nano-structures on thermal conductivity, as well as the correlation between the electrical property and synthesis conditions, have been systematically investigated. ZnO is a likely candidate for thermoelectric applications, because of its good Seebeck coefficient, high stability at high temperature, non-toxicity and abundance. Its main drawbacks are the high thermal conductivity (κ) and low electrical conductivity (σ). To decrease κ, two novel structures—namely, precipitate system and layered-and-correlated grain microstructure—have been proposed and synthesized in ZnO. The mechanisms iii governing the nature of thermal behavior in these structures have been explored and quantified. Due to strong phonon scattering, the nano-precipitates can reduce the thermal conductivity of ZnO by 73%. The ZnO with layered-and-correlated grains can further reduce κ by about 52%, which compares favorably with the dense ZnO with nanoprecipitates. The figure of merit of this ZnO based structure was 0.14×10⁻³ K⁻¹ at 573 K. In order to understand the electrical behavior in nanostructured ZnO, the impact of Al doping and chemical defects in ZnO under different synthesis conditions were studied. Under varying sintering temperatures, atmospheres and initial physical conditions, ZnO exhibited very distinct σ. High temperature, lack of oxygen, vacuum condition, and chemically synthesized powder can increase the carrier concentration and σ of ZnO. A promising alloy system, PbTe-PbS, undergoes natural phase separation by nucleation and growth, and spinodal decomposition depending on the thermal treatment. The correlation between the thermal treatment, structure, and the thermoelectric properties of Pb0.9S0.1Te has been studied. The nano-precipitates were incorporated in the annealed alloy resulting in a 40% decrease in κ. The PbS precipitation was shown to enhance the carrier concentration and improves the Seebeck coefficient. These concomitant effects result in a maximum ZT of 0.76 at 573 K. Throughout the thesis, the emphasis was on understanding the impact of the microstructures on thermal conductivity and the effect of the synthesis condition on thermal and electrical properties. The process and control variables identified in this study provide practical ways to optimize the figure of merit of ZnO and PbTe materials for thermoelectric applications. Ph. D.
- Published
- 2014
48. An Integrated Time-Temperature Approach for Predicting Mechanical Properties of Quenched and Tempered Steels
- Author
-
O'Connell, Corey James, Materials Science and Engineering, Druschitz, Alan P., Reynolds, William T. Jr., Dowling, Norman E., and Hendricks, Robert Wayne
- Subjects
Simulation of Heat Treatment ,Tempered Hardness of Steel ,Quenched and Tempered Steel ,Non-Isothermal Tempering - Abstract
The purpose of this work was to develop a steel tempering model that is useful to the commercial heat treater. Most of the tempering models reported address isothermal conditions which are not typical of most heating methods used to perform the tempering heat treatment. In this work, a non-isothermal tempering model was developed based on the tempering response of four steel alloys. This tempering model employs the quantity resulting from the numerical integration of the time-temperature profiles of both the heating and cooling portions of the tempering cycle. The model provided a very good agreement between experimental and predicted hardness when secondary hardening did not occur. The developed tempering model was then used as the basis for a process simulation model of a large indirect gas-fired furnace. Unlike the small-scale laboratory experiments performed in the development stage of this work, the temperature variation in this furnace was significant. Recording the temperature with time at 29 locations within the furnace allowed for suitable characterization of the temperature variation. The thermal data was used as inputs in a finite element method model and the time – temperature profiles of three production heavy truck side rails were then simulated. The tempering model provided a good prediction of the tempered hardness compared to experimental measurements. Finally, conclusions are drawn and suggestions are made for future work. Ph. D.
- Published
- 2014
49. Atomistic Molecular Dynamics Studies of Grain Boundary Structure and Deformation Response in Metallic Nanostructures
- Author
-
Smith, Laura Anne Patrick, Materials Science and Engineering, Farkas, Diana, Clark, David E., Reynolds, William T. Jr., and Hin, Celine
- Subjects
molecular dynamics simulation ,strain rate ,interatomic potentials ,plastic strain ,grain boundaries ,nanocrystalline ,mechanical response ,molecular dynamics ,LAMMPS - Abstract
The research reported in this dissertation focuses on the response of grain boundaries in polycrystalline metallic nanostructures to applied strain using molecular dynamics simulations and empirical interatomic force laws. The specific goals of the work include establishing how local grain boundary structure affects deformation behavior through the quantitative estimation of various plasticity mechanisms, such as dislocation emission and grain boundary sliding. The effects of strain rate and temperature on the plastic deformation process were also investigated. To achieve this, molecular dynamics simulations were performed on both thin-film and quasi-2D virtual samples constructed using a Voronoi tessellation technique. The samples were subjected to virtual mechanical testing using uniaxial strain at strain rates ranging from 105s-1 to 109s-1. Seven different interatomic embedded atom method potentials were used in this work. The model potentials describe different metals with fcc or bcc crystal structures. The model was validated against experimental results from studying the tensile deformation of irradiated austenitic stainless steels performed by collaborators at the University of Michigan. The results from the model validation include a novel technique for detecting strain localization through adherence of gold nanoparticles to the surface of an experimental sample prior to deformation. Similar trends with respect to intergranular crack initiation were observed between the model and the experiments. Simulations of deformation in the virtual samples revealed for the first time that equilibrium grain boundary structures can be non-planar for model potentials representing fcc materials with low stacking fault energy. Non-planar grain boundary features promote dislocation as deformation mechanisms, and hinder grain boundary sliding. This dissertation also reports the effects of temperature and strain rate on deformation behavior and correlates specific deformation mechanisms that originate from grain boundaries with controlling material properties, deformation temperature and strain rate. Ph. D.
- Published
- 2014
50. Investigation of New, Low-Voltage, Aluminum, Sacrificial Anode Chemistries
- Author
-
Monzel, William Jacob, Materials Science and Engineering, Druschitz, Alan P., Corcoran, Sean G., and Reynolds, William T. Jr.
- Subjects
Corrosion ,Sacrificial ,Low-Voltage ,Aluminum ,Anode - Abstract
The ultimate goal of this research was to gain a more fundamental understanding of the effects of “active"? alloying elements on the performance of low voltage, aluminum, sacrificial anodes. We have developed an overview of elemental trends and a comparison with literature, in support of a larger program on predicting anode behavior. The broader impact of this work was to enhance the ability to control corrosion and reduce the likelihood of hydrogen embrittlement induced by cathodic protection on ships and marine structures. As compared to high voltage anodes, low voltage, aluminum, sacrificial anodes reduce the likelihood of causing hydrogen embrittlement or stress corrosion cracking when used to protect high strength steels. In this study, open circuit potential, potentiostatic, galvanostatic and Tafel tests were performed on eleven high-purity aluminum-based binary and ternary alloys containing Bi, Ga, In and Zn in an effort to understand the individual effects of each element and the interactions between these elements. The microstructures of the as-cast alloys and the corrosion surfaces after testing were characterized using electron microscopy. Current capacities and current capacity efficiencies were calculated from potentiostatic and galvanostatic data. Galvanic coupling data from Druschitz et al was plotted with average values from potentiostatic and galvanostatic tests on Tafel curves for all alloys. [1] Variance of weight loss, average galvanostatic current, and average potentiostatic potential of the Al-0.57 wt% Zn-0.55 wt% Bi alloy was evaluated. Indium and gallium had the most significant effect on corrosion behavior (per wt% added), followed by zinc and bismuth. Bismuth had only a small effect on the weight loss, galvanostatic current and potentiostatic potential. However during potentiostatic testing Al-Bi alloys showed a steady increase in current with time, indicating that larger effects may be seen at longer periods of time. In Al-Zn alloys preferential dissolution of the zinc-rich interdendritic regions was observed. The Al-5.3 wt% Zn alloy showed high current values, but also exhibited high weight loss and more adherent corrosion products. Interdendritic corrosion also occurred with the Al-5.3 Zn-0.011 In alloy. Also, non-uniform dissolution of the remaining primary aluminum dendrites by the formation of small holes was observed, possibly due to indium precipitates. Grain boundary attack and severe intra-granular pitting was observed in Al-In alloys. Small holes were also evident on the surface of pits, similar to those seen on dendrites with the Al-5.3 Zn-0.011 In alloy. The addition of Indium greatly shifted voltages to more negative values (-0.802 to -0.858 VSCE at 9 A/m²) and significantly increased the observed currents (42-83 A/m² at -0.730 VSCE). High potentiostatic current capacities were exhibited by Al-In alloys, Al-0.1 wt% Ga, Al-5.3 wt% Zn-0.011 wt% In, and Al-0.57 wt% Zn-0.55 wt% Bi. However some calculated current capacity values were actually above the theoretical values, possibly due to corrosion products affecting the weight loss measurements. Master of Science
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.