1. Human iPSC-derived RPE and retinal organoids reveal impaired alternative splicing of genes involved in pre-mRNA splicing in PRPF31 autosomal dominant retinitis pigmentosa
- Author
-
Adriana Buskin, Lili Zhu, Valeria Chichagova, Basudha Basu, Sina Mozaffari-Jovin, David Dolan, Alastair Droop, Joseph Collin, Revital Bronstein, Sudeep Mehrotra, Michael Farkas, Gerrit Hilgen, Kathryn White, Dean Hallam, Katarzyna Bialas, Git Chung, Carla Mellough, Yuchun Ding, Natalio Krasnogor, Stefan Przyborski, Jumana Al-Aama, Sameer Alharthi, Yaobo Xu, Gabrielle Wheway, Katarzyna Szymanska, Martin McKibbin, Chris F Inglehearn, David J Elliott, Susan Lindsay, Robin R Ali, David H Steel, Lyle Armstrong, Evelyne Sernagor, Eric Pierce, Reinhard Lüehrmann, Sushma-Nagaraja Grellscheid, Colin A Johnson, and Majlinda Lako
- Subjects
0303 health sciences ,PRPF31 ,Retinal pigment epithelium ,Cilium ,030305 genetics & heredity ,Alternative splicing ,Retinal ,Biology ,Phenotype ,eye diseases ,Cell biology ,03 medical and health sciences ,chemistry.chemical_compound ,medicine.anatomical_structure ,chemistry ,RNA splicing ,medicine ,sense organs ,Induced pluripotent stem cell ,030304 developmental biology - Abstract
SummaryMutations in pre-mRNA processing factors (PRPFs) cause 40% of autosomal dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed PRPFs cause retinal disease. To understand the molecular basis of this phenotype, we have generated RP type 11 (PRPF31-mutated) patient-specific retinal organoids and retinal pigment epithelium (RPE) from induced pluripotent stem cells (iPSC). Impaired alternative splicing of genes encoding pre-mRNA splicing proteins occurred in patient-specific retinal cells and Prpf31+/− mouse retinae, but not fibroblasts and iPSCs, providing mechanistic insights into retinal-specific phenotypes of PRPFs. RPE was the most affected, characterised by loss of apical-basal polarity, reduced trans-epithelial resistance, phagocytic capacity, microvilli, and cilia length and incidence. Disrupted cilia morphology was observed in patient-derived-photoreceptors that displayed progressive features associated with degeneration and cell stress. In situ gene-editing of a pathogenic mutation rescued key structural and functional phenotypes in RPE and photoreceptors, providing proof-of-concept for future therapeutic strategies.eTOCPRPF31 is a ubiquitously expressed pre-mRNA processing factor that when mutated causes autosomal dominant RP. Using a patient-specific iPSC approach, Buskin and Zhu et al. show that retinal-specific defects result from altered splicing of genes involved in the splicing process itself, leading to impaired splicing, loss of RPE polarity and diminished phagocytic ability as well as reduced cilia incidence and length in both photoreceptors and RPE.HighlightsSuccessful generation of iPSC-derived RPE and photoreceptors from four RP type 11 patientsRPE cells express the mutant PRPF31 protein and show the lowest expression of wildtype proteinPRPF31 mutations result in altered splicing of genes involved in pre-mRNA splicing in RPE and retinal organoidsPrpf31 haploinsufficiency results in altered splicing of genes involved in pre-mRNA splicing in mouse retinaRPE cells display loss of polarity, reduced barrier function and phagocytosisPhotoreceptors display shorter and fewer cilia and degenerative featuresRPE cells display most abnormalities suggesting they might be the primary site of pathogenesisIn situ gene editing corrects the mutation and rescues key phenotypes
- Published
- 2017
- Full Text
- View/download PDF