497 results on '"Reik W"'
Search Results
2. Placental-Specific Insulin-Like Growth Factor 2 (lgf2) Regulates the Diffusional Exchange Characteristics of the Mouse Placenta
- Author
-
Sibley, C. P., Coan, P. M., Ferguson-Smith, A. C., Dean, W., Hughes, J., Smith, P., Reik, W., Burton, G. J., Fowden, A. L., Constậncia, M., and Berridge, Michael J.
- Published
- 2004
3. Multiple Imprinted Sense and Antisense Transcripts, Differential Methylation and Tandem Repeats in a Putative Imprinting Control Region Upstream of Mouse Igf2
- Author
-
Moore, T., Constancia, M., Zubair, M., Bailleul, B., Feil, R., Sasaki, H., and Reik, W.
- Published
- 1997
4. Loss of the Maternal H19 Gene Induces Changes in Igf2 Methylation in Both Cis and Trans
- Author
-
Forne, T., Oswald, J., Dean, W., Saam, J. R., Bailleul, B., Dandolo, L., Tilghman, S. M., Walter, J., and Reik, W.
- Published
- 1997
5. The History of Dual Mass Flywheel Development – Success Factors and Hurdles
- Author
-
Reik, W., primary and Seebacher, R., additional
- Published
- 2017
- Full Text
- View/download PDF
6. LifeTime and improving European healthcare through cell-based interceptive medicine
- Author
-
Rajewsky, N., Almouzni, G., Gorski, S., Aerts, S., Amit, I., Bertero, M., Bock, C., Bredenoord, A., Cavalli, G., Chiocca, S., Clevers, H., Strooper, B., Eggert, A., Ellenberg, J., Fernández, X., Figlerowicz, M., Gasser, S., Hubner, N., Kjems, J., Knoblich, J., Krabbe, G., Lichter, P., Linnarsson, S., Marine, J., Marioni, J., Marti-Renom, M., Netea, M., Nickel, D., Nollmann, M., Novak, H., Parkinson, H., Piccolo, S., Pinheiro, I., Pombo, A., Popp, C., Reik, W., Roman-Roman, S., Rosenstiel, P., Schultze, J., Stegle, O., Tanay, A., Testa, G., Thanos, D., Theis, F., Torres-Padilla, M., Valencia, A., Vallot, C., van Oudenaarden, A., Vidal, M., Voet, T., Alberi, L., Alexander, S., Alexandrov, T., Arenas, E., Bagni, C., Balderas, R., Bandelli, A., Becher, B., Becker, M., Beerenwinkel, N., Benkirame, M., Beyer, M., Bickmore, W., Biessen, E., Blomberg, N., Blumcke, I., Bodenmiller, B., Borroni, B., Boumpas, D., Bourgeron, T., Bowers, S., Braeken, D., Brooksbank, C., Brose, N., Bruining, H., Bury, J., Caporale, N., Cattoretti, G., Chabane, N., Chneiweiss, H., Cook, S., Curatolo, P., de Jonge, M., Deplancke, B., de Witte, P., Dimmeler, S., Draganski, B., Drews, A., Dumbrava, C., Engelhardt, S., Gasser, T., Giamarellos-Bourboulis, E., Graff, C., Grün, D., Gut, I., Hansson, O., Henshall, D., Herland, A., Heutink, P., Heymans, S., Heyn, H., Huch, M., Huitinga, I., Jackowiak, P., Jongsma, K., Journot, L., Junker, J., Katz, S., Kehren, J., Kempa, S., Kirchhof, P., Klein, C., Koralewska, N., Korbel, J., Kühnemund, M., Lamond, A., Lauwers, E., Le Ber, I., Leinonen, V., Tobon, A., Lundberg, E., Lunkes, A., Maatz, H., Mann, M., Marelli, L., Matser, V., Matthews, P., Mechta-Grigoriou, F., Menon, R., Nielsen, A., Pagani, M., Pasterkamp, R., Pitkänen, A., Popescu, V., Pottier, C., Puisieux, A., Rademakers, R., Reiling, D., Reiner, O., Remondini, D., Ritchie, C., Rohrer, J., Saliba, A., Sanchez-Valle, R., Santosuosso, A., Sauter, A., Scheltema, R., Scheltens, P., Schiller, H., Schneider, A., Seibler, P., Sheehan-Rooney, K., Shields, D., Sleegers, K., Smit, A., Smith, K., Smolders, I., Synofzik, M., Tam, W., Teichmann, S., Thom, M., Turco, M., van Beusekom, H., Vandenberghe, R., den Hoecke, S., de Poel, I., van der Ven, A., van der Zee, J., van Lunzen, J., van Minnebruggen, G., Paesschen, W., van Swieten, J., van Vught, R., Verhage, M., Verstreken, P., Villa, C., Vogel, J., von Kalle, C., Walter, J., Weckhuysen, S., Weichert, W., Wood, L., Ziegler, A., Zipp, F., HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany., Medical Research Council (MRC), UK DRI Ltd, TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany., Barcelona Supercomputing Center, LifeTime Community Working Groups, Cardiology, Neurology, Institut de génétique humaine (IGH), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Amsterdam Neuroscience - Cellular & Molecular Mechanisms, Human genetics, Rajewsky N., Almouzni G., Gorski S.A., Aerts S., Amit I., Bertero M.G., Bock C., Bredenoord A.L., Cavalli G., Chiocca S., Clevers H., De Strooper B., Eggert A., Ellenberg J., Fernandez X.M., Figlerowicz M., Gasser S.M., Hubner N., Kjems J., Knoblich J.A., Krabbe G., Lichter P., Linnarsson S., Marine J.-C., Marioni J.C., Marti-Renom M.A., Netea M.G., Nickel D., Nollmann M., Novak H.R., Parkinson H., Piccolo S., Pinheiro I., Pombo A., Popp C., Reik W., Roman-Roman S., Rosenstiel P., Schultze J.L., Stegle O., Tanay A., Testa G., Thanos D., Theis F.J., Torres-Padilla M.-E., Valencia A., Vallot C., van Oudenaarden A., Vidal M., Voet T., Alberi L., Alexander S., Alexandrov T., Arenas E., Bagni C., Balderas R., Bandelli A., Becher B., Becker M., Beerenwinkel N., Benkirame M., Beyer M., Bickmore W., Biessen E.E.A.L., Blomberg N., Blumcke I., Bodenmiller B., Borroni B., Boumpas D.T., Bourgeron T., Bowers S., Braeken D., Brooksbank C., Brose N., Bruining H., Bury J., Caporale N., Cattoretti G., Chabane N., Chneiweiss H., Cook S.A., Curatolo P., de Jonge M.I., Deplancke B., de Witte P., Dimmeler S., Draganski B., Drews A., Dumbrava C., Engelhardt S., Gasser T., Giamarellos-Bourboulis E.J., Graff C., Grun D., Gut I., Hansson O., Henshall D.C., Herland A., Heutink P., Heymans S.R.B., Heyn H., Huch M., Huitinga I., Jackowiak P., Jongsma K.R., Journot L., Junker J.P., Katz S., Kehren J., Kempa S., Kirchhof P., Klein C., Koralewska N., Korbel J.O., Kuhnemund M., Lamond A.I., Lauwers E., Le Ber I., Leinonen V., Tobon A.L., Lundberg E., Lunkes A., Maatz H., Mann M., Marelli L., Matser V., Matthews P.M., Mechta-Grigoriou F., Menon R., Nielsen A.F., Pagani M., Pasterkamp R.J., Pitkanen A., Popescu V., Pottier C., Puisieux A., Rademakers R., Reiling D., Reiner O., Remondini D., Ritchie C., Rohrer J.D., Saliba A.-E., Sanchez-Valle R., Santosuosso A., Sauter A., Scheltema R.A., Scheltens P., Schiller H.B., Schneider A., Seibler P., Sheehan-Rooney K., Shields D., Sleegers K., Smit A.B., Smith K.G.C., Smolders I., Synofzik M., Tam W.L., Teichmann S., Thom M., Turco M.Y., van Beusekom H.M.M., Vandenberghe R., Van den Hoecke S., Van de Poel I., van der Ven A., van der Zee J., van Lunzen J., van Minnebruggen G., Van Paesschen W., van Swieten J., van Vught R., Verhage M., Verstreken P., Villa C.E., Vogel J., von Kalle C., Walter J., Weckhuysen S., Weichert W., Wood L., Ziegler A.-G., Zipp F., Center for Neurogenomics and Cognitive Research, Functional Genomics, Rajewsky, N, Almouzni, G, Gorski, S, Aerts, S, Amit, I, Bertero, M, Bock, C, Bredenoord, A, Cavalli, G, Chiocca, S, Clevers, H, De Strooper, B, Eggert, A, Ellenberg, J, Fernández, X, Figlerowicz, M, Gasser, S, Hubner, N, Kjems, J, Knoblich, J, Krabbe, G, Lichter, P, Linnarsson, S, Marine, J, Marioni, J, Marti-Renom, M, Netea, M, Nickel, D, Nollmann, M, Novak, H, Parkinson, H, Piccolo, S, Pinheiro, I, Pombo, A, Popp, C, Reik, W, Roman-Roman, S, Rosenstiel, P, Schultze, J, Stegle, O, Tanay, A, Testa, G, Thanos, D, Theis, F, Torres-Padilla, M, Valencia, A, Vallot, C, van Oudenaarden, A, Vidal, M, Voet, T, Cattoretti, G, Alliance for Modulation in Epilepsy, Pharmaceutical and Pharmacological Sciences, Experimental Pharmacology, RS: Carim - H02 Cardiomyopathy, MUMC+: MA Med Staf Spec Cardiologie (9), and Cardiologie
- Subjects
0301 basic medicine ,Male ,Artificial intelligence ,Legislation, Medical ,[SDV]Life Sciences [q-bio] ,Molecular datasets ,lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4] ,Cell- and Tissue-Based Therapy ,Diseases ,LifeTime Community Working Groups ,Disease ,Biomarkers ,Systems biology ,Health data ,Pharmacology, Toxicology and Pharmaceutics(all) ,0302 clinical medicine ,Conjunts de dades ,ethics [Delivery of Health Care] ,Health care ,Pathology ,Medicine ,European healthcare ,BRAIN ,Single-cell multi-omics ,GENE-EXPRESSION ,Multidisciplinary ,methods [Medicine] ,Education, Medical ,Settore BIO/13 ,Intel.ligència artificial ,3. Good health ,ALZHEIMERS-DISEASE ,Europe ,Health ,Management system ,Perspective ,Female ,ddc:500 ,Single-Cell Analysis ,Biomarkers, Diseases, Systems biology ,Complex diseases ,Informàtica::Aplicacions de la informàtica::Bioinformàtica [Àrees temàtiques de la UPC] ,medicine.medical_specialty ,General Science & Technology ,Cells ,MEDLINE ,cell-based interceptive medicine ,LifeTime Initiative ,03 medical and health sciences ,SDG 3 - Good Health and Well-being ,Clinical datasets ,Artificial Intelligence ,REVEALS ,LifeTime Community ,standards [Medicine] ,Humans ,OMICS ,RECONSTRUCTION ,Intensive care medicine ,trends [Medicine] ,trends [Delivery of Health Care] ,business.industry ,Disease progression ,standards [Delivery of Health Care] ,methods [Delivery of Health Care] ,030104 developmental biology ,lnfectious Diseases and Global Health Radboud Institute for Health Sciences [Radboudumc 4] ,single cell, personalized therapy, machine learning, bioinformatics, systems biology, disease, cell-based interceptive medicine ,Early Diagnosis ,Cardiovascular and Metabolic Diseases ,Human medicine ,business ,Delivery of Health Care ,030217 neurology & neurosurgery ,Cell based - Abstract
Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade., The LifeTime initiative is an ambitious, multidisciplinary programme that aims to improve healthcare by tracking individual human cells during disease processes and responses to treatment in order to develop and implement cell-based interceptive medicine in Europe.
- Published
- 2020
7. Igf2 imprinting in development and disease
- Author
-
Reik, W., Constancia, M., Dean, W., Davies, K., Bowden, L., Murrell, A., Feil, R., Walter, J., Kelsey, G., Olmo, Ettore, editor, and Redi, Carlo Alberto, editor
- Published
- 2000
- Full Text
- View/download PDF
8. The History of Dual Mass Flywheel Development – Success Factors and Hurdles
- Author
-
Reik, W., primary and Seebacher, R., additional
- Published
- 2016
- Full Text
- View/download PDF
9. Parental imprinting and epigenetic programming of the mouse genome: long lasting consequences for development and phenotype
- Author
-
Reik, W., Sasaki, H., Ferguson-Smith, A., Feil, R., Bowden, L., Penberth, J., Surani, A., Gurtmann, I., Klose, J., Sumner, A. T., and Chandley, A. C.
- Published
- 1993
- Full Text
- View/download PDF
10. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis
- Author
-
Lohoff, T., primary, Ghazanfar, S., additional, Missarova, A., additional, Koulena, N., additional, Pierson, N., additional, Griffiths, J. A., additional, Bardot, E. S., additional, Eng, C.-H. L., additional, Tyser, R. C. V., additional, Argelaguet, R., additional, Guibentif, C., additional, Srinivas, S., additional, Briscoe, J., additional, Simons, B. D., additional, Hadjantonakis, A.-K., additional, Göttgens, B., additional, Reik, W., additional, Nichols, J., additional, Cai, L., additional, and Marioni, J. C., additional
- Published
- 2021
- Full Text
- View/download PDF
11. Developmental Consequences of Imprinting of Parental Chromosomes by DNA Methylation
- Author
-
Surani, M. A., Allen, N. D., Barton, S. C., Fundele, R., Howlett, S. K., Norris, M. L., and Reik, W.
- Published
- 1990
12. The Inheritance of Germline-Specific Epigenetic Modifications during Development
- Author
-
Surani, M. A., Sasaki, H., Ferguson-Smith, A. C., Allen, N. D., Barton, S. C., Jones, P. A., and Reik, W.
- Published
- 1993
13. Publisher Correction: LifeTime and improving European healthcare through cell-based interceptive medicine (Nature, (2020), 587, 7834, (377-386), 10.1038/s41586-020-2715-9)
- Author
-
Rajewsky, N. Almouzni, G. Gorski, S.A. Aerts, S. Amit, I. Bertero, M.G. Bock, C. Bredenoord, A.L. Cavalli, G. Chiocca, S. Clevers, H. De Strooper, B. Eggert, A. Ellenberg, J. Fernández, X.M. Figlerowicz, M. Gasser, S.M. Hubner, N. Kjems, J. Knoblich, J.A. Krabbe, G. Lichter, P. Linnarsson, S. Marine, J.-C. Marioni, J.C. Marti-Renom, M.A. Netea, M.G. Nickel, D. Nollmann, M. Novak, H.R. Parkinson, H. Piccolo, S. Pinheiro, I. Pombo, A. Popp, C. Reik, W. Roman-Roman, S. Rosenstiel, P. Schultze, J.L. Stegle, O. Tanay, A. Testa, G. Thanos, D. Theis, F.J. Torres-Padilla, M.-E. Valencia, A. Vallot, C. van Oudenaarden, A. Vidal, M. Voet, T. Alberi, L. Alexander, S. Alexandrov, T. Arenas, E. Bagni, C. Balderas, R. Bandelli, A. Becher, B. Becker, M. Beerenwinkel, N. Benkirane, M. Beyer, M. Bickmore, W.A. Biessen, E.E.A.L. Blomberg, N. Blumcke, I. Bodenmiller, B. Borroni, B. Boumpas, D.T. Bourgeron, T. Bowers, S. Braeken, D. Brooksbank, C. Brose, N. Bruining, H. Bury, J. Caporale, N. Cattoretti, G. Chabane, N. Chneiweiss, H. Cook, S.A. Curatolo, P. de Jonge, M.I. Deplancke, B. de Witte, P. Dimmeler, S. Draganski, B. Drews, A. Dumbrava, C. Engelhardt, S. Gasser, T. Giamarellos-Bourboulis, E.J. Graff, C. Grün, D. Gut, I.G. Hansson, O. Henshall, D.C. Herland, A. Heutink, P. Heymans, S.R.B. Heyn, H. Huch, M. Huitinga, I. Jackowiak, P. Jongsma, K.R. Journot, L. Junker, J.P. Katz, S. Kehren, J. Kempa, S. Kirchhof, P. Klein, C. Koralewska, N. Korbel, J.O. Kühnemund, M. Lamond, A.I. Lauwers, E. Le Ber, I. Leinonen, V. López-Tobón, A. Lundberg, E. Lunkes, A. Maatz, H. Mann, M. Marelli, L. Matser, V. Matthews, P.M. Mechta-Grigoriou, F. Menon, R. Nielsen, A.F. Pagani, M. Pasterkamp, R.J. Pitkänen, A. Popescu, V. Pottier, C. Puisieux, A. Rademakers, R. Reiling, D. Reiner, O. Remondini, D. Ritchie, C. Rohrer, J.D. Saliba, A.-E. Sanchez-Valle, R. Santosuosso, A. Sauter, A. Scheltema, R.A. Scheltens, P. Schiller, H.B. Schneider, A. Seibler, P. Sheehan-Rooney, K. Shields, D.J. Sleegers, K. Smit, A.B. Smith, K.G.C. Smolders, I. Synofzik, M. Tam, W.L. Teichmann, S.A. Thom, M. Turco, M.Y. van Beusekom, H.M.M. Vandenberghe, R. Van den Hoecke, S. van de Poel, I. van der Ven, A. van der Zee, J. van Lunzen, J. van Minnebruggen, G. van Oudenaarden, A. Van Paesschen, W. van Swieten, J.C. van Vught, R. Verhage, M. Verstreken, P. Villa, C.E. Vogel, J. von Kalle, C. Walter, J. Weckhuysen, S. Weichert, W. Wood, L. Ziegler, A.-G. Zipp, F. LifeTime Community Working Groups
- Subjects
ComputingMethodologies_DOCUMENTANDTEXTPROCESSING - Abstract
In this Perspective, owing to an error in the HTML, the surname of author Alejandro López-Tobón of the LifeTime Community Working Groups consortium was indexed as ‘Tobon’ rather than ‘López-Tobón’ and the accents were missing. The HTML version of the original Perspective has been corrected; the PDF and print versions were always correct. © 2021, The Author(s).
- Published
- 2021
14. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis
- Author
-
Lohoff, T., Ghazanfar, S., Missarova, A., Koulena, N., Pierson, N., Griffiths, J. A., Bardot, E. S., Eng, C.-H. L., Tyser, R. C. V., Argelaguet, R., Guibentif, C., Srinivas, S., Briscoe, J., Simons, B. D., Hadjantonakis, A.-K., Göttgens, B., Reik, W., Nichols, J., Cai, L., Marioni, J. C., Lohoff, T., Ghazanfar, S., Missarova, A., Koulena, N., Pierson, N., Griffiths, J. A., Bardot, E. S., Eng, C.-H. L., Tyser, R. C. V., Argelaguet, R., Guibentif, C., Srinivas, S., Briscoe, J., Simons, B. D., Hadjantonakis, A.-K., Göttgens, B., Reik, W., Nichols, J., Cai, L., and Marioni, J. C.
- Abstract
Molecular profiling of single cells has advanced our knowledge of the molecular basis of development. However, current approaches mostly rely on dissociating cells from tissues, thereby losing the crucial spatial context of regulatory processes. Here, we apply an image-based single-cell transcriptomics method, sequential fluorescence in situ hybridization (seqFISH), to detect mRNAs for 387 target genes in tissue sections of mouse embryos at the 8–12 somite stage. By integrating spatial context and multiplexed transcriptional measurements with two single-cell transcriptome atlases, we characterize cell types across the embryo and demonstrate that spatially resolved expression of genes not profiled by seqFISH can be imputed. We use this high-resolution spatial map to characterize fundamental steps in the patterning of the midbrain–hindbrain boundary (MHB) and the developing gut tube. We uncover axes of cell differentiation that are not apparent from single-cell RNA-sequencing (scRNA-seq) data, such as early dorsal–ventral separation of esophageal and tracheal progenitor populations in the gut tube. Our method provides an approach for studying cell fate decisions in complex tissues and development.
- Published
- 2021
15. Maternal Dppa2 and Dppa4 are dispensable for zygotic genome activation but important for offspring survival
- Author
-
Kubinyecz, O, Santos, F, Drage, D, Reik, W, Eckersley-Maslin, MA, Kubinyecz, O, Santos, F, Drage, D, Reik, W, and Eckersley-Maslin, MA
- Abstract
Zygotic genome activation (ZGA) represents the initiation of transcription following fertilisation. Despite its importance, we know little of the molecular events that initiate mammalian ZGA in vivo. Recent in vitro studies in mouse embryonic stem cells have revealed developmental pluripotency associated 2 and 4 (Dppa2/4) as key regulators of ZGA-associated transcription. However, their roles in initiating ZGA in vivo remain unexplored. We reveal that Dppa2/4 proteins are present in the nucleus at all stages of preimplantation development and associate with mitotic chromatin. We generated conditional single and double maternal knockout mouse models to deplete maternal stores of Dppa2/4. Importantly, Dppa2/4 maternal knockout mice were fertile when mated with wild-type males. Immunofluorescence and transcriptome analyses of two-cell embryos revealed that, although ZGA took place, there were subtle defects in embryos that lacked maternal Dppa2/4. Strikingly, heterozygous offspring that inherited the null allele maternally had higher preweaning lethality than those that inherited the null allele paternally. Together, our results show that although Dppa2/4 are dispensable for ZGA transcription, maternal stores have an important role in offspring survival, potentially via epigenetic priming of developmental genes.
- Published
- 2021
16. Pooled CRISPR-activation screening coupled with single-cell RNA-seq in mouse embryonic stem cells
- Author
-
Alda-Catalinas, C, Eckersley-Maslin, MA, Reik, W, Alda-Catalinas, C, Eckersley-Maslin, MA, and Reik, W
- Abstract
CRISPR/Cas9 screens are a powerful approach to identify key regulators of biological processes. By combining pooled CRISPR/Cas9 screening with single-cell RNA-sequencing readout, individual perturbations can be assessed in parallel both comprehensively and at scale. Importantly, this allows gene function and regulation to be interrogated at a cellular level in an unbiased manner. Here, we present a protocol to perform pooled CRISPR-activation screens in mouse embryonic stem cells using 10× Genomics scRNA-seq as a readout. For complete information on the generation and use of this protocol, please refer to Alda-Catalinas et al. (2020).
- Published
- 2021
17. The role of DNA modifications in epigenetic reprogramming and signalling: PLS-2-2
- Author
-
Reik, W.
- Published
- 2014
18. LifeTime and improving European healthcare through cell-based interceptive medicine
- Author
-
Rajewsky, N. (Nikolaus), Almouzni, G. (Geneviève), Gorski, S.A. (Stanislaw A.), Aerts, S. (Stein), Amit, I. (Ido), Bertero, M.G. (Michela G.), Bock, C. (Christoph), Bredenoord, A.L. (Annelien L.), Cavalli, G. (Giacomo), Chiocca, S. (Susanna), Clevers, H.C. (Hans), Strooper, B. (Bart) de, Eggert, A. (Angelika), Ellenberg, J. (Jan), Fernández, X.M. (Xosé M.), Figlerowicz, M. (Marek), Gasser, S.M. (Susan M.), Hübner, N. (Norbert), Kjems, J. (Jørgen), Knoblich, J.A. (Jürgen A.), Krabbe, G. (Grietje), Lichter, P. (Peter), Linnarsson, S. (Sten), Marine, J.-C. (J.), Marioni, J. (John), Marti-Renom, M.A. (Marc A.), Netea, M.G. (Mihai), Nickel, D. (Dörthe), Nollmann, M. (Marcelo), Novak, H.R. (Halina R.), Parkinson, H. (Helen), Piccolo, S. (Stefano), Pinheiro, I. (Inês), Pombo, A. (Ana), Popp, C. (Christian), Reik, W. (Wolf), Roman-Roman, S. (Sergio), Rosenstiel, P. (Philip), Schultze, J.L. (Joachim), Stegle, O. (Oliver), Tanay, A. (Amos), Testa, G. (Giuseppe), Thanos, D. (Dimitris), Theis, F. (Fabian), Torres-Padilla, M.-E. (Maria-Elena), Valencia, A. (Alfonso), Vallot, C. (Céline), van Oudenaarden, A. (Alexander), Vidal, M. (Marie), Voet, T. (Thierry), Alberi, L. (Lavinia), Alexander, S. (Stephanie), Alexandrov, T. (Theodore), Arenas, E. (Ernest), Bagni, C. (Claudia), Balderas, R. (Robert), Bandelli, A. (Andrea), Becher, B. (Burkhard), Becker, M. (Matthias), Beerenwinkel, N. (Niko), Benkirame, M. (Monsef), Beyer, M. (Marc), Bickmore, W. (Wendy), Biessen, E.E.A.L. (Erik E.A.L.), Blomberg, N. (Niklas), Blumcke, I. (Ingmar), Bodenmiller, B. (Bernd), Borroni, B. (Barbara), Boumpas, D.T. (Dimitrios T.), Bourgeron, T. (Thomas), Bowers, S. (Sarion), Braeken, D. (Dries), Brooksbank, C. (Catherine), Brose, N. (Nils), Bruining, J. (Hans), Bury, J. (Jo), Caporale, N. (Nicolo), Cattoretti, G. (Giorgio), Chabane, N. (Nadia), Chneiweiss, H. (Hervé), Cook, S.A. (Stuart A.), Curatolo, P. (Paolo), Jonge, M.I. (Marien) de, Deplancke, B. (Bart), De Strooper, B. (Bart), de Witte, P. (Peter), Dimmeler, S. (Stefanie), Draganski, B. (Bogdan), Drews, A.-D. (Anna-Dorothee), Dumbrava, C. (Costica), Engelhardt, S. (Stefan), Gasser, T. (Thomas), Giamarellos-Bourboulis, E. (Evangelos), Graff, C. (Caroline), Grün, D. (Dominic), Gut, I. (Ivo), Hansson, O. (Oskar), Henshall, D.C. (David C.), Herland, A. (Anna), Heutink, P. (Peter), Heymans, S. (Stephane), Heyn, H. (Holger), Huch, M. (Meritxell), Huitinga, I. (Inge), Jackowiak, P. (Paulina), Jongsma, K.R. (Karin), Journot, L. (Laurent), Junker, J.P. (Jan Philipp), Katz, S. (Shauna), Kehren, J. (Jeanne), Kempa, S. (Stefan), Kirchhof, P. (Paulus), Klein, C. (Christoph), Koralewska, N. (Natalia), Korbel, J.O. (Jan), Kühnemund, M. (Malte), Lamond, A.I. (Angus I.), Lauwers, E. (Elsa), Le Ber, I. (Isabelle), Leinonen, V. (Ville), Tobon, A.L. (Alejandro Lopez), Lundberg, E. (Emma), Lunkes, A. (Astrid), Maatz, H. (Henrike), Mann, M. (Mathias), Marelli, L. (Luca), Matser, V. (Vera), Matthews, P.M. (P.), Mechta-Grigoriou, F. (Fatima), Menon, R. (Radhika), Nielsen, A.F. (Anne F.), Pagani, M. (Massimiliano), Pasterkamp, R.J. (Jeroen), Pitkanen, A. (Asla), Popescu, V. (Valentin), Pottier, C. (Cyril), Puisieux, A. (Alain), Rademakers, R. (Rosa), Reiling, D. (Dory), Reiner, O. (Orly), Remondini, D. (Daniel), Ritchie, C. (Craig), Rohrer, J.D. (Jonathan D.), Saliba, A.-E. (Antione-Emmanuel), Sánchez-Valle, R. (Raquel), Santosuosso, A. (Amedeo), Sauter, A. (Arnold), Scheltema, R.A. (Richard A.), Scheltens, P. (Philip), Schiller, H.B. (Herbert B.), Schneider, A. (Anja), Seibler, P. (Philip), Sheehan-Rooney, K. (Kelly), Shields, D. (David), Sleegers, K. (Kristel), Smit, G. (Guus), Smith, K.G.C. (Kenneth G. C.), Smolders, I. (Ilse), Synofzik, M. (Matthis), Tam, W.L. (Wai Long), Teichmann, S. (Sarah), Thom, M. (Maria), Turco, M.Y. (Margherita Y.), Beusekom, H.M.M. (Heleen) van, Vandenberghe, R. (Rik), den Hoecke, S.V. (Silvie Van), Van de Poel, E. (Ellen), der Ven, A. (Andre van), van der Zee, J. (Julie), van Lunzen, J. (Jan), van Minnebruggen, G. (Geert), Van Paesschen, W. (Wim), Swieten, J.C. (John) van, van Vught, R. (Remko), Verhage, M. (Matthijs), Verstreken, P. (Patrik), Villa, C.E. (Carlo Emanuele), Vogel, J. (Jörg), Kalle, C. (Christof) von, Walter, J. (Jörn), Weckhuysen, S. (Sarah), Weichert, W. (Wilko), Wood, L. (Louisa), Ziegler, A.-G. (Anette-Gabriele), Zipp, F. (Frauke), Rajewsky, N. (Nikolaus), Almouzni, G. (Geneviève), Gorski, S.A. (Stanislaw A.), Aerts, S. (Stein), Amit, I. (Ido), Bertero, M.G. (Michela G.), Bock, C. (Christoph), Bredenoord, A.L. (Annelien L.), Cavalli, G. (Giacomo), Chiocca, S. (Susanna), Clevers, H.C. (Hans), Strooper, B. (Bart) de, Eggert, A. (Angelika), Ellenberg, J. (Jan), Fernández, X.M. (Xosé M.), Figlerowicz, M. (Marek), Gasser, S.M. (Susan M.), Hübner, N. (Norbert), Kjems, J. (Jørgen), Knoblich, J.A. (Jürgen A.), Krabbe, G. (Grietje), Lichter, P. (Peter), Linnarsson, S. (Sten), Marine, J.-C. (J.), Marioni, J. (John), Marti-Renom, M.A. (Marc A.), Netea, M.G. (Mihai), Nickel, D. (Dörthe), Nollmann, M. (Marcelo), Novak, H.R. (Halina R.), Parkinson, H. (Helen), Piccolo, S. (Stefano), Pinheiro, I. (Inês), Pombo, A. (Ana), Popp, C. (Christian), Reik, W. (Wolf), Roman-Roman, S. (Sergio), Rosenstiel, P. (Philip), Schultze, J.L. (Joachim), Stegle, O. (Oliver), Tanay, A. (Amos), Testa, G. (Giuseppe), Thanos, D. (Dimitris), Theis, F. (Fabian), Torres-Padilla, M.-E. (Maria-Elena), Valencia, A. (Alfonso), Vallot, C. (Céline), van Oudenaarden, A. (Alexander), Vidal, M. (Marie), Voet, T. (Thierry), Alberi, L. (Lavinia), Alexander, S. (Stephanie), Alexandrov, T. (Theodore), Arenas, E. (Ernest), Bagni, C. (Claudia), Balderas, R. (Robert), Bandelli, A. (Andrea), Becher, B. (Burkhard), Becker, M. (Matthias), Beerenwinkel, N. (Niko), Benkirame, M. (Monsef), Beyer, M. (Marc), Bickmore, W. (Wendy), Biessen, E.E.A.L. (Erik E.A.L.), Blomberg, N. (Niklas), Blumcke, I. (Ingmar), Bodenmiller, B. (Bernd), Borroni, B. (Barbara), Boumpas, D.T. (Dimitrios T.), Bourgeron, T. (Thomas), Bowers, S. (Sarion), Braeken, D. (Dries), Brooksbank, C. (Catherine), Brose, N. (Nils), Bruining, J. (Hans), Bury, J. (Jo), Caporale, N. (Nicolo), Cattoretti, G. (Giorgio), Chabane, N. (Nadia), Chneiweiss, H. (Hervé), Cook, S.A. (Stuart A.), Curatolo, P. (Paolo), Jonge, M.I. (Marien) de, Deplancke, B. (Bart), De Strooper, B. (Bart), de Witte, P. (Peter), Dimmeler, S. (Stefanie), Draganski, B. (Bogdan), Drews, A.-D. (Anna-Dorothee), Dumbrava, C. (Costica), Engelhardt, S. (Stefan), Gasser, T. (Thomas), Giamarellos-Bourboulis, E. (Evangelos), Graff, C. (Caroline), Grün, D. (Dominic), Gut, I. (Ivo), Hansson, O. (Oskar), Henshall, D.C. (David C.), Herland, A. (Anna), Heutink, P. (Peter), Heymans, S. (Stephane), Heyn, H. (Holger), Huch, M. (Meritxell), Huitinga, I. (Inge), Jackowiak, P. (Paulina), Jongsma, K.R. (Karin), Journot, L. (Laurent), Junker, J.P. (Jan Philipp), Katz, S. (Shauna), Kehren, J. (Jeanne), Kempa, S. (Stefan), Kirchhof, P. (Paulus), Klein, C. (Christoph), Koralewska, N. (Natalia), Korbel, J.O. (Jan), Kühnemund, M. (Malte), Lamond, A.I. (Angus I.), Lauwers, E. (Elsa), Le Ber, I. (Isabelle), Leinonen, V. (Ville), Tobon, A.L. (Alejandro Lopez), Lundberg, E. (Emma), Lunkes, A. (Astrid), Maatz, H. (Henrike), Mann, M. (Mathias), Marelli, L. (Luca), Matser, V. (Vera), Matthews, P.M. (P.), Mechta-Grigoriou, F. (Fatima), Menon, R. (Radhika), Nielsen, A.F. (Anne F.), Pagani, M. (Massimiliano), Pasterkamp, R.J. (Jeroen), Pitkanen, A. (Asla), Popescu, V. (Valentin), Pottier, C. (Cyril), Puisieux, A. (Alain), Rademakers, R. (Rosa), Reiling, D. (Dory), Reiner, O. (Orly), Remondini, D. (Daniel), Ritchie, C. (Craig), Rohrer, J.D. (Jonathan D.), Saliba, A.-E. (Antione-Emmanuel), Sánchez-Valle, R. (Raquel), Santosuosso, A. (Amedeo), Sauter, A. (Arnold), Scheltema, R.A. (Richard A.), Scheltens, P. (Philip), Schiller, H.B. (Herbert B.), Schneider, A. (Anja), Seibler, P. (Philip), Sheehan-Rooney, K. (Kelly), Shields, D. (David), Sleegers, K. (Kristel), Smit, G. (Guus), Smith, K.G.C. (Kenneth G. C.), Smolders, I. (Ilse), Synofzik, M. (Matthis), Tam, W.L. (Wai Long), Teichmann, S. (Sarah), Thom, M. (Maria), Turco, M.Y. (Margherita Y.), Beusekom, H.M.M. (Heleen) van, Vandenberghe, R. (Rik), den Hoecke, S.V. (Silvie Van), Van de Poel, E. (Ellen), der Ven, A. (Andre van), van der Zee, J. (Julie), van Lunzen, J. (Jan), van Minnebruggen, G. (Geert), Van Paesschen, W. (Wim), Swieten, J.C. (John) van, van Vught, R. (Remko), Verhage, M. (Matthijs), Verstreken, P. (Patrik), Villa, C.E. (Carlo Emanuele), Vogel, J. (Jörg), Kalle, C. (Christof) von, Walter, J. (Jörn), Weckhuysen, S. (Sarah), Weichert, W. (Wilko), Wood, L. (Louisa), Ziegler, A.-G. (Anette-Gabriele), and Zipp, F. (Frauke)
- Abstract
LifeTime aims to track, understand and target human cells during the onset and progression of complex diseases and their response to therapy at single-cell resolution. This mission will be implemented through the development and integration of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during progression from health to disease. Analysis of such large molecular and clinical datasets will discover molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. Timely detection and interception of disease embedded in an ethical and patient-centered vision will be achieved through interactions across academia, hospitals, patient-associations, health data management systems and industry. Applying this strategy to key medical challenges in cancer, neurological, infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.
- Published
- 2020
- Full Text
- View/download PDF
19. A Single-Cell Transcriptomics CRISPR-Activation Screen Identifies Epigenetic Regulators of the Zygotic Genome Activation Program
- Author
-
Alda-Catalinas, C, Bredikhin, D, Hernando-Herraez, I, Santos, F, Kubinyecz, O, Eckersley-Maslin, MA, Stegle, O, Reik, W, Alda-Catalinas, C, Bredikhin, D, Hernando-Herraez, I, Santos, F, Kubinyecz, O, Eckersley-Maslin, MA, Stegle, O, and Reik, W
- Abstract
Zygotic genome activation (ZGA) is an essential transcriptional event in embryonic development that coincides with extensive epigenetic reprogramming. Complex manipulation techniques and maternal stores of proteins preclude large-scale functional screens for ZGA regulators within early embryos. Here, we combined pooled CRISPR activation (CRISPRa) with single-cell transcriptomics to identify regulators of ZGA-like transcription in mouse embryonic stem cells, which serve as a tractable, in vitro proxy of early mouse embryos. Using multi-omics factor analysis (MOFA+) applied to ∼200,000 single-cell transcriptomes comprising 230 CRISPRa perturbations, we characterized molecular signatures of ZGA and uncovered 24 factors that promote a ZGA-like response. Follow-up assays validated top screen hits, including the DNA-binding protein Dppa2, the chromatin remodeler Smarca5, and the transcription factor Patz1, and functional experiments revealed that Smarca5's regulation of ZGA-like transcription is dependent on Dppa2. Together, our single-cell transcriptomic profiling of CRISPRa-perturbed cells provides both system-level and molecular insights into the mechanisms that orchestrate ZGA.
- Published
- 2020
20. LifeTime and improving European healthcare through cell-based interceptive medicine
- Author
-
Rajewsky, N, Almouzni, G, Gorski, S, Aerts, S, Amit, I, Bertero, M, Bock, C, Bredenoord, A, Cavalli, G, Chiocca, S, Clevers, H, De Strooper, B, Eggert, A, Ellenberg, J, Fernández, X, Figlerowicz, M, Gasser, S, Hubner, N, Kjems, J, Knoblich, J, Krabbe, G, Lichter, P, Linnarsson, S, Marine, J, Marioni, J, Marti-Renom, M, Netea, M, Nickel, D, Nollmann, M, Novak, H, Parkinson, H, Piccolo, S, Pinheiro, I, Pombo, A, Popp, C, Reik, W, Roman-Roman, S, Rosenstiel, P, Schultze, J, Stegle, O, Tanay, A, Testa, G, Thanos, D, Theis, F, Torres-Padilla, M, Valencia, A, Vallot, C, van Oudenaarden, A, Vidal, M, Voet, T, Cattoretti, G, Rajewsky, Nikolaus, Almouzni, Geneviève, Gorski, Stanislaw A, Aerts, Stein, Amit, Ido, Bertero, Michela G, Bock, Christoph, Bredenoord, Annelien L, Cavalli, Giacomo, Chiocca, Susanna, Clevers, Hans, De Strooper, Bart, Eggert, Angelika, Ellenberg, Jan, Fernández, Xosé M, Figlerowicz, Marek, Gasser, Susan M, Hubner, Norbert, Kjems, Jørgen, Knoblich, Jürgen A, Krabbe, Grietje, Lichter, Peter, Linnarsson, Sten, Marine, Jean-Christophe, Marioni, John, Marti-Renom, Marc A, Netea, Mihai G, Nickel, Dörthe, Nollmann, Marcelo, Novak, Halina R, Parkinson, Helen, Piccolo, Stefano, Pinheiro, Inês, Pombo, Ana, Popp, Christian, Reik, Wolf, Roman-Roman, Sergio, Rosenstiel, Philip, Schultze, Joachim L, Stegle, Oliver, Tanay, Amos, Testa, Giuseppe, Thanos, Dimitris, Theis, Fabian J, Torres-Padilla, Maria-Elena, Valencia, Alfonso, Vallot, Céline, van Oudenaarden, Alexander, Vidal, Marie, Voet, Thierry, Cattoretti, Giorgio, Rajewsky, N, Almouzni, G, Gorski, S, Aerts, S, Amit, I, Bertero, M, Bock, C, Bredenoord, A, Cavalli, G, Chiocca, S, Clevers, H, De Strooper, B, Eggert, A, Ellenberg, J, Fernández, X, Figlerowicz, M, Gasser, S, Hubner, N, Kjems, J, Knoblich, J, Krabbe, G, Lichter, P, Linnarsson, S, Marine, J, Marioni, J, Marti-Renom, M, Netea, M, Nickel, D, Nollmann, M, Novak, H, Parkinson, H, Piccolo, S, Pinheiro, I, Pombo, A, Popp, C, Reik, W, Roman-Roman, S, Rosenstiel, P, Schultze, J, Stegle, O, Tanay, A, Testa, G, Thanos, D, Theis, F, Torres-Padilla, M, Valencia, A, Vallot, C, van Oudenaarden, A, Vidal, M, Voet, T, Cattoretti, G, Rajewsky, Nikolaus, Almouzni, Geneviève, Gorski, Stanislaw A, Aerts, Stein, Amit, Ido, Bertero, Michela G, Bock, Christoph, Bredenoord, Annelien L, Cavalli, Giacomo, Chiocca, Susanna, Clevers, Hans, De Strooper, Bart, Eggert, Angelika, Ellenberg, Jan, Fernández, Xosé M, Figlerowicz, Marek, Gasser, Susan M, Hubner, Norbert, Kjems, Jørgen, Knoblich, Jürgen A, Krabbe, Grietje, Lichter, Peter, Linnarsson, Sten, Marine, Jean-Christophe, Marioni, John, Marti-Renom, Marc A, Netea, Mihai G, Nickel, Dörthe, Nollmann, Marcelo, Novak, Halina R, Parkinson, Helen, Piccolo, Stefano, Pinheiro, Inês, Pombo, Ana, Popp, Christian, Reik, Wolf, Roman-Roman, Sergio, Rosenstiel, Philip, Schultze, Joachim L, Stegle, Oliver, Tanay, Amos, Testa, Giuseppe, Thanos, Dimitris, Theis, Fabian J, Torres-Padilla, Maria-Elena, Valencia, Alfonso, Vallot, Céline, van Oudenaarden, Alexander, Vidal, Marie, Voet, Thierry, and Cattoretti, Giorgio
- Abstract
Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.
- Published
- 2020
21. Placental-specific insulin-like growth factor 2 (Igf2) regulates the diffusional exchange characteristics of the mouse placenta
- Author
-
Sibley, C.P., Coan, P.M., Ferguson-Smith, A.C., Dean, W., Hughes, J., Smith, P., Reik, W., Burton, G.J., Fowden, A.L., and Constancia, M.
- Subjects
Insulin-like growth factor 1 -- Research ,Science and technology - Abstract
Restricted fetal growth is associated with postnatal mortality and morbidity and may be directly related to alterations in the capacity of the placenta to supply nutrients. We proposed previously that imprinted genes can regulate nutrient supply by the placenta. Here, we tested the hypothesis that the insulin-like growth factor 2 gene (Igf2) transcribed from the placental-specific promoter (P0) regulates the development of the diffusional permeability properties of the mouse placenta. Using mice in which placental-specific Igf2 had been deleted (P0), we measured the transfer in vivo of three inert hydrophiiic solutes of increasing size ([sup.14]C-mannitol, [sup.51]CrEDTA, and [sup.14]C-inulin). At embryonic day 19, placental and fetal weights in P0 conceptuses were reduced to 66% and 76%, respectively, of wild type. In P0 mutants, the permeability-surface area product for the tracers at this stage of development was 68% of that of controls; this effect was independent of tracer size. Stereological analysis of histological sections revealed the surface area of the exchange barrier in the labyrinth of the mouse placenta to be reduced and thickness increased in P0 fetuses compared to wild type. As a result, the average theoretical diffusing capacity in P0 knockout placentas was dramatically reduced to 40% of that of wild-type placentas. These data show that placental Igf2 regulates the development of the diffusional exchange characteristics of the mouse placenta. This provides a mechanism for the role of imprinted genes in controlling placental nutrient supply and fetal growth. Altered placental Igf2 could be a cause of idiopathic intrauterine growth restriction in the human.
- Published
- 2004
22. Regulation of Placental Efficiency for Nutrient Transport by Imprinted Genes
- Author
-
Angiolini, E., Fowden, A., Coan, P., Sandovici, I., Smith, P., Dean, W., Burton, G., Tycko, B., Reik, W., Sibley, C., and Constância, M.
- Published
- 2006
- Full Text
- View/download PDF
23. Highly multiplexed spatially resolved gene expression profiling of mouse organogenesis
- Author
-
Lohoff, T., primary, Ghazanfar, S., additional, Missarova, A., additional, Koulena, N., additional, Pierson, N., additional, Griffiths, J.A., additional, Bardot, E.S., additional, Eng, C.-H.L., additional, Tyser, R.C.V., additional, Argelaguet, R., additional, Guibentif, C., additional, Srinivas, S., additional, Briscoe, J., additional, Simons, B.D., additional, Hadjantonakis, A.-K., additional, Göttgens, B., additional, Reik, W., additional, Nichols, J., additional, Cai, L., additional, and Marioni, J.C., additional
- Published
- 2020
- Full Text
- View/download PDF
24. Specialisation and plasticity in a primitively social insect
- Author
-
Patalano, S., primary, Alsina, A., additional, Gregorio-Rodriguez, C., additional, Bachman, M., additional, Dreier, S., additional, Hernando-Herraez, I., additional, Nana, P., additional, Balasubramanian, S., additional, Sumner, S., additional, Reik, W., additional, and Rulands, S., additional
- Published
- 2020
- Full Text
- View/download PDF
25. Imprinting of IGF2 P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and human
- Author
-
Monk, D., Sanches, R., Arnaud, P., Apostolidou, S., Hills, F.A., Abu-Amero, S., Murrell, A., Friess, H., Reik, W., Stanier, P., Constância, M., and Moore, G.E.
- Published
- 2006
26. Androgenone
- Author
-
Reik, W., primary
- Published
- 2001
- Full Text
- View/download PDF
27. Gynogenone
- Author
-
Reik, W., primary
- Published
- 2001
- Full Text
- View/download PDF
28. Combined single-cell profiling of expression and DNA methylation reveals splicing regulation and heterogeneity
- Author
-
Linker, SM, Urban, L, Clark, SJ, Chhatriwala, M, Amatya, S, McCarthy, DJ, Ebersberger, I, Vallier, L, Reik, W, Stegle, O, Bonder, MJ, Linker, SM, Urban, L, Clark, SJ, Chhatriwala, M, Amatya, S, McCarthy, DJ, Ebersberger, I, Vallier, L, Reik, W, Stegle, O, and Bonder, MJ
- Abstract
BACKGROUND: Alternative splicing is a key regulatory mechanism in eukaryotic cells and increases the effective number of functionally distinct gene products. Using bulk RNA sequencing, splicing variation has been studied across human tissues and in genetically diverse populations. This has identified disease-relevant splicing events, as well as associations between splicing and genomic features, including sequence composition and conservation. However, variability in splicing between single cells from the same tissue or cell type and its determinants remains poorly understood. RESULTS: We applied parallel DNA methylation and transcriptome sequencing to differentiating human induced pluripotent stem cells to characterize splicing variation (exon skipping) and its determinants. Our results show that variation in single-cell splicing can be accurately predicted based on local sequence composition and genomic features. We observe moderate but consistent contributions from local DNA methylation profiles to splicing variation across cells. A combined model that is built based on genomic features as well as DNA methylation information accurately predicts different splicing modes of individual cassette exons. These categories include the conventional inclusion and exclusion patterns, but also more subtle modes of cell-to-cell variation in splicing. Finally, we identified and characterized associations between DNA methylation and splicing changes during cell differentiation. CONCLUSIONS: Our study yields new insights into alternative splicing at the single-cell level and reveals a previously underappreciated link between DNA methylation variation and splicing.
- Published
- 2019
29. Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith–Wiedemann syndrome
- Author
-
Diaz-Meyer, N, Day, C D, Khatod, K, Maher, E R, Cooper, W, Reik, W, Junien, C, Graham, G, Algar, E, Der Kaloustian, V M, and Higgins, M J
- Published
- 2003
30. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART)
- Author
-
Maher, E R, Brueton, L A, Bowdin, S C, Luharia, A, Cooper, W, Cole, T R, Macdonald, F, Sampson, J R, Barratt, C L, Reik, W, and Hawkins, M M
- Published
- 2003
31. Overexpression of Insulin-Like Growth Factor-II in Transgenic Mice Is Associated with Pancreatic Islet Cell Hyperplasia*
- Author
-
Petrik, J, Pell, J M, Arany, E, McDonald, T J, Dean, W L, Reik, W, and Hill, D J
- Published
- 1999
32. Science Forum: The Human Cell Atlas
- Author
-
Regev, A, Teichmann, SA, Lander, ES, Amit, I, Benoist, C, Birney, E, Bodenmiller, B, Campbell, PJ, Carninci, P, Clatworthy, M, Clevers, H, Deplancke, B, Dunham, I, Eberwine, J, Eils, R, Enard, W, Farmer, A, Fugger, L, Göttgens, B, Hacohen, N, Haniffa, M, Hemberg, M, Kim, SK, Klenerman, P, Kriegstein, A, Lein, E, Linnarsson, S, Lundberg, E, Lundeberg, J, Majumder, P, Marioni, JC, Merad, M, Mhlanga, M, Nawijn, M, Netea, M, Nolan, G, Pe'er, D, Phillipakis, A, Ponting, CP, Quake, SR, Reik, W, Rozenblatt-Rosen, O, Sanes, JR, Satija, R, Schumacher, TN, Shalek, AK, Shapiro, E, Sharma, P, Shin, JW, Stegle, O, Stratton, MR, Stubbington, MJT, Theis, FJ, Uhlen, M, van Oudenaarden, A, Wagner, A, Watt, FM, Weissman, JS, Wold, BJ, Xavier, RJ, and Yosef, N
- Abstract
The recent advent of methods for high-throughput single-cell molecular profiling has catalyzed a growing sense in the scientific community that the time is ripe to complete the 150-year-old effort to identify all cell types in the human body. The Human Cell Atlas Project is an international collaborative effort that aims to define all human cell types in terms of distinctive molecular profiles (such as gene expression profiles) and to connect this information with classical cellular descriptions (such as location and morphology). An open comprehensive reference map of the molecular state of cells in healthy human tissues would propel the systematic study of physiological states, developmental trajectories, regulatory circuitry and interactions of cells, and also provide a framework for understanding cellular dysregulation in human disease. Here we describe the idea, its potential utility, early proofs-of-concept, and some design considerations for the Human Cell Atlas, including a commitment to open data, code, and community.
- Published
- 2018
33. The inheritance of germline-specific epigenetic modifications during development
- Author
-
Surani, M. A., primary, Sasaki, H., additional, Ferguson-Smith, A. C., additional, Allen, N. D., additional, Barton, S. C., additional, Jones, P. A., additional, and Reik, W., additional
- Published
- 1993
- Full Text
- View/download PDF
34. Cbx-rs2 (M31), a mouse homolog of the Drosophila Heterochromatin protein 1 gene, maps to distal Chromosome 11 and is nonallelic to Om
- Author
-
Feil, R., Baldacci, P. A., Tarttelin, E., Rhodes, M., Singh, P. B., and Reik, W.
- Published
- 1995
- Full Text
- View/download PDF
35. Establishment of mouse expanded potential stem cells
- Author
-
Gottgens, B, Tanaka, Y, Wilkinson, A, Reik, W, Gottgens, Berthold [0000-0001-6302-5705], Reik, Wolf [0000-0003-0216-9881], and Apollo - University of Cambridge Repository
- Subjects
Epigenomics ,Male ,Pluripotent Stem Cells ,Blastomeres ,Chimera ,Placenta ,Endoderm ,Mouse Embryonic Stem Cells ,Embryo, Mammalian ,Epigenesis, Genetic ,Trophoblasts ,Mice ,Blastocyst ,Pregnancy ,embryonic structures ,Animals ,Cell Lineage ,Female ,Single-Cell Analysis ,Transcriptome ,Cells, Cultured - Abstract
Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species.
- Published
- 2017
36. Coupling shRNA screens with single-cell RNA-seq identifies a dual role for mTOR in reprogramming-induced senescence
- Author
-
Aarts, M, Georgilis, A, Beniazza, M, Beolchi, P, Banito, A, Carroll, T, Kulisic, M, Kaemena, DF, Dharmalingam, G, Martin, N, Reik, W, Zuber, J, Kaji, K, Chandra, T, and Gil, J
- Subjects
Cyclin-Dependent Kinase Inhibitor p21 ,senescence ,iPSCs ,SASP ,17 Psychology And Cognitive Sciences ,Kruppel-Like Factor 4 ,Mice ,Journal Article ,Animals ,Humans ,RNA, Small Interfering ,Cells, Cultured ,Cellular Senescence ,single-cell RNA-seq ,Sequence Analysis, RNA ,Gene Expression Profiling ,TOR Serine-Threonine Kinases ,fungi ,11 Medical And Health Sciences ,06 Biological Sciences ,Fibroblasts ,Cellular Reprogramming ,shRNA screens ,embryonic structures ,biological phenomena, cell phenomena, and immunity ,Single-Cell Analysis ,Developmental Biology ,Research Paper ,Transcription Factors - Abstract
Expression of the transcription factors OCT4, SOX2, KLF4, and cMYC (OSKM) reprograms somatic cells into induced pluripotent stem cells (iPSCs). Reprogramming is a slow and inefficient process, suggesting the presence of safeguarding mechanisms that counteract cell fate conversion. One such mechanism is senescence. To identify modulators of reprogramming-induced senescence, we performed a genome-wide shRNA screen in primary human fibroblasts expressing OSKM. In the screen, we identified novel mediators of OSKM-induced senescence and validated previously implicated genes such as CDKN1A. We developed an innovative approach that integrates single-cell RNA sequencing (scRNA-seq) with the shRNA screen to investigate the mechanism of action of the identified candidates. Our data unveiled regulation of senescence as a novel way by which mechanistic target of rapamycin (mTOR) influences reprogramming. On one hand, mTOR inhibition blunts the induction of cyclin-dependent kinase (CDK) inhibitors (CDKIs), including p16INK4a, p21CIP1, and p15INK4b, preventing OSKM-induced senescence. On the other hand, inhibition of mTOR blunts the senescence-associated secretory phenotype (SASP), which itself favors reprogramming. These contrasting actions contribute to explain the complex effect that mTOR has on reprogramming. Overall, our study highlights the advantage of combining functional screens with scRNA-seq to accelerate the discovery of pathways controlling complex phenotypes.
- Published
- 2017
37. Epigenetic resetting of human pluripotency
- Author
-
Smith, AG, Guo, G, Rostovskaya, M, Clarke, J, Dietmann, S, Myers, S, Bertone, P, Reik, W, Smith, Austin [0000-0002-3029-4682], Clarke, James [0000-0002-5932-032X], Bertone, Paul [0000-0001-5059-4829], Reik, Wolf [0000-0003-0216-9881], and Apollo - University of Cambridge Repository
- Subjects
reprogramming ,differentiation ,pluripotent stem cells ,methylome ,human embryo - Abstract
Much attention has focussed on the conversion of human pluripotent stem cells (PSCs) to a more naïve developmental status. Here we provide a method for resetting via transient histone deacetylase inhibition. The protocol is effective across multiple PSC lines and can proceed without karyotype change. Reset cells can be expanded without feeders with a doubling time of around 24 h. WNT inhibition stabilises the resetting process. The transcriptome of reset cells diverges markedly from that of primed PSCs and shares features with human inner cell mass (ICM). Reset cells activate expression of primate-specific transposable elements. DNA methylation is globally reduced to a level equivalent to that in the ICM and is non-random, with gain of methylation at specific loci. Methylation imprints are mostly lost, however. Reset cells can be re-primed to undergo tri-lineage differentiation and germline specification. In female reset cells, appearance of biallelic X-linked gene transcription indicates reactivation of the silenced X chromosome. On reconversion to primed status, $XIST$-induced silencing restores monoallelic gene expression. The facile and robust conversion routine with accompanying data resources will enable widespread utilisation, interrogation, and refinement of candidate naïve cells.
- Published
- 2017
38. Proliferation Drives Aging-Related Functional Decline in a Subpopulation of the Hematopoietic Stem Cell Compartment
- Author
-
Kirschner, K, Chandra, T, Kiselev, V, Flores-Santa Cruz, D, Macaulay, IC, Park, HJ, Li, J, Kent, DG, Kumar, R, Pask, DC, Hamilton, TL, Hemberg, M, Reik, W, Green, AR, Kent, David [0000-0001-7871-8811], Reik, Wolf [0000-0003-0216-9881], Green, Tony [0000-0002-9795-0218], and Apollo - University of Cambridge Repository
- Subjects
p53 ,hematology ,aging ,Cell Cycle ,leukemia ,Janus Kinase 2 ,Hematopoietic Stem Cells ,cellular aging ,Cell Compartmentation ,Mice ,lcsh:Biology (General) ,JAK2 ,stem cells ,Report ,scRNA-seq ,genomics ,cancer ,Animals ,Myeloid Cells ,lcsh:QH301-705.5 ,Cellular Senescence ,Cell Proliferation ,Transcription Factors - Abstract
Summary Aging of the hematopoietic stem cell (HSC) compartment is characterized by lineage bias and reduced stem cell function, the molecular basis of which is largely unknown. Using single-cell transcriptomics, we identified a distinct subpopulation of old HSCs carrying a p53 signature indicative of stem cell decline alongside pro-proliferative JAK/STAT signaling. To investigate the relationship between JAK/STAT and p53 signaling, we challenged HSCs with a constitutively active form of JAK2 (V617F) and observed an expansion of the p53-positive subpopulation in old mice. Our results reveal cellular heterogeneity in the onset of HSC aging and implicate a role for JAK2V617F-driven proliferation in the p53-mediated functional decline of old HSCs., Graphical Abstract, Highlights • Single-cell transcriptomics reveals functional decline in old HSCs • p53-associated functional decline is driven by prolonged proliferation • Subpopulation of HSCs show aging signature, revealing heterogeneity in the rate of aging, Kirschner et al. describe heterogeneous aging of hematopoietic stem cells (HSCs), with a subset of old HSCs displaying signs of functional exhaustion. An increase in proliferation expands the aged HSC subgroup, linking prolonged proliferation to functional decline in HSCs.
- Published
- 2017
39. Tracking the embryonic stem cell transition from ground state pluripotency
- Author
-
Kalkan, T., Olova, N., Roode, M., Mulas, C., Lee, H.J., Nett, I., Marks, H., Walker, R., Stunnenberg, H., Lilley, K.S., Nichols, J., Reik, W., Bertone, P., Smith, A., Kalkan, T., Olova, N., Roode, M., Mulas, C., Lee, H.J., Nett, I., Marks, H., Walker, R., Stunnenberg, H., Lilley, K.S., Nichols, J., Reik, W., Bertone, P., and Smith, A.
- Abstract
Contains fulltext : 168894.pdf (preprint version ) (Open Access), Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here we examined the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naive status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naïve pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naive cells transition to a distinct formative phase of pluripotency preparatory to lineage priming.
- Published
- 2017
40. Multi-tissue DNA methylation age predictor in mouse
- Author
-
Stubbs, TM, Bonder, MJ, Stark, A-K, Krueger, F, von Meyenn, F, Stegle, O, Reik, W, Stubbs, TM, Bonder, MJ, Stark, A-K, Krueger, F, von Meyenn, F, Stegle, O, and Reik, W
- Abstract
BACKGROUND: DNA methylation changes at a discrete set of sites in the human genome are predictive of chronological and biological age. However, it is not known whether these changes are causative or a consequence of an underlying ageing process. It has also not been shown whether this epigenetic clock is unique to humans or conserved in the more experimentally tractable mouse. RESULTS: We have generated a comprehensive set of genome-scale base-resolution methylation maps from multiple mouse tissues spanning a wide range of ages. Many CpG sites show significant tissue-independent correlations with age which allowed us to develop a multi-tissue predictor of age in the mouse. Our model, which estimates age based on DNA methylation at 329 unique CpG sites, has a median absolute error of 3.33 weeks and has similar properties to the recently described human epigenetic clock. Using publicly available datasets, we find that the mouse clock is accurate enough to measure effects on biological age, including in the context of interventions. While females and males show no significant differences in predicted DNA methylation age, ovariectomy results in significant age acceleration in females. Furthermore, we identify significant differences in age-acceleration dependent on the lipid content of the diet. CONCLUSIONS: Here we identify and characterise an epigenetic predictor of age in mice, the mouse epigenetic clock. This clock will be instrumental for understanding the biology of ageing and will allow modulation of its ticking rate and resetting the clock in vivo to study the impact on biological age.
- Published
- 2017
41. Genomic Imprinting in the Mouse
- Author
-
Howlett, S. K., Reik, W., Barton, S. C., Norris, M. L., Surani, M. A. H., Browder, Leon W., editor, DiBerardino, Marie A., and Etkin, Laurence D.
- Published
- 1989
- Full Text
- View/download PDF
42. Role of Ten-Eleven Translocation 3 (TET3) in brain function
- Author
-
Antunes, C., primary, Alves, N.D., additional, Guerra-Gomes, S., additional, Guedes, M., additional, Reik, W., additional, Sousa, N., additional, Teodoro, R., additional, Pinto, L., additional, and Marques, C.J., additional
- Published
- 2017
- Full Text
- View/download PDF
43. Impairment of DNA Methylation Maintenance Is the Main Cause of Global Demethylation in Naive Embryonic Stem Cells
- Author
-
Meyenn, F. von, Iurlaro, M., Habibi, E., Liu, N., Salehzadeh-Yazdi, A., Santos, F., Petrini, E., Milagre, I., Yu, M., Xie, Z., Kroeze, L.I., Nesterova, T.B., Jansen, J.H., Xie, H., He, C., Reik, W., Stunnenberg, H., Meyenn, F. von, Iurlaro, M., Habibi, E., Liu, N., Salehzadeh-Yazdi, A., Santos, F., Petrini, E., Milagre, I., Yu, M., Xie, Z., Kroeze, L.I., Nesterova, T.B., Jansen, J.H., Xie, H., He, C., Reik, W., and Stunnenberg, H.
- Abstract
Contains fulltext : 172769.pdf (Publisher’s version ) (Open Access)
- Published
- 2016
44. MERVL/Zscan4 Network Activation Results in Transient Genome-wide DNA Demethylation of mESCs
- Author
-
Eckersley-Maslin, MA, Svensson, V, Krueger, C, Stubbs, TM, Giehr, P, Krueger, F, Miragaia, RJ, Kyriakopoulos, C, Berrens, RV, Milagre, I, Walter, J, Teichmann, SA, Reik, W, Eckersley-Maslin, MA, Svensson, V, Krueger, C, Stubbs, TM, Giehr, P, Krueger, F, Miragaia, RJ, Kyriakopoulos, C, Berrens, RV, Milagre, I, Walter, J, Teichmann, SA, and Reik, W
- Abstract
Mouse embryonic stem cells are dynamic and heterogeneous. For example, rare cells cycle through a state characterized by decondensed chromatin and expression of transcripts, including the Zscan4 cluster and MERVL endogenous retrovirus, which are usually restricted to preimplantation embryos. Here, we further characterize the dynamics and consequences of this transient cell state. Single-cell transcriptomics identified the earliest upregulated transcripts as cells enter the MERVL/Zscan4 state. The MERVL/Zscan4 transcriptional network was also upregulated during induced pluripotent stem cell reprogramming. Genome-wide DNA methylation and chromatin analyses revealed global DNA hypomethylation accompanying increased chromatin accessibility. This transient DNA demethylation was driven by a loss of DNA methyltransferase proteins in the cells and occurred genome-wide. While methylation levels were restored once cells exit this state, genomic imprints remained hypomethylated, demonstrating a potential global and enduring influence of endogenous retroviral activation on the epigenome.
- Published
- 2016
45. P.1.a.034 - Role of Ten-Eleven Translocation 3 (TET3) in brain function
- Author
-
Antunes, C., Alves, N.D., Guerra-Gomes, S., Guedes, M., Reik, W., Sousa, N., Teodoro, R., Pinto, L., and Marques, C.J.
- Published
- 2017
- Full Text
- View/download PDF
46. Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12
- Author
-
P. Lin, S., Youngson, N., Takada, S., Seitz, H., Reik, W., Paulsen, M., Cavaille, J., C. Ferguson-Smith, A., Laboratoire de biologie moléculaire eucaryote (LBME), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Published
- 2003
47. Epigenetic and experimental modifications in early mammalian development: Part II - Culture of preimplantation embryos and its long-term effects on gene expression and phenotype
- Author
-
Khosla, S., Dean, W., Reik, W., Feil, Robert, Institut de Génétique Moléculaire de Montpellier (IGMM), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,assisted reproduction embryo culture epigenetic imprinting large offspring syndrome intracytoplasmic sperm injection beckwith-wiedemann-syndrome in-vitro fertilization assisted reproductive technology nuclear transfer DNA-methylation mouse embryos fetal development bovine embryos ovine embryos - Abstract
A growing number of medical, scientific and biotechnological procedures rely on culture of mammalian preimplantation embryos. This review presents currently available data on aberrant offspring development that sometimes arises from commonly applied in-vitro procedures in humans, ruminant species and mice. Comparison between mammalian species reveals similarities in the phenotypic abnormalities that are observed at fetal and perinatal stages of development. In particular, aberrant effects on fetal growth have been observed in multiple studies in which serum complemented the preimplantation culture medium. Although it remains to be determined whether there is a common causal mechanism(s) involved, several hypotheses have been put forward to account for the variety of the observed developmental abnormalities. One of these postulates that culture can result in the epigenetic deregulation of developmentally important genes, and that such epigenetic alterations would affect in particular the expression of genes that are subject to genomic imprinting. Imprinted genes play key roles in the control of fetal growth, and altered imprinting can cause growth defects. Some recent in-vitro culture studies on mice and ruminant species now lend support to this hypothesis.
- Published
- 2001
48. BLUEPRINT to decode the epigenetic signature written in blood
- Author
-
Adams, D., Altucci, L., Antonarakis, S.E., Ballesteros, J., Beck, S., Bird, A., Bock, C., Boehm, B., Campo, E., Caricasole, A., Dahl, F., Dermitzakis, E.T., Estivill, X., Enver, T., Esteller, M., Ferguson-Smith, A., Fitzgibbon, J., Flicek, P., Giehl, C., Graf, T., Grosveld, F., Guigo, R., Gut, I., Helin, K., Jarvius, J., Küppers, R., Lehrach, H., Lengauer, T., Lernmark, A., Leslie, D., Loeffler, M., Macintyre, E., Mai, A., Martens, J.H.A., Minucci, S., Ouwehand, W.H., Pelicci, P.G., Pendeville, H., Porse, B., Rakyan, V., Reik, W., Schrappe, M., Schübeler, D., Seifert, M., Siebert, R., Simmons, D., Soranza, N., Spicuglia, S., Stratton, M., Stunnenberg, H.G., Tanay, A., Torrents, D., Vellenga, E., Vingron, M., Valencia, A., Walter, J., Willcocks, S., Adams, D., Altucci, L., Antonarakis, S.E., Ballesteros, J., Beck, S., Bird, A., Bock, C., Boehm, B., Campo, E., Caricasole, A., Dahl, F., Dermitzakis, E.T., Estivill, X., Enver, T., Esteller, M., Ferguson-Smith, A., Fitzgibbon, J., Flicek, P., Giehl, C., Graf, T., Grosveld, F., Guigo, R., Gut, I., Helin, K., Jarvius, J., Küppers, R., Lehrach, H., Lengauer, T., Lernmark, A., Leslie, D., Loeffler, M., Macintyre, E., Mai, A., Martens, J.H.A., Minucci, S., Ouwehand, W.H., Pelicci, P.G., Pendeville, H., Porse, B., Rakyan, V., Reik, W., Schrappe, M., Schübeler, D., Seifert, M., Siebert, R., Simmons, D., Soranza, N., Spicuglia, S., Stratton, M., Stunnenberg, H.G., Tanay, A., Torrents, D., Vellenga, E., Vingron, M., Valencia, A., Walter, J., and Willcocks, S.
- Abstract
Item does not contain fulltext
- Published
- 2012
49. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and lgf1r
- Author
-
Keniry, A, Oxley, D, Monnier, P, Kyba, M, Dandolo, L, Smits, G, Reik, W, Keniry, A, Oxley, D, Monnier, P, Kyba, M, Dandolo, L, Smits, G, and Reik, W
- Abstract
The H19 large intergenic non-coding RNA (lincRNA) is one of the most highly abundant and conserved transcripts in mammalian development, being expressed in both embryonic and extra-embryonic cell lineages, yet its physiological function is unknown. Here we show that miR-675, a microRNA (miRNA) embedded in H19's first exon, is expressed exclusively in the placenta from the gestational time point when placental growth normally ceases, and placentas that lack H19 continue to grow. Overexpression of miR-675 in a range of embryonic and extra-embryonic cell lines results in their reduced proliferation; targets of the miRNA are upregulated in the H19 null placenta, including the growth-promoting insulin-like growth factor 1 receptor (Igf1r) gene. Moreover, the excision of miR-675 from H19 is dynamically regulated by the stress-response RNA-binding protein HuR. These results suggest that H19's main physiological role is in limiting growth of the placenta before birth, by regulated processing of miR-675. The controlled release of miR-675 from H19 may also allow rapid inhibition of cell proliferation in response to cellular stress or oncogenic signals.
- Published
- 2012
50. Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation
- Author
-
Ww, Lam, Hatada I, Ohishi S, Mukai T, Ja, Joyce, Tr, Cole, Donnai D, Reik W, Pn, Schofield, and Er, Maher
- Subjects
Genomic Imprinting ,Beckwith-Wiedemann Syndrome ,Phenotype ,Genotype ,Humans ,Nuclear Proteins ,Sequence Analysis, DNA ,Original Articles ,Cyclin-Dependent Kinase Inhibitor p57 ,Germ-Line Mutation - Abstract
Beckwith-Wiedemann syndrome (BWS) is a human imprinting disorder with a variable phenotype. The major features are anterior abdominal wall defects including exomphalos (omphalocele), pre- and postnatal overgrowth, and macroglossia. Additional less frequent complications include specific developmental defects and a predisposition to embryonal tumours. BWS is genetically heterogeneous and epigenetic changes in the IGF2/H19 genes resulting in overexpression of IGF2 have been implicated in many cases. Recently germline mutations in the cyclin dependent kinase inhibitor gene CDKN1C (p57KIP2) have been reported in a variable minority of BWS patients. We have investigated a large series of familial and sporadic BWS patients for evidence of CDKN1C mutations by direct gene sequencing. A total of 70 patients with classical BWS were investigated; 54 were sporadic with no evidence of UPD and 16 were familial from seven kindreds. Novel germline CDKN1C mutations were identified in five probands, 3/7 (43%) familial cases and 2/54 (4%) sporadic cases. There was no association between germline CDKN1C mutations and IGF2 or H19 epigenotype abnormalities. The clinical phenotype of 13 BWS patients with germline CDKN1C mutations was compared to that of BWS patients with other defined types of molecular pathology. This showed a significantly higher frequency of exomphalos in the CDKN1C mutation cases (11/13) than in patients with an imprinting centre defect (associated with biallelic IGF2 expression and H19 silencing) (0/5, p
- Published
- 1999
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.