1. Functional characterization of artemin, a ferritin homolog synthesized inArtemiaembryos during encystment and diapause
- Author
-
Reinout Amons, Katy A. Garant, Thomas H. MacRae, Tao Chen, and Tania S. Villeneuve
- Subjects
biology ,Molecular mass ,Artemin ,Cell Biology ,Transfection ,Metabolism ,medicine.disease_cause ,Biochemistry ,Ferritin ,biology.protein ,medicine ,Citrate synthase ,Molecular Biology ,Gene ,Escherichia coli - Abstract
Oviparously developing embryos of the crustacean Artemia franciscana encyst and enter diapause, exhibiting a level of stress tolerance seldom seen in metazoans. The extraordinary stress resistance of encysted Artemia embryos is thought to depend in part on the regulated synthesis of artemin, a ferritin superfamily member. The objective of this study was to better understand artemin function, and to this end the protein was synthesized in Escherichia coli and purified to apparent homogeneity. Purified artemin consisted of oligomers approximately 700 kDa in molecular mass that dissociated into monomers and a small number of dimers upon SDS/PAGE. Artemin inhibited heat-induced aggregation of citrate synthase in vitro, an activity characteristic of molecular chaperones and shown here to be shared by apoferritin and ferritin. This is the first report that apoferritin/ferritin may protect cells from stress other than by iron sequestration. Stably transfected mammalian cells synthesizing artemin were more resistant to heat and H2O2 than were cells transfected with vector only, actions also shared by molecular chaperones such as the small heat shock proteins. The data indicate that artemin is a structurally modified ferritin arising either from a common ancestor gene or by duplication of the ferritin gene. Divergence, including acquisition of a C-terminal peptide extension and ferroxidase center modification, eliminated iron sequestration, but chaperone activity was retained. Therefore, because artemin accumulates abundantly during development, it has the potential to protect embryos from stress during encystment and diapause without adversely affecting iron metabolism.
- Published
- 2007
- Full Text
- View/download PDF