35 results on '"Reichart, D.E."'
Search Results
2. Multiple asteroid systems: Dimensions and thermal properties from Spitzer Space Telescope and ground-based observations
- Author
-
Marchis, F., Enriquez, J.E., Emery, J.P., Mueller, M., Baek, M., Pollock, J., Assafin, M., Vieira Martins, R., Berthier, J., Vachier, F., Cruikshank, D.P., Lim, L.F., Reichart, D.E., Ivarsen, K.M., Haislip, J.B., and LaCluyze, A.P.
- Published
- 2012
- Full Text
- View/download PDF
3. Binary asteroid population. 2. Anisotropic distribution of orbit poles of small, inner main-belt binaries
- Author
-
Pravec, P., Scheirich, P., Vokrouhlický, D., Harris, A.W., Kušnirák, P., Hornoch, K., Pray, D.P., Higgins, D., Galád, A., Világi, J., Gajdoš, Š., Kornoš, L., Oey, J., Husárik, M., Cooney, W.R., Gross, J., Terrell, D., Durkee, R., Pollock, J., Reichart, D.E., Ivarsen, K., Haislip, J., LaCluyze, A., Krugly, Yu. N., Gaftonyuk, N., Stephens, R.D., Dyvig, R., Reddy, V., Chiorny, V., Vaduvescu, O., Longa-Peña, P., Tudorica, A., Warner, B.D., Masi, G., Brinsfield, J., Gonçalves, R., Brown, P., Krzeminski, Z., Gerashchenko, O., Shevchenko, V., Molotov, I., and Marchis, F.
- Published
- 2012
- Full Text
- View/download PDF
4. Observation Campaign of (99942) Apophis in the 2021 Apparition
- Author
-
Lee, H.-J., Kim, M.-J., Lee, Y.-J., Marciniak, A., Urakawa, S., Kim, D.-H., Moon, H.-K., Choi, Y.-J., Kuroda, D., Okumura, S., Zoła, S., Chatelain, J., Lister, T. A., Gomez, E., Greenstreet, S., Pal, A., Szakáts, R., Erasmus, N., Lees, R., Janse van Rensburg, P., Ogłoza, W., Dróżdż, M., Żejmo, M., Kamiński, K., Kamińska, M.K., Duffard, R., Roh, D.-G., Yim, H.-S., Kim, T., Mottola, S., Yoshida, F., Reichart, D.E., Sonbas, E., Caton, D.B., Kaplan, M., Erece, O., and Yang, H.
- Subjects
Asteroids ,Apophis - Published
- 2022
5. Skynet’s New Observing Mode: The Campaign Manager
- Author
-
Shaban, O.H., Reichart, D.E., Dutton, D.A., Haislip, J.B., Soto, A.V., and Kouprianov, V.V.
- Abstract
Built in 2004, the Skynet robotic telescope network originally consisted of six 0.4 m telescopes located at the Cerro-Tololo Inter-American Observatory in the Chilean Andes. The network was designed to carry out simultaneous multi-wavelength observations of gamma-ray bursts (GRBs) when they are only tens of seconds old. To date, the network has been expanded to ≈20 telescopes, including a 20 m radio telescope, that span four continents and five countries. The Campaign Manager (CM) is a new observing mode that has been developed for Skynet. Available to all Skynet observers, the CM semi-autonomously and indefinitely scales and schedules exposures on the observer’s behalf while allowing for modification to scaling parameters in real time. The CM is useful for follow up to various transient phenomena including gravitational-wave events, GRB localizations, young supernovae, and eventually, sufficiently bright Argus Optical Array and Large Synoptic Survey Telescope events.
- Published
- 2022
- Full Text
- View/download PDF
6. Rapid X-ray variability in Mkn 421 during a multiwavelength campaign
- Author
-
Markowitz, A.G. Nalewajko, K. Bhatta, G. Dewangan, G.C. Chandra, S. Dorner, D. Schleicher, B. Pajdosz-Śmierciak, U. Stawarz, Ł. Zola, S. Ostrowski, M. Carosati, D. Krishnan, S. Bachev, R. Benítez, E. Gazeas, K. Hiriart, D. Hu, S.-M. Larionov, V. Marchini, A. Matsumoto, K. Nikiforova, A.A. Pursimo, T. Raiteri, C.M. Reichart, D.E. Rodriguez, D. Semkov, E. Strigachev, A. Sugiura, Y. Villata, M. Webb, J.R. Arbet-Engels, A. Baack, D. Balbo, M. Biland, A. Bretz, T. Buss, J. Eisenberger, L. Elsaesser, D. Hildebrand, D. Iotov, R. Kalenski, A. Mannheim, K. Mitchell, A. Neise, D. Noethe, M. Paravac, A. Rhode, W. Sliusar, V. Walter, R.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
The study of short-term variability properties in AGN jets has the potential to shed light on their particle acceleration and emission mechanisms. We report results from a 4-d coordinated multiwavelength campaign on the highly peaked blazar (HBL) Mkn 421 in 2019 January. We obtained X-ray data from AstroSAT, BVRI photometry with the Whole Earth Blazar Telescope (WEBT), and TeV data from First G-APD Cherenkov Telescope to explore short-term multiwavelength variability in this HBL. The X-ray continuum is rapidly variable on time-scales of tens of ks. Fractional variability amplitude increases with energy across the synchrotron hump, consistent with previous studies; we interpret this observation in the context of a model with multiple cells whose emission spectra contain cutoffs that follow a power-law distribution. We also performed time-averaged and time-resolved (time-scales of 6 ks) spectral fits; a broken power-law model fits all spectra well; time-resolved spectral fitting reveals the usual hardening when brightening behaviour. Intra-X-ray cross-correlations yield evidence for the 0.6-0.8 keV band to likely lead the other bands by an average of 4.6 ± 2.6 ks, but only during the first half of the observation. The source displayed minimal night-to-night variability at all wavebands thus precluding significant interband correlations during our campaign. The broad-band SED is modelled well with a standard one-zone leptonic model, yielding jet parameters consistent with those obtained from previous SEDs of this source. © 2022 The Author(s).
- Published
- 2022
7. An impostor among us I: Photometric and spectroscopic evolution of AT 2016jbu
- Author
-
Brennan, S.J., Fraser, M., Johansson, J., Pastorello, A., Kotak, R., Stevance, H.F., Chen, T.-W., Eldridge, J.J., Bose, S., Brown, P.J., Callis, E., Cartier, R., Dennefeld, M., Dong, Subo, Duffy, P., Elias-Rosa, N., Hosseinzadeh, G., Hsiao, E., Kuncarayakti, H., Martin-Carrillo, A., Monard, B., Nyholm, A., Pignata, G., Sand, D., Shappee, B.J., Smartt, S.J., Tucker, B.E., Wyrzykowski, L., Abbot, H., Benetti, S., Bento, J., Blondin, S., Chen, Ping, Delgado, A., Galbany, L., Gromadzki, M., Gutiérrez, C.P., Hanlon, L., Harrison, D.L., Hiramatsu, D., Hodgkin, S.T., Holoien, T.W.-S., Howell, D.A., Inserra, C., Kankare, E., lowski, S. Koz, Müller-Bravo, T.E., Maguire, K., McCully, C., Meintjes, P., Morrell, N., Nicholl, M., O'Neill, D., Pietrukowicz, P., Poleski, R., Prieto, J.L., Rau, A., Reichart, D.E., Schweyer, T., Shahbandeh, M., Skowron, J., Sollerman, J., Soszynski, I., Stritzinger, M.D., Szymánski, M., Tartaglia, L., Udalski, A., Ulaczyk, K., Young, D.R., Van Leeuwen, M., Van Soelen, B., Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
We present comprehensive, multi-wavelength observations of AT 2016jbu, an interacting transient. High cadence photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of M$_V\sim$-18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km $s^{-1}$ seen in narrow emission features from a slow moving CSM, and up to 10,000 km $s^{-1}$ seen in broad absorption from some high velocity material. Similar velocities are seen in other SN 2009ip-like transients. Late-time spectra ($\sim$+1 year) show a lack of forbidden emission lines expected from a core-collapse supernova during the nebular phase and are dominated by strong emission from H, He I and Ca II. Strong asymmetric emission features, a bumpy lightcurve, and continually evolving spectra suggest late time CSM interaction is inhibiting the emergence of any nebular features. We compare the evolution of H$\alpha$ among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients. In Paper II we continue the discussion of AT 2016jbu and SN 2009ip-like transients and using the data presented here, we focus on the local environment, the progenitor, and on modelling the transient itself.
- Published
- 2021
8. An impostor among us II: Progenitor, environment, and modelling of AT 2016jbu
- Author
-
Brennan, S.J., Fraser, M., Johansson, J., Pastorello, A., Kotak, R., Stevance, H.F., Chen, T.-W., Eldridge, J.J., Bose, S., Brown, P.J., Callis, E., Cartier, R., Dennefeld, M., Dong, Subo, Duffy, P., Elias-Rosa, N., Hosseinzadeh, G., Hsiao, E., Kuncarayakti, H., Martin-Carrillo, A., Monard, B., Pignata, G., Sand, D., Shappee, B.J., Smartt, S.J., Tucker, B.E., Wyrzykowski, L., Abbot, H., Benetti, S., Bento, J., Blondin, S., Chen, Ping, Delgado, A., Galbany, L., Gromadzki, M., Gutiérrez, C.P., Hanlon, L., Harrison, D.L., Hiramatsu, D., Hodgkin, S.T., Holoien, T.W.-S., Howell, D.A., Inserra, C., Kankare, E., lowski, S. Koz, Müller-Bravo, T.E., Maguire, K., McCully, C., Meintjes, P., Morrell, N., Nicholl, M., O'Neill, D., Pietrukowicz, P., Poleski, R., Prieto, J.L., Rau, A., Reichart, D.E., Schweyer, T., Shahbandeh, M., Skowron, J., Sollerman, J., Soszynski, I., Stritzinger, M.D., Szymánski, M., Tartaglia, L., Udalski, A., Ulaczyk, K., Young, D.R., Van Leeuwen, M., Van Soelen, B., Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), and Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
In the second of two papers on the peculiar interacting transient AT 2016jbu, we present the bolometric lightcurve, identification and analysis of the progenitor candidate, as well as preliminary modelling to help elucidate the nature of this event. We identify the progenitor candidate for AT 2016jbu in quiescence, and find it to be consistent with a $\sim$20 M$_{\odot}$ yellow hypergiant surrounded by a dusty circumstellar shell. We see evidence for significant photometric variability in the progenitor, as well as strong H$\alpha$ emission consistent with pre-existing circumstellar material. The age of the resolved stellar population surrounding AT 2016jbu, as well as integral-field unit spectra of the region support a progenitor age of >16 Myr, again consistent with a progenitor mass of $\sim$20 M$_{\odot}$. Through a joint analysis of the velocity evolution of AT 2016jbu, and the photospheric radius inferred from the bolometric lightcurve, we find that the transient is consistent with two successive outbursts or explosions. The first outburst ejected a shell of material with velocity 650 km $s^{-1}$, while the second more energetic event ejected material at 4500 km $s^{-1}$. Whether the latter is the core-collapse of the progenitor remains uncertain, as the required ejecta mass is relatively low (few tenths of M$_{\odot}$). We also place a restrictive upper limit on the ejected $^{56}$Ni mass of
- Published
- 2021
9. AT 2019qyl in NGC 300: Internal Collisions in the Early Outflow from a Very Fast Nova in a Symbiotic Binary
- Author
-
Jencson, J.E., Andrews, J.E., Bond, H.E., Karambelkar, V., Sand, D.J., Dyk, S.D. van, Blagorodnova, N., Boyer, M.L., Kasliwal, M.M., Lau, R.M., Mohamed, S., Williams, R., Whitelock, P.A., Amaro, R.C., Bostroem, K.A., Dong, Y., Lundquist, M.J., Valenti, S., Wyatt, S.D., Burke, J., De, K., Jha, S.W., Johansson, J., Rojas-Bravo, C., Coulter, D.A., Foley, R.J., Gehrz, R.D., Haislip, J., Hiramatsu, D., Howell, D.A., Kilpatrick, C.D., Masci, F.J., McCully, C., Ngeow, C.-C., Pan, Y.-C., Pellegrino, C., Piro, A.L., Kouprianov, V., Reichart, D.E., Rest, A., Rest, S., Smith, N., Jencson, J.E., Andrews, J.E., Bond, H.E., Karambelkar, V., Sand, D.J., Dyk, S.D. van, Blagorodnova, N., Boyer, M.L., Kasliwal, M.M., Lau, R.M., Mohamed, S., Williams, R., Whitelock, P.A., Amaro, R.C., Bostroem, K.A., Dong, Y., Lundquist, M.J., Valenti, S., Wyatt, S.D., Burke, J., De, K., Jha, S.W., Johansson, J., Rojas-Bravo, C., Coulter, D.A., Foley, R.J., Gehrz, R.D., Haislip, J., Hiramatsu, D., Howell, D.A., Kilpatrick, C.D., Masci, F.J., McCully, C., Ngeow, C.-C., Pan, Y.-C., Pellegrino, C., Piro, A.L., Kouprianov, V., Reichart, D.E., Rest, A., Rest, S., and Smith, N.
- Abstract
Contains fulltext : 239353p.pdf (Publisher’s version ) (Closed access) Contains fulltext : 239353.pdf (Author’s version preprint ) (Open Access)
- Published
- 2021
10. Full orbital solution for the binary system in the northern Galactic disc microlensing event Gaia16aye
- Author
-
Wyrzykowski, Ł. Mróz, P. Rybicki, K.A. Gromadzki, M. Kołaczkowski, Z. Zieliński, M. Zieliński, P. Britavskiy, N. Gomboc, A. Sokolovsky, K. Hodgkin, S.T. Abe, L. Aldi, G.F. Almannaei, A. Altavilla, G. Al Qasim, A. Anupama, G.C. Awiphan, S. Bachelet, E. Baklş, V. Baker, S. Bartlett, S. Bendjoya, P. Benson, K. Bikmaev, I.F. Birenbaum, G. Blagorodnova, N. Blanco-Cuaresma, S. Boeva, S. Bonanos, A.Z. Bozza, V. Bramich, D.M. Bruni, I. Burenin, R.A. Burgaz, U. Butterley, T. Caines, H.E. Caton, D.B. Calchi Novati, S. Carrasco, J.M. Cassan, A. Epas, V. Cropper, M. Chruślińska, M. Clementini, G. Clerici, A. Conti, D. Conti, M. Cross, S. Cusano, F. Damljanovic, G. Dapergolas, A. D'Ago, G. De Bruijne, J.H.J. Dennefeld, M. Dhillon, V.S. Dominik, M. Dziedzic, J. Erece, O. Eselevich, M.V. Esenoglu, H. Eyer, L. Figuera Jaimes, R. Fossey, S.J. Galeev, A.I. Grebenev, S.A. Gupta, A.C. Gutaev, A.G. Hallakoun, N. Hamanowicz, A. Han, C. Handzlik, B. Haislip, J.B. Hanlon, L. Hardy, L.K. Harrison, D.L. Van Heerden, H.J. Hoette, V.L. Horne, K. Hudec, R. Hundertmark, M. Ihanec, N. Irtuganov, E.N. Itoh, R. Iwanek, P. Jovanovic, M.D. Janulis, R. Jelínek, M. Jensen, E. Kaczmarek, Z. Katz, D. Khamitov, I.M. Kilic, Y. Klencki, J. Kolb, U. Kopacki, G. Kouprianov, V.V. Kruszyńska, K. Kurowski, S. Latev, G. Lee, C.-H. Leonini, S. Leto, G. Lewis, F. Li, Z. Liakos, A. Littlefair, S.P. Lu, J. Manser, C.J. Mao, S. Maoz, D. Martin-Carrillo, A. Marais, J.P. Maskoliūnas, M. Maund, J.R. Meintjes, P.J. Melnikov, S.S. Ment, K. Mikołajczyk, P. Morrell, M. Mowlavi, N. Mo Dzierski, D. Murphy, D. Nazarov, S. Netzel, H. Nesci, R. Ngeow, C.-C. Norton, A.J. Ofek, E.O. Pakštienė, E. Palaversa, L. Pandey, A. Paraskeva, E. Pawlak, M. Penny, M.T. Penprase, B.E. Piascik, A. Prieto, J.L. Qvam, J.K.T. Ranc, C. Rebassa-Mansergas, A. Reichart, D.E. Reig, P. Rhodes, L. Rivet, J.-P. Rixon, G. Roberts, D. Rosi, P. Russell, D.M. Zanmar Sanchez, R. Scarpetta, G. Seabroke, G. Shappee, B.J. Schmidt, R. Shvartzvald, Y. Sitek, M. Skowron, J. Niegowska, M. Snodgrass, C. Soares, P.S. Van Soelen, B. Spetsieri, Z.T. Stankevičiūtė, A. Steele, I.A. Street, R.A. Strobl, J. Strubble, E. Szegedi, H. Tinjaca Ramirez, L.M. Tomasella, L. Tsapras, Y. Vernet, D. Villanueva, S. Vince, O. Wambsganss, J. Van Der Westhuizen, I.P. Wiersema, K. Wium, D. Wilson, R.W. Yoldas, A. Zhuchkov, R.Y. Zhukov, D.G. Zdanavičius, J. Zoła, S. Zubareva, A.
- Subjects
Astrophysics::Instrumentation and Methods for Astrophysics ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Gaia16aye was a binary microlensing event discovered in the direction towards the northern Galactic disc and was one of the first microlensing events detected and alerted to by the Gaia space mission. Its light curve exhibited five distinct brightening episodes, reaching up to I? =? 12 mag, and it was covered in great detail with almost 25 000 data points gathered by a network of telescopes. We present the photometric and spectroscopic follow-up covering 500 days of the event evolution. We employed a full Keplerian binary orbit microlensing model combined with the motion of Earth and Gaia around the Sun to reproduce the complex light curve. The photometric data allowed us to solve the microlensing event entirely and to derive the complete and unique set of orbital parameters of the binary lensing system. We also report on the detection of the first-ever microlensing space-parallax between the Earth and Gaia located at L2. The properties of the binary system were derived from microlensing parameters, and we found that the system is composed of two main-sequence stars with masses 0.57 ± 0.05 M? and 0.36 ± 0.03 M? at 780 pc, with an orbital period of 2.88 years and an eccentricity of 0.30. We also predict the astrometric microlensing signal for this binary lens as it will be seen by Gaia as well as the radial velocity curve for the binary system. Events such as Gaia16aye indicate the potential for the microlensing method of probing the mass function of dark objects, including black holes, in directions other than that of the Galactic bulge. This case also emphasises the importance of long-term time-domain coordinated observations that can be made with a network of heterogeneous telescopes. © ESO 2020.
- Published
- 2020
11. Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287
- Author
-
Laine, S. Dey, L. Valtonen, M. Gopakumar, A. Zola, S. Komossa, S. Kidger, M. Pihajoki, P. Gómez, J.L. Caton, D. Ciprini, S. Drozdz, M. Gazeas, K. Godunova, V. Haque, S. Hildebrandt, F. Hudec, R. Jermak, H. Kong, A.K.H. Lehto, H. Liakos, A. Matsumoto, K. Mugrauer, M. Pursimo, T. Reichart, D.E. Simon, A. Siwak, M. Sonbas, E.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics - Abstract
Binary black hole (BH) central engine description for the unique blazar OJ 287 predicted that the next secondary BH impact-induced bremsstrahlung flare should peak on 2019 July 31. This prediction was based on detailed general relativistic modeling of the secondary BH trajectory around the primary BH and its accretion disk. The expected flare was termed the Eddington flare to commemorate the centennial celebrations of now-famous solar eclipse observations to test general relativity by Sir Arthur Eddington. We analyze the multi-epoch Spitzer observations of the expected flare between 2019 July 31 and 2019 September 6, as well as baseline observations during 2019 February-March. Observed Spitzer flux density variations during the predicted outburst time display a strong similarity with the observed optical pericenter flare from OJ 287 during 2007 September. The predicted flare appears comparable to the 2007 flare after subtracting the expected higher base-level Spitzer flux densities at 3.55 and 4.49 μm compared to the optical R-band. Comparing the 2019 and 2007 outburst lightcurves and the previously calculated predictions, we find that the Eddington flare arrived within 4 hr of the predicted time. Our Spitzer observations are well consistent with the presence of a nano-Hertz gravitational-wave emitting spinning massive binary BH that inspirals along a general relativistic eccentric orbit in OJ 287. These multi-epoch Spitzer observations provide a parametric constraint on the celebrated BH no-hair theorem. © 2020. The American Astronomical Society. All rights reserved..
- Published
- 2020
12. Optically targeted search for gravitational waves emitted by core-collapse supernovae during the first and second observing runs of advanced LIGO and advanced Virgo
- Author
-
Abbott, B.P., Abbott, R., Abbott, T.D., Abraham, S., Acernese, F., Ackley, K., Adams, C., Adya, V.B., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O.D., Aiello, L., Ain, A., Ajith, P., Allen, G., Allocca, A., Aloy, M.A., Altin, P.A., Amato, A., Anand, S., Ananyeva, A., Anderson, S.B., Anderson, W.G., Angelova, S.V., Antier, S., Appert, S., Arai, K., Araya, M.C., Areeda, J.S., Arène, M., Arnaud, N., Aronson, S.M., Ascenzi, S., Ashton, G., Aston, S.M., Astone, P., Aubin, F., Aufmuth, P., AultONeal, K., Austin, C., Avendano, V., Avila-Alvarez, A., Babak, S., Bacon, P., Badaracco, F., Bader, M.K.M., Bae, S., Baird, J., Baker, P.T., Baldaccini, F., Ballardin, G., Ballmer, S.W., Bals, A., Banagiri, S., Barayoga, J.C., Barbieri, C., Barclay, S.E., Barish, B.C., Barker, D., Barkett, K., Barnum, S., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartlett, J., Bartos, I., Bassiri, R., Basti, A., Bawaj, M., Bayley, J.C., Bazzan, M., Bécsy, B., Bejger, M., Belahcene, I., Bell, A.S., Beniwal, D., Benjamin, M.G., Bergmann, G., Bernuzzi, S., Berry, C.P.L., Bersanetti, D., Bertolini, A., Betzwieser, J., Bhandare, R., Bidler, J., Biggs, E., Bilenko, I.A., Bilgili, S.A., Billingsley, G., Birney, R., Birnholtz, O., Biscans, S., Bischi, M., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M.A., Blackburn, J.K., Blackman, J., Blair, C.D., Blair, D.G., Blair, R.M., Bloemen, S., Bobba, F., Bode, N., Boer, M., Boetzel, Y., Bogaert, G., Bondu, F., Bonnand, R., Booker, P., Boom, B.A., Bork, R., Boschi, V., Bose, S., Bossilkov, V., Bosveld, J., Bouffanais, Y., Bozzi, A., Bradaschia, C., Brady, P.R., Bramley, A., Branchesi, M., Brau, J.E., Breschi, M., Briant, T., Briggs, J.H., Brighenti, F., Brillet, A., Brinkmann, M., Brockill, P., Brooks, A.F., Brooks, J., Brown, D.D., Brunett, S., Buikema, A., Bulik, T., Bulten, H.J., Buonanno, A., Buskulic, D., Buy, C., Byer, R.L., Cabero, M., Cadonati, L., Cagnoli, G., Cahillane, C., Calderón Bustillo, J., Callister, T.A., Calloni, E., Camp, J.B., Campbell, W.A., Canepa, M., Cannon, K.C., Cao, H., Cao, J., Carapella, G., Carbognani, F., Caride, S., Carney, M.F., Carullo, G., Casanueva Diaz, J., Casentini, C., Caudill, S., Cavaglià, M., Cavalier, F., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, O., Chakravarti, K., Chamberlin, S.J., Chan, M., Chao, S., Charlton, P., Chase, E.A., Chassande-Mottin, E., Chatterjee, D., Chaturvedi, M., Cheeseboro, B.D., Chen, H.Y., Chen, X., Chen, Y., Cheng, H.-P., Cheong, C.K., Chia, H.Y., Chiadini, F., Chincarini, A., Chiummo, A., Cho, G., Cho, H.S., Cho, M., Christensen, N., Chu, Q., Chua, S., Chung, K.W., Chung, S., Ciani, G., Cieślar, M., Ciobanu, A.A., Ciolfi, R., Cipriano, F., Cirone, A., Clara, F., Clark, J.A., Clearwater, P., Cleva, F., Coccia, E., Cohadon, P.-F., Cohen, D., Colleoni, M., Collette, C.G., Collins, C., Colpi, M., Cominsky, L.R., Constancio, M., Conti, L., Cooper, S.J., Corban, P., Corbitt, T.R., Cordero-Carrión, I., Corezzi, S., Corley, K.R., Cornish, N., Corre, D., Corsi, A., Cortese, S., Costa, C.A., Cotesta, R., Coughlin, M.W., Coughlin, S.B., Coulon, J.-P., Countryman, S.T., Couvares, P., Covas, P.B., Cowan, E.E., Coward, D.M., Cowart, M.J., Coyne, D.C., Coyne, R., Creighton, J.D.E., Creighton, T.D., Cripe, J., Croquette, M., Crowder, S.G., Cullen, T.J., Cumming, A., Cunningham, L., Cuoco, E., Dal Canton, T., Dálya, G., D’Angelo, B., Danilishin, S.L., D’Antonio, S., Danzmann, K., Dasgupta, A., Da Silva Costa, C.F., Datrier, L.E.H., Dattilo, V., Dave, I., Davier, M., Davis, D., Daw, E.J., DeBra, D., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., Del Pozzo, W., DeMarchi, L.M., Demos, N., Dent, T., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., de Varona, O., Dhurandhar, S., Díaz, M.C., Dietrich, T., Di Fiore, L., DiFronzo, C., Di Giorgio, C., Di Giovanni, F., Di Giovanni, M., Di Girolamo, T., Di Lieto, A., Ding, B., Di Pace, S., Di Palma, I., Di Renzo, F., Divakarla, A.K., Dmitriev, A., Doctor, Z., Donovan, F., Dooley, K.L., Doravari, S., Dorrington, I., Downes, T.P., Drago, M., Driggers, J.C., Du, Z., Ducoin, J.-G., Dupej, P., Durante, O., Dwyer, S.E., Easter, P.J., Eddolls, G., Edo, T.B., Effler, A., Ehrens, P., Eichholz, J., Eikenberry, S.S., Eisenmann, M., Eisenstein, R.A., Errico, L., Essick, R.C., Estelles, H., Estevez, D., Etienne, Z.B., Etzel, T., Evans, M., Evans, T.M., Fafone, V., Fairhurst, S., Fan, X., Farinon, S., Farr, B., Farr, W.M., Fauchon-Jones, E.J., Favata, M., Fays, M., Fazio, M., Fee, C., Feicht, J., Fejer, M.M., Feng, F., Fernandez-Galiana, A., Ferrante, I., Ferreira, E.C., Ferreira, T.A., Fidecaro, F., Fiori, I., Fiorucci, D., Fishbach, M., Fisher, R.P., Fishner, J.M., Fittipaldi, R., Fitz-Axen, M., Fiumara, V., Flaminio, R., Fletcher, M., Floden, E., Flynn, E., Fong, H., Font, J.A., Forsyth, P.W.F., Fournier, J.-D., Hernandez Vivanco, Francisco, Frasca, S., Frasconi, F., Frei, Z., Freise, A., Frey, R., Frey, V., Fritschel, P., Frolov, V.V., Fronzè, G., Fulda, P., Fyffe, M., Gabbard, H.A., Gadre, B.U., Gaebel, S.M., Gair, J.R., Gammaitoni, L., Gaonkar, S.G., García-Quirós, C., Garufi, F., Gateley, B., Gaudio, S., Gaur, G., Gayathri, V., Gemme, G., Genin, E., Gennai, A., George, D., George, J., Gergely, L., Ghonge, S., Ghosh, Abhirup, Ghosh, Archisman, Ghosh, S., Giacomazzo, B., Giaime, J.A., Giardina, K.D., Gibson, D.R., Gill, K., Glover, L., Gniesmer, J., Godwin, P., Goetz, E., Goetz, R., Goncharov, B., González, G., Castro Gonzalez, J.M., Gopakumar, A., Gossan, S.E., Gosselin, M., Gouaty, R., Grace, B., Grado, A., Granata, M., Grant, A., Gras, S., Grassia, P., Gray, C., Gray, R., Greco, G., Green, A.C., Green, R., Gretarsson, E.M., Grimaldi, A., Grimm, S.J., Groot, P., Grote, H., Grunewald, S., Gruning, P., Guidi, G.M., Gulati, H.K., Guo, Y., Gupta, A., Gupta, Anchal, Gupta, P., Gustafson, E.K., Gustafson, R., Haegel, L., Halim, O., Hall, B.R., Hall, E.D., Hamilton, E.Z., Hammond, G., Haney, M., Hanke, M.M., Hanks, J., Hanna, C., Hannam, M.D., Hannuksela, O.A., Hansen, T.J., Hanson, J., Harder, T., Hardwick, T., Haris, K., Harms, J., Harry, G.M., Harry, I.W., Hasskew, R.K., Haster, C.J., Haughian, K., Hayes, F.J., Healy, J., Heidmann, A., Heintze, M.C., Heitmann, H., Hellman, F., Hello, P., Hemming, G., Hendry, M., Heng, I.S., Hennig, J., Heurs, Michèle, Hild, S., Hinderer, T., Hochheim, S., Hofman, D., Holgado, A.M., Holland, N.A., Holt, K., Holz, D.E., Hopkins, P., Horst, C., Hough, J., Howell, E.J., Hoy, C.G., Huang, Y., Hübner, M.T., Huerta, E.A., Huet, D., Hughey, B., Hui, V., Husa, S., Huttner, S.H., Huynh-Dinh, T., Idzkowski, B., Iess, A., Inchauspe, H., Ingram, C., Inta, R., Intini, G., Irwin, B., Isa, H.N., Isac, J.-M., Isi, M., Iyer, B.R., Jacqmin, T., Jadhav, S.J., Jani, K., Janthalur, N.N., Jaranowski, P., Jariwala, D., Jenkins, A.C., Jiang, J., Johnson, D.S., Jones, A.W., Jones, D.I., Jones, J.D., Jones, R., Jonker, R.J.G., Ju, L., Junker, J., Kalaghatgi, C.V., Kalogera, V., Kamai, B., Kandhasamy, S., Kang, G., Kanner, J.B., Kapadia, S.J., Karki, S., Kashyap, R., Kasprzack, M., Katsanevas, S., Katsavounidis, E., Katzman, W., Kaufer, S., Kawabe, K., Keerthana, N.V., Kéfélian, F., Keitel, D., Kennedy, R., Key, J.S., Khalili, F.Y., Khan, I., Khan, S., Khazanov, E.A., Khetan, N., Khursheed, M., Kijbunchoo, N., Kim, Chunglee, Kim, J.C., Kim, K., Kim, W., Kim, W.S., Kim, Y.-M., Kimball, C., King, P.J., Kinley-Hanlon, M., Kirchhoff, R., Kissel, J.S., Kleybolte, L., Klika, J.H., Klimenko, S., Knowles, T.D., Koch, P., Koehlenbeck, S.M., Koekoek, G., Koley, S., Kondrashov, V., Kontos, A., Koper, N., Korobko, M., Korth, W.Z., Kovalam, M., Kozak, D.B., Krämer, C., Kringel, V., Krishnendu, N., Królak, A., Krupinski, N., Kuehn, G., Kumar, A., Kumar, P., Kumar, Rahul, Kumar, Rakesh, Kuo, L., Kutynia, A., Kwang, S., Lackey, B.D., Laghi, D., Lai, K.H., Lam, T.L., Landry, M., Lane, B.B., Lang, R.N., Lange, J., Lantz, B., Lanza, R.K., Lartaux-Vollard, A., Lasky, P.D., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Leavey, S., Lecoeuche, Y.K., Lee, C.H., Lee, H.K., Lee, H.M., Lee, H.W., Lee, J., Lee, K., Lehmann, J., Lenon, A.K., Leroy, N., Letendre, N., Levin, Y., Li, A., Li, J., Li, K.J.L., Li, T.G.F., Li, X., Lin, F., Linde, F., Linker, S.D., Littenberg, T.B., Liu, J., Liu, X., Llorens-Monteagudo, M., Lo, R.K.L., London, L.T., Longo, A., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J.D., Lousto, C.O., Lovelace, G., Lower, M.E., Lück, Harald, Lumaca, D., Lundgren, A.P., Lynch, R., Ma, Y., Macas, R., Macfoy, S., MacInnis, M., Macleod, D.M., Macquet, A., Magaña Hernandez, I., Magaña-Sandoval, F., Magee, R.M., Majorana, E., Maksimovic, I., Malik, A., Man, N., Mandic, V., Mangano, V., Mansell, G.L., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Marion, F., Márka, S., Márka, Z., Markakis, C., Markosyan, A.S., Markowitz, A., Maros, E., Marquina, A., Marsat, S., Martelli, F., Martin, I.W., Martin, R.M., Martinez, V., Martynov, D.V., Masalehdan, H., Mason, K., Massera, E., Masserot, A., Massinger, T.J., Masso-Reid, M., Mastrogiovanni, S., Matas, A., Matichard, F., Matone, L., Mavalvala, N., McCann, J.J., McCarthy, R., McClelland, D.E., McCormick, S., McCuller, L., McGuire, S.C., McIsaac, C., McIver, J., McManus, D.J., McRae, T., McWilliams, S.T., Meacher, D., Meadors, G.D., Mehmet, M., Mehta, A.K., Meidam, J., Villa, E.Mejuto, Melatos, A., Mendell, G., Mercer, R.A., Mereni, L., Merfeld, K., Merilh, E.L., Merzougui, M., Meshkov, S., Messenger, C., Messick, C., Messina, F., Metzdorff, R., Meyers, P.M., Meylahn, F., Miani, A., Miao, H., Michel, C., Middleton, H., Milano, L., Miller, A.L., Millhouse, M., Mills, J.C., Milovich-Goff, M.C., Minazzoli, O., Minenkov, Y., Mishkin, A., Mishra, C., Mistry, T., Mitra, S., Mitrofanov, V.P., Mitselmakher, G., Mittleman, R., Mo, G., Moffa, D., Mogushi, K., Mohapatra, S.R.P., Molina-Ruiz, M., Mondin, M., Montani, M., Moore, C.J., Moraru, D., Morawski, F., Moreno, G., Morisaki, S., Mours, B., Mow-Lowry, C.M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, S., Mukherjee, Subroto, Mukund, N., Mullavey, A., Munch, J., Muñiz, E.A., Muratore, M., Murray, P.G., Nardecchia, I., Naticchioni, L., Nayak, R.K., Neil, B.F., Neilson, J., Nelemans, G., Nelson, T.J.N., Nery, M., Neunzert, A., Nevin, L., Ng, K.Y., Ng, S., Nguyen, C., Nguyen, P., Nichols, D., Nichols, S.A., Nissanke, S., Nocera, F., North, C., Nuttall, L.K., Obergaulinger, M., Oberling, J., O’Brien, B.D., Oganesyan, G., Ogin, G.H., Oh, J.J., Oh, S.H., Ohme, F., Ohta, H., Okada, M.A., Oliver, M., Oppermann, P., Oram, Richard J., O’Reilly, B., Ormiston, R.G., Ortega, L.F., O’Shaughnessy, R., Ossokine, S., Ottaway, D.J., Overmier, H., Owen, B.J., Pace, A.E., Pagano, G., Page, M.A., Pagliaroli, G., Pai, A., Pai, S.A., Palamos, J.R., Palashov, O., Palomba, C., Pan, H., Panda, P.K., Pang, P.T.H., Pankow, C., Pannarale, F., Pant, B.C., Paoletti, F., Paoli, A., Parida, A., Parker, W., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patil, M., Patricelli, B., Payne, E., Pearlstone, B.L., Pechsiri, T.C., Pedersen, A.J., Pedraza, M., Pedurand, R., Pele, A., Penn, S., Perego, A., Perez, C.J., Périgois, C., Perreca, A., Petermann, J., Pfeiffer, H.P., Phelps, M., Phukon, K.S., Piccinni, O.J., Pichot, M., Piergiovanni, F., Pierro, V., Pillant, G., Pinard, L., Pinto, I.M., Pirello, M., Pitkin, M., Plastino, W., Poggiani, R., Pong, D.Y.T., Ponrathnam, S., Popolizio, P., Porter, E.K., Powell, J., Prajapati, A.K., Prasad, J., Prasai, K., Prasanna, R., Pratten, G., Prestegard, T., Principe, M., Prodi, G.A., Prokhorov, L., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Quetschke, V., Quinonez, P.J., Raab, F.J., Raaijmakers, G., Radkins, H., Radulesco, N., Raffai, P., Raja, S., Rajan, C., Rajbhandari, B., Rakhmanov, M., Ramirez, K.E., Ramos-Buades, A., Rana, Javed, Rao, K., Rapagnani, P., Raymond, V., Razzano, M., Read, J., Regimbau, T., Rei, L., Reid, S., Reitze, D.H., Rettegno, P., Ricci, F., Richardson, C.J., Richardson, J.W., Ricker, P.M., Riemenschneider, G., Riles, K., Rizzo, M., Robertson, N.A., Robinet, F., Rocchi, A., Rolland, L., Rollins, J.G., Roma, V.J., Romanelli, M., Romano, R., Romel, C.L., Romie, J.H., Rose, C.A., Rose, D., Rose, K., Rosińska, D., Rosofsky, S.G., Ross, M.P., Rowan, S., Rüdiger, A., Ruggi, P., Rutins, G., Ryan, K., Sachdev, S., Sadecki, T., Sakellariadou, M., Salafia, O.S., Salconi, L., Saleem, M., Samajdar, A., Sammut, L., Sanchez, E.J., Sanchez, L.E., Sanchis-Gual, N., Sanders, J.R., Santiago, K.A., Santos, E., Sarin, N., Sassolas, B., Sauter, O., Savage, R.L., Schale, P., Scheel, M., Scheuer, J., Schmidt, P., Schnabel, R., Schofield, R.M.S., Schönbeck, A., Schreiber, E., Schulte, B.W., Schutz, B.F., Scott, J., Scott, S.M., Seidel, E., Sellers, D., Sengupta, A.S., Sennett, N., Sentenac, D., Sequino, V., Sergeev, A., Setyawati, Y., Shaddock, D.A., Shaffer, T., Shahriar, M.S., Shaner, M.B., Sharma, A., Sharma, P., Shawhan, P., Shen, H., Shink, R., Shoemaker, D.H., Shoemaker, D.M., Shukla, K., ShyamSundar, S., Siellez, K., Sieniawska, M., Sigg, D., Singer, L.P., Singh, D., Singh, N., Singhal, A., Sintes, A.M., Sitmukhambetov, S., Skliris, V., Slagmolen, B.J.J., Slaven-Blair, T.J., Smith, J.R., Smith, R.J.E., Somala, S., Son, E.J., Soni, S., Sorazu, B., Sorrentino, F., Souradeep, T., Sowell, E., Spencer, A.P., Spera, M., Srivastava, A.K., Srivastava, V., Staats, K., Stachie, C., Standke, M., Steer, D.A., Steinke, M., Steinlechner, J., Steinlechner, S., Steinmeyer, D., Stevenson, S.P., Stocks, D., Stone, R., Stops, D.J., Strain, K.A., Stratta, G., Strigin, S.E., Strunk, A., Sturani, R., Stuver, A.L., Sudhir, V., Summerscales, T.Z., Sun, L., Sunil, S., Sur, A., Suresh, J., Sutton, P.J., Swinkels, B.L., Szczepańczyk, M.J., Tacca, M., Tait, S.C., Talbot, C., Tanner, D.B., Tao, D., Tápai, M., Tapia, A., Tasson, J.D., Taylor, R., Tenorio, R., Terkowski, L., Thomas, M., Thomas, P., Thondapu, S.R., Thorne, K.A., Thrane, E., Tiwari, Shubhanshu, Tiwari, Srishti, Tiwari, V., Toland, K., Tonelli, M., Tornasi, Z., Torres-Forné, A., Torrie, C.I., Töyrä, D., Travasso, F., Traylor, G., Tringali, M.C., Tripathee, A., Trovato, A., Trozzo, L., Tsang, K.W., Tse, M., Tso, R., Tsukada, L., Tsuna, D., Tsutsui, T., Tuyenbayev, D., Ueno, K., Ugolini, D., Unnikrishnan, C.S., Urban, A.L., Usman, S.A., Vahlbruch, H., Vajente, G., Valdes, G., Valentini, M., van Bakel, N., van Beuzekom, M., van den Brand, J.F.J., Van Den Broeck, C., Vander-Hyde, D.C., van der Schaaf, L., VanHeijningen, J.V., van Veggel, A.A., Vardaro, M., Varma, V., Vass, S., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P.J., Venkateswara, K., Venugopalan, G., Verkindt, D., Vetrano, F., Viceré, A., Viets, A.D., Vinciguerra, S., Vine, D.J., Vinet, J.-Y., Vitale, S., Vo, T., Vocca, H., Vorvick, C., Vyatchanin, S.P., Wade, A.R., Wade, L.E., Wade, M., Walet, R., Walker, M., Wallace, L., Walsh, S., Wang, H., Wang, J.Z., Wang, S., Wang, W.H., Wang, Y.F., Ward, R.L., Warden, Z.A., Warner, J., Was, M., Watchi, J., Weaver, B., Wei, L.-W., Weinert, M., Weinstein, A.J., Weiss, R., Wellmann, F., Wen, L., Wessel, E.K., Weßels, P., Westhouse, J.W., Wette, K., Whelan, J.T., Whiting, B.F., Whittle, C., Wilken, D.M., Williams, D., Williamson, A.R., Willis, J.L., Willke, B., Winkler, W., Wipf, C.C., Wittel, H., Woan, G., Woehler, J., Wofford, J.K., Wright, J.L., Wu, D.S., Wysocki, D.M., Xiao, S., Xu, R., Yamamoto, H., Yancey, C.C., Yang, L., Yang, Y., Yang, Z., Yap, M.J., Yazback, M., Yeeles, D.W., Yu, Hang, Yu, Haocun, Yuen, S.H.R., Zadrożny, A.K, Zadrożny, A., Zanolin, M., Zelenova, T., Zendri, J.-P., Zevin, M., Zhang, J., Zhang, L., Zhang, T., Zhao, C., Zhao, G., Zhou, M., Zhou, Z., Zhu, X.J., Zucker, M.E., Zweizig, J., Holoien, T.W.-S., Kochanek, C.S., Prieto, J.L., Shappee, B.J., Stanek, K.Z., Haislip, J., Kouprianov, V., Reichart, D.E., Sand, D.J., Tartaglia, L., Valenti, S., Wyatt, S., Yang, S., Salemi, F., Abbott, B.P., Abbott, R., Abbott, T.D., Abraham, S., Acernese, F., Ackley, K., Adams, C., Adya, V.B., Affeldt, C., Agathos, M., Agatsuma, K., Aggarwal, N., Aguiar, O.D., Aiello, L., Ain, A., Ajith, P., Allen, G., Allocca, A., Aloy, M.A., Altin, P.A., Amato, A., Anand, S., Ananyeva, A., Anderson, S.B., Anderson, W.G., Angelova, S.V., Antier, S., Appert, S., Arai, K., Araya, M.C., Areeda, J.S., Arène, M., Arnaud, N., Aronson, S.M., Ascenzi, S., Ashton, G., Aston, S.M., Astone, P., Aubin, F., Aufmuth, P., AultONeal, K., Austin, C., Avendano, V., Avila-Alvarez, A., Babak, S., Bacon, P., Badaracco, F., Bader, M.K.M., Bae, S., Baird, J., Baker, P.T., Baldaccini, F., Ballardin, G., Ballmer, S.W., Bals, A., Banagiri, S., Barayoga, J.C., Barbieri, C., Barclay, S.E., Barish, B.C., Barker, D., Barkett, K., Barnum, S., Barone, F., Barr, B., Barsotti, L., Barsuglia, M., Barta, D., Bartlett, J., Bartos, I., Bassiri, R., Basti, A., Bawaj, M., Bayley, J.C., Bazzan, M., Bécsy, B., Bejger, M., Belahcene, I., Bell, A.S., Beniwal, D., Benjamin, M.G., Bergmann, G., Bernuzzi, S., Berry, C.P.L., Bersanetti, D., Bertolini, A., Betzwieser, J., Bhandare, R., Bidler, J., Biggs, E., Bilenko, I.A., Bilgili, S.A., Billingsley, G., Birney, R., Birnholtz, O., Biscans, S., Bischi, M., Biscoveanu, S., Bisht, A., Bitossi, M., Bizouard, M.A., Blackburn, J.K., Blackman, J., Blair, C.D., Blair, D.G., Blair, R.M., Bloemen, S., Bobba, F., Bode, N., Boer, M., Boetzel, Y., Bogaert, G., Bondu, F., Bonnand, R., Booker, P., Boom, B.A., Bork, R., Boschi, V., Bose, S., Bossilkov, V., Bosveld, J., Bouffanais, Y., Bozzi, A., Bradaschia, C., Brady, P.R., Bramley, A., Branchesi, M., Brau, J.E., Breschi, M., Briant, T., Briggs, J.H., Brighenti, F., Brillet, A., Brinkmann, M., Brockill, P., Brooks, A.F., Brooks, J., Brown, D.D., Brunett, S., Buikema, A., Bulik, T., Bulten, H.J., Buonanno, A., Buskulic, D., Buy, C., Byer, R.L., Cabero, M., Cadonati, L., Cagnoli, G., Cahillane, C., Calderón Bustillo, J., Callister, T.A., Calloni, E., Camp, J.B., Campbell, W.A., Canepa, M., Cannon, K.C., Cao, H., Cao, J., Carapella, G., Carbognani, F., Caride, S., Carney, M.F., Carullo, G., Casanueva Diaz, J., Casentini, C., Caudill, S., Cavaglià, M., Cavalier, F., Cavalieri, R., Cella, G., Cerdá-Durán, P., Cesarini, E., Chaibi, O., Chakravarti, K., Chamberlin, S.J., Chan, M., Chao, S., Charlton, P., Chase, E.A., Chassande-Mottin, E., Chatterjee, D., Chaturvedi, M., Cheeseboro, B.D., Chen, H.Y., Chen, X., Chen, Y., Cheng, H.-P., Cheong, C.K., Chia, H.Y., Chiadini, F., Chincarini, A., Chiummo, A., Cho, G., Cho, H.S., Cho, M., Christensen, N., Chu, Q., Chua, S., Chung, K.W., Chung, S., Ciani, G., Cieślar, M., Ciobanu, A.A., Ciolfi, R., Cipriano, F., Cirone, A., Clara, F., Clark, J.A., Clearwater, P., Cleva, F., Coccia, E., Cohadon, P.-F., Cohen, D., Colleoni, M., Collette, C.G., Collins, C., Colpi, M., Cominsky, L.R., Constancio, M., Conti, L., Cooper, S.J., Corban, P., Corbitt, T.R., Cordero-Carrión, I., Corezzi, S., Corley, K.R., Cornish, N., Corre, D., Corsi, A., Cortese, S., Costa, C.A., Cotesta, R., Coughlin, M.W., Coughlin, S.B., Coulon, J.-P., Countryman, S.T., Couvares, P., Covas, P.B., Cowan, E.E., Coward, D.M., Cowart, M.J., Coyne, D.C., Coyne, R., Creighton, J.D.E., Creighton, T.D., Cripe, J., Croquette, M., Crowder, S.G., Cullen, T.J., Cumming, A., Cunningham, L., Cuoco, E., Dal Canton, T., Dálya, G., D’Angelo, B., Danilishin, S.L., D’Antonio, S., Danzmann, K., Dasgupta, A., Da Silva Costa, C.F., Datrier, L.E.H., Dattilo, V., Dave, I., Davier, M., Davis, D., Daw, E.J., DeBra, D., Deenadayalan, M., Degallaix, J., De Laurentis, M., Deléglise, S., Del Pozzo, W., DeMarchi, L.M., Demos, N., Dent, T., De Pietri, R., De Rosa, R., De Rossi, C., DeSalvo, R., de Varona, O., Dhurandhar, S., Díaz, M.C., Dietrich, T., Di Fiore, L., DiFronzo, C., Di Giorgio, C., Di Giovanni, F., Di Giovanni, M., Di Girolamo, T., Di Lieto, A., Ding, B., Di Pace, S., Di Palma, I., Di Renzo, F., Divakarla, A.K., Dmitriev, A., Doctor, Z., Donovan, F., Dooley, K.L., Doravari, S., Dorrington, I., Downes, T.P., Drago, M., Driggers, J.C., Du, Z., Ducoin, J.-G., Dupej, P., Durante, O., Dwyer, S.E., Easter, P.J., Eddolls, G., Edo, T.B., Effler, A., Ehrens, P., Eichholz, J., Eikenberry, S.S., Eisenmann, M., Eisenstein, R.A., Errico, L., Essick, R.C., Estelles, H., Estevez, D., Etienne, Z.B., Etzel, T., Evans, M., Evans, T.M., Fafone, V., Fairhurst, S., Fan, X., Farinon, S., Farr, B., Farr, W.M., Fauchon-Jones, E.J., Favata, M., Fays, M., Fazio, M., Fee, C., Feicht, J., Fejer, M.M., Feng, F., Fernandez-Galiana, A., Ferrante, I., Ferreira, E.C., Ferreira, T.A., Fidecaro, F., Fiori, I., Fiorucci, D., Fishbach, M., Fisher, R.P., Fishner, J.M., Fittipaldi, R., Fitz-Axen, M., Fiumara, V., Flaminio, R., Fletcher, M., Floden, E., Flynn, E., Fong, H., Font, J.A., Forsyth, P.W.F., Fournier, J.-D., Hernandez Vivanco, Francisco, Frasca, S., Frasconi, F., Frei, Z., Freise, A., Frey, R., Frey, V., Fritschel, P., Frolov, V.V., Fronzè, G., Fulda, P., Fyffe, M., Gabbard, H.A., Gadre, B.U., Gaebel, S.M., Gair, J.R., Gammaitoni, L., Gaonkar, S.G., García-Quirós, C., Garufi, F., Gateley, B., Gaudio, S., Gaur, G., Gayathri, V., Gemme, G., Genin, E., Gennai, A., George, D., George, J., Gergely, L., Ghonge, S., Ghosh, Abhirup, Ghosh, Archisman, Ghosh, S., Giacomazzo, B., Giaime, J.A., Giardina, K.D., Gibson, D.R., Gill, K., Glover, L., Gniesmer, J., Godwin, P., Goetz, E., Goetz, R., Goncharov, B., González, G., Castro Gonzalez, J.M., Gopakumar, A., Gossan, S.E., Gosselin, M., Gouaty, R., Grace, B., Grado, A., Granata, M., Grant, A., Gras, S., Grassia, P., Gray, C., Gray, R., Greco, G., Green, A.C., Green, R., Gretarsson, E.M., Grimaldi, A., Grimm, S.J., Groot, P., Grote, H., Grunewald, S., Gruning, P., Guidi, G.M., Gulati, H.K., Guo, Y., Gupta, A., Gupta, Anchal, Gupta, P., Gustafson, E.K., Gustafson, R., Haegel, L., Halim, O., Hall, B.R., Hall, E.D., Hamilton, E.Z., Hammond, G., Haney, M., Hanke, M.M., Hanks, J., Hanna, C., Hannam, M.D., Hannuksela, O.A., Hansen, T.J., Hanson, J., Harder, T., Hardwick, T., Haris, K., Harms, J., Harry, G.M., Harry, I.W., Hasskew, R.K., Haster, C.J., Haughian, K., Hayes, F.J., Healy, J., Heidmann, A., Heintze, M.C., Heitmann, H., Hellman, F., Hello, P., Hemming, G., Hendry, M., Heng, I.S., Hennig, J., Heurs, Michèle, Hild, S., Hinderer, T., Hochheim, S., Hofman, D., Holgado, A.M., Holland, N.A., Holt, K., Holz, D.E., Hopkins, P., Horst, C., Hough, J., Howell, E.J., Hoy, C.G., Huang, Y., Hübner, M.T., Huerta, E.A., Huet, D., Hughey, B., Hui, V., Husa, S., Huttner, S.H., Huynh-Dinh, T., Idzkowski, B., Iess, A., Inchauspe, H., Ingram, C., Inta, R., Intini, G., Irwin, B., Isa, H.N., Isac, J.-M., Isi, M., Iyer, B.R., Jacqmin, T., Jadhav, S.J., Jani, K., Janthalur, N.N., Jaranowski, P., Jariwala, D., Jenkins, A.C., Jiang, J., Johnson, D.S., Jones, A.W., Jones, D.I., Jones, J.D., Jones, R., Jonker, R.J.G., Ju, L., Junker, J., Kalaghatgi, C.V., Kalogera, V., Kamai, B., Kandhasamy, S., Kang, G., Kanner, J.B., Kapadia, S.J., Karki, S., Kashyap, R., Kasprzack, M., Katsanevas, S., Katsavounidis, E., Katzman, W., Kaufer, S., Kawabe, K., Keerthana, N.V., Kéfélian, F., Keitel, D., Kennedy, R., Key, J.S., Khalili, F.Y., Khan, I., Khan, S., Khazanov, E.A., Khetan, N., Khursheed, M., Kijbunchoo, N., Kim, Chunglee, Kim, J.C., Kim, K., Kim, W., Kim, W.S., Kim, Y.-M., Kimball, C., King, P.J., Kinley-Hanlon, M., Kirchhoff, R., Kissel, J.S., Kleybolte, L., Klika, J.H., Klimenko, S., Knowles, T.D., Koch, P., Koehlenbeck, S.M., Koekoek, G., Koley, S., Kondrashov, V., Kontos, A., Koper, N., Korobko, M., Korth, W.Z., Kovalam, M., Kozak, D.B., Krämer, C., Kringel, V., Krishnendu, N., Królak, A., Krupinski, N., Kuehn, G., Kumar, A., Kumar, P., Kumar, Rahul, Kumar, Rakesh, Kuo, L., Kutynia, A., Kwang, S., Lackey, B.D., Laghi, D., Lai, K.H., Lam, T.L., Landry, M., Lane, B.B., Lang, R.N., Lange, J., Lantz, B., Lanza, R.K., Lartaux-Vollard, A., Lasky, P.D., Laxen, M., Lazzarini, A., Lazzaro, C., Leaci, P., Leavey, S., Lecoeuche, Y.K., Lee, C.H., Lee, H.K., Lee, H.M., Lee, H.W., Lee, J., Lee, K., Lehmann, J., Lenon, A.K., Leroy, N., Letendre, N., Levin, Y., Li, A., Li, J., Li, K.J.L., Li, T.G.F., Li, X., Lin, F., Linde, F., Linker, S.D., Littenberg, T.B., Liu, J., Liu, X., Llorens-Monteagudo, M., Lo, R.K.L., London, L.T., Longo, A., Lorenzini, M., Loriette, V., Lormand, M., Losurdo, G., Lough, J.D., Lousto, C.O., Lovelace, G., Lower, M.E., Lück, Harald, Lumaca, D., Lundgren, A.P., Lynch, R., Ma, Y., Macas, R., Macfoy, S., MacInnis, M., Macleod, D.M., Macquet, A., Magaña Hernandez, I., Magaña-Sandoval, F., Magee, R.M., Majorana, E., Maksimovic, I., Malik, A., Man, N., Mandic, V., Mangano, V., Mansell, G.L., Manske, M., Mantovani, M., Mapelli, M., Marchesoni, F., Marion, F., Márka, S., Márka, Z., Markakis, C., Markosyan, A.S., Markowitz, A., Maros, E., Marquina, A., Marsat, S., Martelli, F., Martin, I.W., Martin, R.M., Martinez, V., Martynov, D.V., Masalehdan, H., Mason, K., Massera, E., Masserot, A., Massinger, T.J., Masso-Reid, M., Mastrogiovanni, S., Matas, A., Matichard, F., Matone, L., Mavalvala, N., McCann, J.J., McCarthy, R., McClelland, D.E., McCormick, S., McCuller, L., McGuire, S.C., McIsaac, C., McIver, J., McManus, D.J., McRae, T., McWilliams, S.T., Meacher, D., Meadors, G.D., Mehmet, M., Mehta, A.K., Meidam, J., Villa, E.Mejuto, Melatos, A., Mendell, G., Mercer, R.A., Mereni, L., Merfeld, K., Merilh, E.L., Merzougui, M., Meshkov, S., Messenger, C., Messick, C., Messina, F., Metzdorff, R., Meyers, P.M., Meylahn, F., Miani, A., Miao, H., Michel, C., Middleton, H., Milano, L., Miller, A.L., Millhouse, M., Mills, J.C., Milovich-Goff, M.C., Minazzoli, O., Minenkov, Y., Mishkin, A., Mishra, C., Mistry, T., Mitra, S., Mitrofanov, V.P., Mitselmakher, G., Mittleman, R., Mo, G., Moffa, D., Mogushi, K., Mohapatra, S.R.P., Molina-Ruiz, M., Mondin, M., Montani, M., Moore, C.J., Moraru, D., Morawski, F., Moreno, G., Morisaki, S., Mours, B., Mow-Lowry, C.M., Muciaccia, F., Mukherjee, Arunava, Mukherjee, D., Mukherjee, S., Mukherjee, Subroto, Mukund, N., Mullavey, A., Munch, J., Muñiz, E.A., Muratore, M., Murray, P.G., Nardecchia, I., Naticchioni, L., Nayak, R.K., Neil, B.F., Neilson, J., Nelemans, G., Nelson, T.J.N., Nery, M., Neunzert, A., Nevin, L., Ng, K.Y., Ng, S., Nguyen, C., Nguyen, P., Nichols, D., Nichols, S.A., Nissanke, S., Nocera, F., North, C., Nuttall, L.K., Obergaulinger, M., Oberling, J., O’Brien, B.D., Oganesyan, G., Ogin, G.H., Oh, J.J., Oh, S.H., Ohme, F., Ohta, H., Okada, M.A., Oliver, M., Oppermann, P., Oram, Richard J., O’Reilly, B., Ormiston, R.G., Ortega, L.F., O’Shaughnessy, R., Ossokine, S., Ottaway, D.J., Overmier, H., Owen, B.J., Pace, A.E., Pagano, G., Page, M.A., Pagliaroli, G., Pai, A., Pai, S.A., Palamos, J.R., Palashov, O., Palomba, C., Pan, H., Panda, P.K., Pang, P.T.H., Pankow, C., Pannarale, F., Pant, B.C., Paoletti, F., Paoli, A., Parida, A., Parker, W., Pascucci, D., Pasqualetti, A., Passaquieti, R., Passuello, D., Patil, M., Patricelli, B., Payne, E., Pearlstone, B.L., Pechsiri, T.C., Pedersen, A.J., Pedraza, M., Pedurand, R., Pele, A., Penn, S., Perego, A., Perez, C.J., Périgois, C., Perreca, A., Petermann, J., Pfeiffer, H.P., Phelps, M., Phukon, K.S., Piccinni, O.J., Pichot, M., Piergiovanni, F., Pierro, V., Pillant, G., Pinard, L., Pinto, I.M., Pirello, M., Pitkin, M., Plastino, W., Poggiani, R., Pong, D.Y.T., Ponrathnam, S., Popolizio, P., Porter, E.K., Powell, J., Prajapati, A.K., Prasad, J., Prasai, K., Prasanna, R., Pratten, G., Prestegard, T., Principe, M., Prodi, G.A., Prokhorov, L., Punturo, M., Puppo, P., Pürrer, M., Qi, H., Quetschke, V., Quinonez, P.J., Raab, F.J., Raaijmakers, G., Radkins, H., Radulesco, N., Raffai, P., Raja, S., Rajan, C., Rajbhandari, B., Rakhmanov, M., Ramirez, K.E., Ramos-Buades, A., Rana, Javed, Rao, K., Rapagnani, P., Raymond, V., Razzano, M., Read, J., Regimbau, T., Rei, L., Reid, S., Reitze, D.H., Rettegno, P., Ricci, F., Richardson, C.J., Richardson, J.W., Ricker, P.M., Riemenschneider, G., Riles, K., Rizzo, M., Robertson, N.A., Robinet, F., Rocchi, A., Rolland, L., Rollins, J.G., Roma, V.J., Romanelli, M., Romano, R., Romel, C.L., Romie, J.H., Rose, C.A., Rose, D., Rose, K., Rosińska, D., Rosofsky, S.G., Ross, M.P., Rowan, S., Rüdiger, A., Ruggi, P., Rutins, G., Ryan, K., Sachdev, S., Sadecki, T., Sakellariadou, M., Salafia, O.S., Salconi, L., Saleem, M., Samajdar, A., Sammut, L., Sanchez, E.J., Sanchez, L.E., Sanchis-Gual, N., Sanders, J.R., Santiago, K.A., Santos, E., Sarin, N., Sassolas, B., Sauter, O., Savage, R.L., Schale, P., Scheel, M., Scheuer, J., Schmidt, P., Schnabel, R., Schofield, R.M.S., Schönbeck, A., Schreiber, E., Schulte, B.W., Schutz, B.F., Scott, J., Scott, S.M., Seidel, E., Sellers, D., Sengupta, A.S., Sennett, N., Sentenac, D., Sequino, V., Sergeev, A., Setyawati, Y., Shaddock, D.A., Shaffer, T., Shahriar, M.S., Shaner, M.B., Sharma, A., Sharma, P., Shawhan, P., Shen, H., Shink, R., Shoemaker, D.H., Shoemaker, D.M., Shukla, K., ShyamSundar, S., Siellez, K., Sieniawska, M., Sigg, D., Singer, L.P., Singh, D., Singh, N., Singhal, A., Sintes, A.M., Sitmukhambetov, S., Skliris, V., Slagmolen, B.J.J., Slaven-Blair, T.J., Smith, J.R., Smith, R.J.E., Somala, S., Son, E.J., Soni, S., Sorazu, B., Sorrentino, F., Souradeep, T., Sowell, E., Spencer, A.P., Spera, M., Srivastava, A.K., Srivastava, V., Staats, K., Stachie, C., Standke, M., Steer, D.A., Steinke, M., Steinlechner, J., Steinlechner, S., Steinmeyer, D., Stevenson, S.P., Stocks, D., Stone, R., Stops, D.J., Strain, K.A., Stratta, G., Strigin, S.E., Strunk, A., Sturani, R., Stuver, A.L., Sudhir, V., Summerscales, T.Z., Sun, L., Sunil, S., Sur, A., Suresh, J., Sutton, P.J., Swinkels, B.L., Szczepańczyk, M.J., Tacca, M., Tait, S.C., Talbot, C., Tanner, D.B., Tao, D., Tápai, M., Tapia, A., Tasson, J.D., Taylor, R., Tenorio, R., Terkowski, L., Thomas, M., Thomas, P., Thondapu, S.R., Thorne, K.A., Thrane, E., Tiwari, Shubhanshu, Tiwari, Srishti, Tiwari, V., Toland, K., Tonelli, M., Tornasi, Z., Torres-Forné, A., Torrie, C.I., Töyrä, D., Travasso, F., Traylor, G., Tringali, M.C., Tripathee, A., Trovato, A., Trozzo, L., Tsang, K.W., Tse, M., Tso, R., Tsukada, L., Tsuna, D., Tsutsui, T., Tuyenbayev, D., Ueno, K., Ugolini, D., Unnikrishnan, C.S., Urban, A.L., Usman, S.A., Vahlbruch, H., Vajente, G., Valdes, G., Valentini, M., van Bakel, N., van Beuzekom, M., van den Brand, J.F.J., Van Den Broeck, C., Vander-Hyde, D.C., van der Schaaf, L., VanHeijningen, J.V., van Veggel, A.A., Vardaro, M., Varma, V., Vass, S., Vasúth, M., Vecchio, A., Vedovato, G., Veitch, J., Veitch, P.J., Venkateswara, K., Venugopalan, G., Verkindt, D., Vetrano, F., Viceré, A., Viets, A.D., Vinciguerra, S., Vine, D.J., Vinet, J.-Y., Vitale, S., Vo, T., Vocca, H., Vorvick, C., Vyatchanin, S.P., Wade, A.R., Wade, L.E., Wade, M., Walet, R., Walker, M., Wallace, L., Walsh, S., Wang, H., Wang, J.Z., Wang, S., Wang, W.H., Wang, Y.F., Ward, R.L., Warden, Z.A., Warner, J., Was, M., Watchi, J., Weaver, B., Wei, L.-W., Weinert, M., Weinstein, A.J., Weiss, R., Wellmann, F., Wen, L., Wessel, E.K., Weßels, P., Westhouse, J.W., Wette, K., Whelan, J.T., Whiting, B.F., Whittle, C., Wilken, D.M., Williams, D., Williamson, A.R., Willis, J.L., Willke, B., Winkler, W., Wipf, C.C., Wittel, H., Woan, G., Woehler, J., Wofford, J.K., Wright, J.L., Wu, D.S., Wysocki, D.M., Xiao, S., Xu, R., Yamamoto, H., Yancey, C.C., Yang, L., Yang, Y., Yang, Z., Yap, M.J., Yazback, M., Yeeles, D.W., Yu, Hang, Yu, Haocun, Yuen, S.H.R., Zadrożny, A.K, Zadrożny, A., Zanolin, M., Zelenova, T., Zendri, J.-P., Zevin, M., Zhang, J., Zhang, L., Zhang, T., Zhao, C., Zhao, G., Zhou, M., Zhou, Z., Zhu, X.J., Zucker, M.E., Zweizig, J., Holoien, T.W.-S., Kochanek, C.S., Prieto, J.L., Shappee, B.J., Stanek, K.Z., Haislip, J., Kouprianov, V., Reichart, D.E., Sand, D.J., Tartaglia, L., Valenti, S., Wyatt, S., Yang, S., and Salemi, F.
- Abstract
We present the results from a search for gravitational-wave transients associated with core-collapse supernovae observed within a source distance of approximately 20 Mpc during the first and second observing runs of Advanced LIGO and Advanced Virgo. No significant gravitational-wave candidate was detected. We report the detection efficiencies as a function of the distance for waveforms derived from multidimensional numerical simulations and phenomenological extreme emission models. The sources with neutrino-driven explosions are detectable at the distances approaching 5 kpc, and for magnetorotationally driven explosions the distances are up to 54 kpc. However, waveforms for extreme emission models are detectable up to 28 Mpc. For the first time, the gravitational-wave data enabled us to exclude part of the parameter spaces of two extreme emission models with confidence up to 83%, limited by coincident data coverage. Besides, using ad hoc harmonic signals windowed with Gaussian envelopes, we constrained the gravitational-wave energy emitted during core collapse at the levels of 4.27×10-4 M·c2 and 1.28×10-1 M·c2 for emissions at 235 and 1304 Hz, respectively. These constraints are 2 orders of magnitude more stringent than previously derived in the corresponding analysis using initial LIGO, initial Virgo, and GEO 600 data. © 2020 American Physical Society.
- Published
- 2020
13. Lower atmosphere and pressure evolution on Pluto from ground-based stellar occultations, 1988-2016
- Author
-
Meza, E. Sicardy, B. Assafin, M. Ortiz, J.L. Bertrand, T. Lellouch, E. Desmars, J. Forget, F. Bérard, D. Doressoundiram, A. Lecacheux, J. Marques Oliveira, J. Roques, F. Widemann, T. Colas, F. Vachier, F. Renner, S. Leiva, R. Braga-Ribas, F. Benedetti-Rossi, G. Camargo, J.I.B. Dias-Oliveira, A. Morgado, B. Gomes-Júnior, A.R. Vieira-Martins, R. Behrend, R. Castro Tirado, A. Duffard, R. Morales, N. Santos-Sanz, P. Jelínek, M. Cunniffe, R. Querel, R. Harnisch, M. Jansen, R. Pennell, A. Todd, S. Ivanov, V.D. Opitom, C. Gillon, M. Jehin, E. Manfroid, J. Pollock, J. Reichart, D.E. Haislip, J.B. Ivarsen, K.M. LaCluyze, A.P. Maury, A. Gil-Hutton, R. Dhillon, V. Littlefair, S. Marsh, T. Veillet, C. Bath, K.-L. Beisker, W. Bode, H.-J. Kretlow, M. Herald, D. Gault, D. Kerr, S. Pavlov, H. Faragó, O. Klös, O. Frappa, E. Lavayssière, M. Cole, A.A. Giles, A.B. Greenhill, J.G. Hill, K.M. Buie, M.W. Olkin, C.B. Young, E.F. Young, L.A. Wasserman, L.H. Devogèle, M. French, R.G. Bianco, F.B. Marchis, F. Brosch, N. Kaspi, S. Polishook, D. Manulis, I. Ait Moulay Larbi, M. Benkhaldoun, Z. Daassou, A. El Azhari, Y. Moulane, Y. Broughton, J. Milner, J. Dobosz, T. Bolt, G. Lade, B. Gilmore, A. Kilmartin, P. Allen, W.H. Graham, P.B. Loader, B. McKay, G. Talbot, J. Parker, S. Abe, L. Bendjoya, P. Rivet, J.-P. Vernet, D. Di Fabrizio, L. Lorenzi, V. Magazzú, A. Molinari, E. Gazeas, K. Tzouganatos, L. Carbognani, A. Bonnoli, G. Marchini, A. Leto, G. Zanmar Sanchez, R. Mancini, L. Kattentidt, B. Dohrmann, M. Guhl, K. Rothe, W. Walzel, K. Wortmann, G. Eberle, A. Hampf, D. Ohlert, J. Krannich, G. Murawsky, G. Gährken, B. Gloistein, D. Alonso, S. Román, A. Communal, J.-E. Jabet, F. DeVisscher, S. Sérot, J. Janik, T. Moravec, Z. MacHado, P. Selva, A. Perelló, C. Rovira, J. Conti, M. Papini, R. Salvaggio, F. Noschese, A. Tsamis, V. Tigani, K. Barroy, P. Irzyk, M. Neel, D. Godard, J.P. Lanoiselée, D. Sogorb, P. Vérilhac, D. Bretton, M. Signoret, F. Ciabattari, F. Naves, R. Boutet, M. De Queiroz, J. Lindner, P. Lindner, K. Enskonatus, P. Dangl, G. Tordai, T. Eichler, H. Hattenbach, J. Peterson, C. Molnar, L.A. Howell, R.R.
- Abstract
Context. The tenuous nitrogen (N2) atmosphere on Pluto undergoes strong seasonal effects due to high obliquity and orbital eccentricity, and has recently (July 2015) been observed by the New Horizons spacecraft. Aims. The main goals of this study are (i) to construct a well calibrated record of the seasonal evolution of surface pressure on Pluto and (ii) to constrain the structure of the lower atmosphere using a central flash observed in 2015. Methods. Eleven stellar occultations by Pluto observed between 2002 and 2016 are used to retrieve atmospheric profiles (density, pressure, temperature) between altitude levels of ∼5 and ∼380 km (i.e. pressures from ∼10 μbar to 10 nbar). Results. (i) Pressure has suffered a monotonic increase from 1988 to 2016, that is compared to a seasonal volatile transport model, from which tight constraints on a combination of albedo and emissivity of N2 ice are derived. (ii) A central flash observed on 2015 June 29 is consistent with New Horizons REX profiles, provided that (a) large diurnal temperature variations (not expected by current models) occur over Sputnik Planitia; and/or (b) hazes with tangential optical depth of ∼0.3 are present at 4-7 km altitude levels; and/or (c) the nominal REX density values are overestimated by an implausibly large factor of ∼20%; and/or (d) higher terrains block part of the flash in the Charon facing hemisphere. © E. Meza et al. 2019.
- Published
- 2019
14. Investigating the properties of stripped-envelope supernovae; what are the implications for their progenitors?
- Author
-
Prentice, S.J., Ashall, C., James, P.A., Short, L., Mazzali, P.A., Bersier, D., Crowther, P.A., Barbarino, C., Chen, T.-W., Copperwheat, C.M., Darnley, M.J., Denneau, L., Elias-Rosa, N., Fraser, M., Galbany, L., Gal-Yam, A., Harmanen, J., Howell, D.A., Hosseinzadeh, G., Inserra, C., Kankare, E., Karamehmetoglu, E., Lamb, G.P., Limongi, M., Maguire, K., McCully, C., Olivares, F., Piascik, A.S., Pignata, G., Reichart, D.E., Rest, A., Reynolds, T., Rodríguez, Ó., Saario, J.L.O., Schulze, S., Smartt, S.J., Smith, K.W., Sollerman, J., Stalder, B., Sullivan, M., Taddia, F., Valenti, S., Vergani, S.D., Williams, S.C., Young, D.R., Prentice, S.J., Ashall, C., James, P.A., Short, L., Mazzali, P.A., Bersier, D., Crowther, P.A., Barbarino, C., Chen, T.-W., Copperwheat, C.M., Darnley, M.J., Denneau, L., Elias-Rosa, N., Fraser, M., Galbany, L., Gal-Yam, A., Harmanen, J., Howell, D.A., Hosseinzadeh, G., Inserra, C., Kankare, E., Karamehmetoglu, E., Lamb, G.P., Limongi, M., Maguire, K., McCully, C., Olivares, F., Piascik, A.S., Pignata, G., Reichart, D.E., Rest, A., Reynolds, T., Rodríguez, Ó., Saario, J.L.O., Schulze, S., Smartt, S.J., Smith, K.W., Sollerman, J., Stalder, B., Sullivan, M., Taddia, F., Valenti, S., Vergani, S.D., Williams, S.C., and Young, D.R.
- Abstract
We present observations and analysis of 18 stripped-envelope supernovae observed during 2013–2018. This sample consists of five H/He-rich SNe, six H-poor/He-rich SNe, three narrow lined SNe Ic, and four broad lined SNe Ic. The peak luminosity and characteristic time-scales of the bolometric light curves are calculated, and the light curves modelled to derive 56Ni and ejecta masses (MNi and Mej). Additionally, the temperature evolution and spectral line velocity curves of each SN are examined. Analysis of the [O I] line in the nebular phase of eight SNe suggests their progenitors had initial masses <20 M⊙. The bolometric light curve properties are examined in combination with those of other SE events from the literature. The resulting data set gives the Mej distribution for 80 SE–SNe, the largest such sample in the literature to date, and shows that SNe Ib have the lowest median Mej, followed by narrow-lined SNe Ic, H/He-rich SNe, broad-lined SNe Ic, and finally gamma-ray burst SNe. SNe Ic-6/7 show the largest spread of Mej ranging from ∼1.2–11 M⊙, considerably greater than any other subtype. For all SE–SNe
= 2.8 ± 1.5 M⊙ which further strengthens the evidence that SE–SNe arise from low-mass progenitors which are typically <5 M⊙ at the time of explosion, again suggesting MZAMS <25 M⊙. The low and lack of clear bimodality in the distribution implies <30 M⊙ progenitors and that envelope stripping via binary interaction is the dominant evolutionary pathway of these SNe. - Published
- 2019
15. Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters
- Author
-
Dey, L. Valtonen, M.J. Gopakumar, A. Zola, S. Hudec, R. Pihajoki, P. Ciprini, S. Matsumoto, K. Sadakane, K. Kidger, M. Nilsson, K. Mikkola, S. Sillanpää, A. Takalo, L.O. Lehto, H.J. Berdyugin, A. Piirola, V. Jermak, H. Baliyan, K.S. Pursimo, T. Caton, D.B. Alicavus, F. Baransky, A. Blay, P. Boumis, P. Boyd, D. Torrent, M.C. Campos, F. Gómez, J.C. Chandra, S. Chavushyan, V. Dalessio, J. Debski, B. Drozdz, M. Er, H. Erdem, A. Pérez, A.E. Ramazani, V.F. Filippenko, A.V. Gafton, E. Ganesh, S. Garcia, F. Gazeas, K. Godunova, V. Pinilla, F.G. Gopinathan, M. Haislip, J.B. Harmanen, J. Hurst, G. Janík, J. Jelinek, M. Joshi, A. Kagitani, M. Karjalainen, R. Kaur, N. Keel, W.C. Kouprianov, V.V. Kundera, T. Kurowski, S. Kvammen, A. Lacluyze, A.P. Lee, B.C. Liakos, A. Lindfors, E. De Haro, J.L. Mugrauer, M. Nogues, R.N. Neely, A.W. Nelson, R.H. Ogloza, W. Okano, S. Pajdosz-Śmierciak, U. Pandey, J.C. Perri, M. Poyner, G. Provencal, J. Raj, A. Reichart, D.E. Reinthal, R. Reynolds, T. Saario, J. Sadegi, S. Sakanoi, T. González, J.-L.S. Sameer Schweyer, T. Simon, A. Siwak, M. Alfaro, F.C.S. Sonbas, E. Steele, I. Stocke, J.T. Strobl, J. Tomov, T. Espasa, L.T. Valdes, J.R. Pérez, J.V. Verrecchia, F. Vasylenko, V. Webb, J.R. Yoneda, M. Zejmo, M. Zheng, W. Zielinski, P.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena - Abstract
Results from regular monitoring of relativistic compact binaries like PSR 1913+16 are consistent with the dominant (quadrupole) order emission of gravitational waves (GWs). We show that observations associated with the binary black hole (BBH) central engine of blazar OJ 287 demand the inclusion of gravitational radiation reaction effects beyond the quadrupolar order. It turns out that even the effects of certain hereditary contributions to GW emission are required to predict impact flare timings of OJ 287. We develop an approach that incorporates this effect into the BBH model for OJ 287. This allows us to demonstrate an excellent agreement between the observed impact flare timings and those predicted from ten orbital cycles of the BBH central engine model. The deduced rate of orbital period decay is nine orders of magnitude higher than the observed rate in PSR 1913+16, demonstrating again the relativistic nature of OJ 287's central engine. Finally, we argue that precise timing of the predicted 2019 impact flare should allow a test of the celebrated black hole "no-hair theorem" at the 10% level. © 2018. The American Astronomical Society. All rights reserved.
- Published
- 2018
16. Radio and optical intra-day variability observations of five blazars
- Author
-
Liu, X. Yang, P.P. Liu, J. Liu, B.R. Hu, S.M. Kurtanidze, O.M. Zola, S. Kraus, A. Krichbaum, T.P. Su, R.Z. Gazeas, K. Sadakane, K. Nilson, K. Reichart, D.E. Kidger, M. Matsumoto, K. Okano, S. Siwak, M. Webb, J.R. Pursimo, T. Garcia, F. Naves Nogues, R. Erdem, A. Alicavus, F. Balonek, T. Jorstad, S.G.
- Abstract
We carried out a pilot campaign of radio and optical band intra-day variability (IDV) observations of five blazars (3C66A, S5 0716+714, OJ287, B0925+504 and BL Lacertae) on 2015 December 18-21 by using the radio telescope in Effelsberg (Germany) and several optical telescopes in Asia, Europe and America. After calibration, the light curves from both 5 GHz radio band and the optical R band were obtained, although the data were not smoothly sampled over the sampling period of about four days. We tentatively analyse the amplitudes and time-scales of the variabilities, and any possible periodicity. The blazars vary significantly in the radio (except 3C66A and BL Lacertae with only marginal variations) and optical bands on intra- and inter-day time-scales, and the source B0925+504 exhibits a strong quasi-periodic radio variability. No significant correlation between the radio- and optical-band variability appears in the five sources, which we attribute to the radio IDV being dominated by interstellar scintillation whereas the optical variability comes from the source itself. However, the radioand optical-band variations appear to be weakly correlated in some sources and should be investigated based on well-sampled data from future observations. © 2017 The Authors.
- Published
- 2017
17. High accuracy measurement of gravitational wave back-reaction in the OJ287 black hole binary
- Author
-
Valtonen, M.J. Dey, L. Hudec, R. Zola, S. Gopakumar, A. Mikkola, S. Ciprini, S. Matsumoto, K. Sadakane, K. Kidger, M. Gazeas, K. Nilsson, K. Berdyugin, A. Piirola, V. Jermak, H. Baliyan, K.S. Reichart, D.E. Caton, D.B. Haque, S. González, G. Hynes, R. the OJ287-15/16 Collaboration
- Subjects
Astrophysics::High Energy Astrophysical Phenomena - Abstract
Blazar OJ287 exhibits large thermal flares at least twice every 12 years. The times of these flares have been predicted successfully using the model of a quasi-Keplerian eccentric black hole binary where the secondary impacts the accretion disk of the primary, creating the thermal flares. New measurements of the historical light curve have been combined with the observations of the 2015 November/December flare to identify the impact record since year 1886, and to constrain the orbit of the binary. The orbital solution shows that the binary period, now 12.062 years, is decreasing at the rate of 36 days per century. This corresponds to an energy loss to gravitational waves that is 6.5 ± 4 % less than the rate predicted by the standard quadrupolar gravitational wave (GW) emission. We show that the difference is due to higher order gravitational radiation reaction terms that include the dominant order tail contributions. © 2019 International Astronomical Union.
- Published
- 2017
18. 2FGL J0846.0+2820: A New Neutron Star Binary with a Giant Secondary and Variable gamma-Ray Emission
- Author
-
Swihart, S.J., Strader, J., Johnson, T.J., Cheung, C.C., Sand, D., Chomiuk, L., Larsen, S., Reichart, D.E., Haislip, J., Swihart, S.J., Strader, J., Johnson, T.J., Cheung, C.C., Sand, D., Chomiuk, L., Larsen, S., Reichart, D.E., and Haislip, J.
- Abstract
Contains fulltext : 180962.pdf (preprint version ) (Open Access)
- Published
- 2017
19. Colour variations in the GRB 120327A afterglow
- Author
-
European Commission, Slovenian Research Agency, National Research Foundation of Korea, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil), Melandri, A., Covino, Stefano, Zaninoni, E., Campana, S., Bolmer, J., Cobb, B.E., Gorosabel, Javier, Kim, J.W., Kuin, P., Kuroda, D., Malesani, D., Mundell, C. G., Nappo, F., Sbarufatti, B., Smith, R.J., Steele, I.A., Topinka, M., Trotter, A.S., Virgili, F.J., Bernardini, M.G., D'Avanzo, P., D'Elia, V., Fugazza, D., Ghirlanda, G., Gomboc, A., Greiner, J., Guidorzi, C., Haislip, J.B., Hanayama, H., Hanlon, L., Im, M., Ivarsen, K.M., Japelj, J., Jelínek, M., Kawai, N., Kobayashi, S., Kopac, D., LaCluyze, A.P., Martin-Carrillo, A., Murphy, D., Reichart, D.E., Salvaterra, R., Salafia, O.S., Tagliaferri, G., Vergani, S.D., European Commission, Slovenian Research Agency, National Research Foundation of Korea, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brasil), Melandri, A., Covino, Stefano, Zaninoni, E., Campana, S., Bolmer, J., Cobb, B.E., Gorosabel, Javier, Kim, J.W., Kuin, P., Kuroda, D., Malesani, D., Mundell, C. G., Nappo, F., Sbarufatti, B., Smith, R.J., Steele, I.A., Topinka, M., Trotter, A.S., Virgili, F.J., Bernardini, M.G., D'Avanzo, P., D'Elia, V., Fugazza, D., Ghirlanda, G., Gomboc, A., Greiner, J., Guidorzi, C., Haislip, J.B., Hanayama, H., Hanlon, L., Im, M., Ivarsen, K.M., Japelj, J., Jelínek, M., Kawai, N., Kobayashi, S., Kopac, D., LaCluyze, A.P., Martin-Carrillo, A., Murphy, D., Reichart, D.E., Salvaterra, R., Salafia, O.S., Tagliaferri, G., and Vergani, S.D.
- Abstract
Aims. We present a comprehensive temporal and spectral analysis of the long Swift GRB 120327A afterglow data to investigate possible causes of the observed early-time colour variations. Methods. We collected data from various instruments and telescopes in X-ray, ultraviolet, optical, and near-infrared bands, and determined the shapes of the afterglow early-time light curves. We studied the overall temporal behaviour and the spectral energy distributions from early to late times. Results. The ultraviolet, optical, and near-infrared light curves can be modelled with a single power-law component between 200 and 2 × 10 s after the burst event. The X-ray light curve shows a canonical steep-shallow-steep behaviour that is typical of long gamma-ray bursts. At early times a colour variation is observed in the ultraviolet/optical bands, while at very late times a hint of a re-brightening is visible. The observed early-time colour change can be explained as a variation in the intrinsic optical spectral index, rather than an evolution of the optical extinction.© 2017 ESO.
- Published
- 2017
20. Primary black hole spin in oj 287 AS determined by the general relativity centenary flare
- Author
-
Valtonen, M.J. Zola, S. Ciprini, S. Gopakumar, A. Matsumoto, K. Sadakane, K. Kidger, M. Gazeas, K. Nilsson, K. Berdyugin, A. Piirola, V. Jermak, H. Baliyan, K.S. Alicavus, F. Boyd, D. Torrent, M.C. Campos, F. Gómez, J.C. Caton, D.B. Chavushyan, V. Dalessio, J. Debski, B. Dimitrov, D. Drozdz, M. Er, H. Erdem, A. Pérez, A.E. Ramazani, V.F. Filippenko, A.V. Ganesh, S. Garcia, F. Gómez Pinilla, F. Gopinathan, M. Haislip, J.B. Hudec, R. Hurst, G. Ivarsen, K.M. Jelinek, M. Joshi, A. Kagitani, M. Kaur, N. Keel, W.C. Lacluyze, A.P. Lee, B.C. Lindfors, E. Lozano De Haro, J. Moore, J.P. Mugrauer, M. Naves Nogues, R. Neely, A.W. Nelson, R.H. Ogloza, W. Okano, S. Pandey, J.C. Perri, M. Pihajoki, P. Poyner, G. Provencal, J. Pursimo, T. Raj, A. Reichart, D.E. Reinthal, R. Sadegi, S. Sakanoi, T. Salto González, J.-L. Sameer Schweyer, T. Siwak, M. Soldán Alfaro, F.C. Sonbas, E. Steele, I. Stocke, J.T. Strobl, J. Takalo, L.O. Tomov, T. Tremosa Espasa, L. Valdes, J.R. Valero Pérez, J. Verrecchia, F. Webb, J.R. Yoneda, M. Zejmo, M. Zheng, W. Telting, J. Saario, J. Reynolds, T. Kvammen, A. Gafton, E. Karjalainen, R. Harmanen, J. Blay, P.
- Subjects
General Relativity and Quantum Cosmology ,Astrophysics::High Energy Astrophysical Phenomena - Abstract
OJ 287 is a quasi-periodic quasar with roughly 12 year optical cycles. It displays prominent outbursts that are predictable in a binary black hole model. The model predicted a major optical outburst in 2015 December. We found that the outburst did occur within the expected time range, peaking on 2015 December 5 at magnitude 12.9 in the optical R-band. Based on Swift/XRT satellite measurements and optical polarization data, we find that it included a major thermal component. Its timing provides an accurate estimate for the spin of the primary black hole, . The present outburst also confirms the established general relativistic properties of the system such as the loss of orbital energy to gravitational radiation at the 2% accuracy level, and it opens up the possibility of testing the black hole no-hair theorem with 10% accuracy during the present decade. © 2016. The American Astronomical Society. All rights reserved.
- Published
- 2016
21. A photometric redshift of z = 6.39 ± 0.12 for GRB 050904
- Author
-
Ivarsen, K.M., Levan, A., Fernandez, A.J.M., Barthelmy, S., MacLeod, C.L., Hartmann, D.H., Canterna, R., Moon, D.S., Bayliss, M.B., Tanvir, N., Gorosabel, J., Zdarowicz, C.M., Lamb, D.Q., Kulkarni, S.R., Fruchter, A.S., Gehrels, N., Moles, M., Hudec, R., Alvarez, A., Bartelme, J.W., Guziy, S., Kirschbrown, J.R., Evans, C.R., Castro-Tirado, A.J., Price, P.A., Rol, E., Williams, G.G., Prada, F., Bersier, D., Chapman, R., Alfaro, E., Crain, J.A., Priddey, R., Reichart, D.E., Rhoads, J., Mack, C.E., Kasliwal, M.M., Clemens, J.C., De Ugarte Postigo, A., Foster, A.C., Jelinek, M., Park, H.-S., Maturana, D., Burrows, D.N., O'Brien, P., Soderberg, A.M., Kubanek, P., Graham, J., LaCluyze, A., Kumar, N.D., Ugarte, P., Gal-Yam, A., Cenko, S.B., Haislip, J.B., Klose, S., Henden, A.A., Vitek, S., Pizarro, S., Jarvis, M.J., Schmidt, B.P., Fox, D.B., Nysewander, M.C., Wijers, R.A.M.J., Figueredo, E., Cypriano, E.S., Kouveliotou, C., and Harrison, F.A.
- Abstract
Gamma-ray bursts (GRBs) and their afterglows are the most brilliant transient events in the Universe. Both the bursts themselves and their afterglows have been predicted to be visible out to redshifts of z ≈ 20, and therefore to be powerful probes of the early Universe1,2. The burst GRB 000131, at z = 4.50, was hitherto the most distant such event identified3. Here we report the discovery of the bright near-infrared afterglow of GRB 050904 (ref. 4). From our measurements of the near-infrared afterglow, and our failure to detect the optical afterglow, we determine the photometric redshift of the burst to be z = 6.39-0.12+0.11 (refs 5-7). Subsequently, it was measured8 spectroscopically to be z = 6.29 ± 0.01, in agreement with our photometric estimate. These results demonstrate that GRBs can be used to trace the star formation, metallicity, and reionization histories of the early Universe.
- Published
- 2006
- Full Text
- View/download PDF
22. Discovery of GRB 020405 and Its Late Red Bump
- Author
-
Price P.A., Kulkarni S.R., Berger E., Fox D.W., Bloom J.S., Djorgovski S.G., Frail D.A., Galama T.J., Harrison F.A., McCarthy P., Reichart D.E., Sari R., Yost S.A., Jerjen H., Flint K., Phillips A., Warren B.E., Axelrod T.S., and Chevalier R.A. et al
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
We present the discovery of GRB 020405 made with the Interplanetary Network (IPN). With a duration of 60 s, the burst appears to be a typical long-duration event. We observed the 75 arcmin^{2} IPN error region with the Mount Stromlo Observatory's 50 inch robotic telescope and discovered a transient source that subsequently decayed and was also associated with a variable radio source. We identify this source as the afterglow of GRB 020405. Subsequent observations by other groups found varying polarized flux and established a redshift of 0.690 to the host galaxy. Motivated by the low redshift, we triggered observations with WFPC2 on board the Hubble Space Telescope (HST). Modeling the early ground-based data with a jet model, we find a clear red excess over the decaying optical light curves that is present between day 10 and day 141 (the last HST epoch). This bump has the spectral and temporal features expected of an underlying supernova (SN). In particular, the red color of the putative SN is similar to that of the SN associated with GRB 011121 at late time. Restricting the sample of GRBs to those with z
- Published
- 2003
23. The unusually long duration gamma-ray burst GRB 000911: Discovery of the afterglow and host galaxy
- Author
-
Cline, T., Hurley, K., Mahabal, A., Mazets, E., Frail, D.A., Berger, E., Schmidt, B.P., Golenetskii, S., Djorgovski, S.G., Morrison, G., Reichart, D.E., Trombka, J., Bloom, J.S., Harrison, F.A., Sari, R., Price, P.A., Yost, S.A., Galama, T.J., Axelrod, T.S., Kulkarni, S.R., and Fox, D.W.
- Abstract
Of all the well-localized gamma-ray bursts, GRB 000911 has the longest duration (T90 = 500 s) and ranks in the top 1% of BATSE bursts for fluence. Here we report the discovery of the afterglow of this unique burst. In order to simultaneously fit our radio and optical observations, we are required to invoke a model involving a hard electron distribution, p ∼ 1.5, and a jet-break time less than 1.5 days. A spectrum of the host galaxy taken 111 days after the burst reveals a single emission line, interpreted as [011] at a redshift z = 1.0585, and a continuum break that we interpret as the Balmer limit at this redshift. Despite the long 790, the afterglow of GRB 000911 is not unusual in any other way when compared to the set of afterglows studied to date. We conclude that the duration of the GRB plays little part in determining the physics of the afterglow.
- Published
- 2002
- Full Text
- View/download PDF
24. GRB 010921: Discovery of the first high energy transient explorer afterglow
- Author
-
Yost, S.A., Bloom, J.S., Graziani, C., Harrison, F.A., Fox, D.W., Ricker, G.R., Berger, E., Fenimore, E., Mahabal, A., Frail, D.A., Djorgovski, S.G., Atteia, J.-L., Hurley, K., Van Der Spek, R., Kawai, N., Kulkarni, S.R., Price, P.A., Henden, A.A., and Reichart, D.E.
- Abstract
We report the discovery of the optical and radio afterglow of GRB 010921, the first gamma-ray burst afterglow to be found from a localization by the High Energy Transient Explorer satellite. We present optical spectroscopy of the host galaxy, which we find to be a dusty and apparently normal star-forming galaxy at z = 0.451. The unusually steep optical spectral slope of the afterglow can be explained by heavy extinction, Av > 0.5 mag, along the line of sight to the GRB. Dust with similar Av for the host galaxy as a whole appears to be required by the measurement of a Balmer decrement in the spectrum of the host galaxy.
- Published
- 2002
- Full Text
- View/download PDF
25. Evidence for a molecular cloud origin of gamma-ray bursts: Implications for the nature of star formation in the universe
- Author
-
Reichart, D.E. and Price, P.A.
- Abstract
It appears that the majority of rapidly and well-localized gamma-ray bursts with undetected or dark optical afterglows ("dark bursts") occur in clouds of size R ≳ 10L491/2 pc and mass M ≳ 3 × 105L49 M⊙ where L is the isotropic-equivalent peak luminosity of the optical flash. We show that clouds of this size and mass cannot be modeled as a gas that is bound by pressure equilibrium with a warm or hot phase of the interstellar medium (i.e., a diffuse cloud): such a cloud would be unstable to gravitational collapse, resulting in the collapse and fragmentation of the cloud until a burst of star formation reestablishes pressure equilibrium within the fragments and the fragments are bound by self-gravity (i.e., a molecular cloud). Consequently, dark bursts probably occur in molecular clouds, in which case dark bursts are probably a by-product of this burst of star formation, if the molecular cloud formed recently, and/or the result of lingering or latter generation star formation if the molecular cloud formed some time ago. We then show that if bursts occur in Galactic-like molecular clouds, the column densities of which might be universal, the number of dark bursts can be comparable to the number of bursts with detected optical afterglows: this is what is observed, which suggests that the bursts with detected optical afterglows might also occur in molecular clouds. We confirm this by modeling and constraining the distribution of column densities, measured from absorption of the X-ray afterglow, of the bursts with detected optical afterglows: we find that this distribution is consistent with the expectation for bursts that occur in molecular clouds and is not consistent with the expectation for bursts that occur in diffuse clouds. Consequently, we find that all but perhaps a few bursts, dark or otherwise, probably occur in molecular clouds. Finally, we show that the limited information that is available on the column densities of the dark bursts is not consistent with the idea that the dark bursts occur in the nuclear regions of ultraluminous infrared/submillimeter-bright galaxies, from which we draw conclusions about the nature of star formation in the universe.
- Published
- 2002
- Full Text
- View/download PDF
26. A possible Cepheid-like luminosity estimator for the long gamma-ray bursts
- Author
-
Lamb, D.Q., Hurley, K., Reichart, D.E., Ramirez-Ruiz, E., Cline, T.L., and Fenimore, E.E.
- Abstract
We present a possible Cepheid-like luminosity estimator for the long gamma-ray bursts based on the variability of their light curves. To construct the luminosity estimator, we use CGRO/BATSE data for 13 bursts, Wind/Konus data for five bursts, Ulysses/GRB data for one burst, and NEAR/XGRS data for one burst. Spectroscopic redshifts, peak fluxes, and high-resolution light curves are available for 11 of these bursts; partial information is available for the remaining nine bursts. We find that the isotropic equivalent peak luminosities L of these bursts positively correlate with a rigorously constructed measure V of the variability of their light curves. We fit to these data a model that accommodates both intrinsic scatter (statistical variance) and extrinsic scatter (sample variance). We find that L ∼ V3.3+1.1-09. If one excludes GRB 980425 from the fit, on the grounds that its association with SN 1998bw at a redshift of z = 0.0085 is not secure, the luminosity estimator spans ≈2.5 orders of magnitude in L, and the slope of the correlation between L and V is positive with a probability of 1 - (1.4 × 10-4) (3.8 σ). Although GRB 980425 is excluded from this fit, its L and V values are consistent with the fitted model, which suggests that GRB 980425 may well be associated with SN 1998bw and that GRB 980425 and the cosmological bursts may share a common physical origin. If one includes GRB 980425 in the fit, the luminosity estimator spans ≈6.3 orders of magnitude in L, and the slope of the correlation is positive with a probability of 1 - (9.3 × 10-7) (4.9 σ). In either case, the luminosity estimator yields best-estimate luminosities that are accurate to a factor of ≈4, or best-estimate luminosity distances that are accurate to a factor of ≈2. Regardless of whether GRB 980425 should be included in the fit, its light curve is unique in that it is much less variable than the other ≈17 light curves of bursts in our sample for which the signal-to-noise ratio is reasonably good.
- Published
- 2001
- Full Text
- View/download PDF
27. Light curves and spectra of dust echoes from gamma-ray bursts and their afterglows: Continued evidence that GRB 970228 is associated with a supernova
- Author
-
Reichart, D.E.
- Abstract
The relative brightening and reddening of the optical afterglows of GRB 970228 and GRB 980326 around 20-30 days after these bursts have been attributed to supernovae, which are red (blueward of their spectral peak) and which peak in time after ≈ 20(1 + z) days. However, this direct evidence for a gamma-ray burst/supernova (GRB/SN) connection has recently been challenged. It has been suggested that the late afterglows of these bursts can be explained by dust echoes, of which we consider two cases: (1) the scattering of light from the afterglow (the forward shock), the optical flash (the reverse shock), and/or the optical light from the burst itself by a shell of dust at a radius R from the progenitor and (2) the absorption and thermal reemission of this light by this shell of dust. In this paper, we model and compute dust echo light curves and spectra for both cases. Although the late-time afterglow of GRB 980326 was not sufficiently well sampled to rule out a dust echo description, we find that the late-time afterglow of GRB 970228 cannot be explained by a dust echo.
- Published
- 2001
- Full Text
- View/download PDF
28. Dust extinction curves and Lyα forest flux deficits for use in modeling gamma-ray burst afterglows and all other extragalactic point sources
- Author
-
Reichart, D.E.
- Abstract
Since gamma-ray burst afterglows were first detected in 1997, the relativistic fireball model has emerged as the leading theoretical explanation of the afterglows. In this paper, we present a very general, Bayesian inference formalism with which this, or any other, afterglow model can be tested, and with which the parameter values of acceptable models can be constrained, given the available photometry. However, before model comparison or parameter estimation can be attempted, one must also consider the physical processes that affect the afterglow as it propagates along the line of sight from the burst source to the observer. Namely, how does extinction by dust, both in the host galaxy and in our galaxy, and absorption by the Lyα forest and by H I in the host galaxy, change the intrinsic spectrum of the afterglow? Consequently, we also present in this paper a very general, eight-parameter dust extinction curve model and a two-parameter model of the Lyα forest flux deficit versus redshift distribution. Using fitted extinction curves from Milky Way and Magellanic Cloud lines of sight, and measurements of Lyα forest flux deficits from quasar absorption line systems, we construct a Bayesian prior probability distribution that weights this additional, but necessary, parameter space such that the volume of the solution space is reduced significantly, a priori. Finally, we discuss the broad applicability of these results to the modeling of light from all other extragalactic point sources, such as Type Ia supernovae.
- Published
- 2001
- Full Text
- View/download PDF
29. Optical and near-infrared observations of the afterglow of GRB 980329 from 15 hours to 10 days
- Author
-
Quashnock, J.M., Castander, F.J., Lamb, D.Q., Cooray, A.R., Rhoads, J.E., Reichart, D.E., Cole, D.M., Fruchter, A.S., Klose, S., Metzger, M.R., and Vanden Berk, D.E.
- Abstract
We report I-band observations of the GRB 980329 field made on 1998 March 29 with the 1.34 m Tautenberg Schmidt telescope, R-, J- and K-band observations made on 1998 April 1 with the APO 3.5 m telescope, R- and I-band observations made on 1998 April 3 with the Mayall 4 m telescope at KPNO, and J- and K-band observations made 1998 April 6-8 with the Keck-I 10 m telescope. We show that these and other reported measurements are consistent with a power-law fading of the optical/near-infrared source that is coincident with the variable radio source VLA J0702+3850. This firmly establishes that this source is the afterglow of GRB 980329.
- Published
- 1999
- Full Text
- View/download PDF
30. A deficit of high-redshift, high-luminosity X-ray clusters: Evidence for a high value of Ωm?
- Author
-
Nichol, R.C., Reichart, D.E., Castander, F.J., Collins, C.A., Romer, A.K., Ulmer, M.P., Burke, D.J., and Holden, B.P.
- Abstract
From the Press-Schechter mass function and the empirical X-ray cluster luminosity-temperature (L-T) relation, we construct an X-ray cluster luminosity function that can be applied to the growing number of high-redshift, X-ray cluster luminosity catalogs to constrain cosmological parameters. In this paper, we apply this luminosity function to the Einstein Medium Sensitivity Survey (EMSS) and the ROSAT Brightest Cluster Sample (BCS) luminosity function to constrain the value of Ωm. In the case of the EMSS, we find a factor of 4-5 fewer X-ray clusters at redshifts above z = 0.4 than below this redshift at luminosities above LX = 7 × 1044 ergs s-1 (0.3-3.5 keV), which suggests that the X-ray cluster luminosity function has evolved above L(Black star). At lower luminosities, this luminosity function evolves only minimally, if at all. Using Bayesian inference, we find that the degree of evolution at high luminosities suggests that Ωm = 0.96+0.36-0.32, given the best-fit L-T relation of Reichart, Castander, & Nichol. When we account for the uncertainty in how the empirical L-T relation evolves with redshift, we find that Ωm ≈ 1.0 ± 0.4. However, it is unclear to what degree systematic effects may affect this and similarly obtained results.
- Published
- 1999
- Full Text
- View/download PDF
31. GRB 970228 revisited: Evidence for a supernova in the light curve and late spectral energy distribution of the afterglow
- Author
-
Reichart, D.E.
- Abstract
At the time of its discovery, the optical and X-ray afterglow of GRB 970228 appeared to be a ringing endorsement of the previously untried relativistic fireball model of gamma-ray burst (GRB) afterglows, but now that nearly a dozen optical afterglows to GRBs have been observed, the wavering light curve and reddening spectrum of this afterglow make it perhaps the most difficult of the observed afterglows to reconcile with the fireball model. In this Letter, we argue that this afterglow's unusual temporal and spectral properties can be attributed to a supernova that overtook the light curve nearly 2 weeks after the GRB. This is the strongest case yet for a GRB/supernova connection. It strengthens the case that a supernova also dominated the late afterglow of GRB 980326 and the case that GRB 980425 is related to SN 1998bw.
- Published
- 1999
- Full Text
- View/download PDF
32. The redshift of GRB 970508
- Author
-
Reichart, D.E.
- Abstract
GRB 970508 is the second gamma-ray burst (GRB) for which an optical afterglow has been detected. It is the first GRB for which a distance scale has been determined: absorption and emission features in spectra of the optical afterglow place GRB 970508 at a redshift of z ≥ 0.835. The lack of a Lyα forest in these spectra further constrains this redshift to be less than z ∼ 2.3. I show that the spectrum of the optical afterglow of GRB 970508, once corrected for Galactic absorption, is inconsistent with the relativistic blast-wave model unless a second, redshifted source of extinction is introduced. This second source of extinction may be the yet unobserved host galaxy. I determine its redshift to be z = 1.09-0.41+0.14, which is consistent with the observed redshift of z = 0.835. Redshifts greater than z = 1.40 are ruled out at the 3 σ confidence level.
- Published
- 1998
- Full Text
- View/download PDF
33. Observations and theoretical implications of GRB 970228
- Author
-
Reichart, D.E.
- Abstract
GRB 970228 is the first gamma-ray burst (GRB) for which prolonged postburst transient X-ray, optical, and infrared emission has been detected. Recent Hubble Space Telescope (HST) observations show that the transient consists of two components: a point source, which is known to be fading, and an extended source, which is possibly fading. I fit standard fireball remnant models to the first month of X-ray, optical, and infrared measurements, which may be done without assuming a GRB distance scale. I show that its emission is consistent with that of the remnant of a relativistically expanding impulsive fireball in which a forward shock dominates the emission of the GRB event: the piston model. However, two discrepant measurements may indicate that the postburst flux varies by a factor of ∼3 on timescales of days or weeks. Furthermore, using the HST observations and the fitted model, I show that the extended object probably is fading, which may place GRB 970228 at Galactic halo distances.
- Published
- 1997
- Full Text
- View/download PDF
34. Constraints on the redshift and luminosity distributions of gamma-ray bursts in an Einstein-de Sitter universe
- Author
-
Mészáros, P. and Reichart, D.E.
- Abstract
Two models of the gamma-ray burst population, one with a standard candle luminosity and one with a power-law luminosity distribution, are χ2-fitted to the union of two data sets: the differential number versus peak flux distribution of BATSE's long-duration bursts and the time dilation and energy shifting versus peak flux information of pulse duration time dilation factors, interpulse duration time dilation factors, and peak energy shifting factors. The differential peak flux distribution is corrected for threshold effects at low peak fluxes and at short burst durations, and the pulse duration time dilation factors are also corrected for energy stretching and similar effects. Within an Einstein-de Sitter cosmology, we place strong bounds on the evolution of the bursts, and these bounds are incompatible with a homogeneous population, assuming a power-law spectrum and no luminosity evolution. Additionally, under the implied conditions of moderate evolution, the 90% width of the observed luminosity distribution is shown to be ≲ 102, which is less constrained than others have demonstrated it to be assuming no evolution. Finally, redshift considerations indicate that if the redshifts of BATSE's faintest bursts are to be compatible with that which is currently known for galaxies, a standard candle luminosity is unacceptable, and, in the case of the power-law luminosity distribution, a mean luminosity ≲1057 photons s-1 is favored.
- Published
- 1997
- Full Text
- View/download PDF
35. New insights on the binary Asteroid 121 Hermione
- Author
-
Descamps, P., primary, Marchis, F., additional, Durech, J., additional, Emery, J., additional, Harris, A.W., additional, Kaasalainen, M., additional, Berthier, J., additional, Teng-Chuen-Yu, J.-P., additional, Peyrot, A., additional, Hutton, L., additional, Greene, J., additional, Pollock, J., additional, Assafin, M., additional, Vieira-Martins, R., additional, Camargo, J.I.B., additional, Braga-Ribas, F., additional, Vachier, F., additional, Reichart, D.E., additional, Ivarsen, K.M., additional, Crain, J.A., additional, Nysewander, M.C., additional, Lacluyze, A.P., additional, Haislip, J.B., additional, Behrend, R., additional, Colas, F., additional, Lecacheux, J., additional, Bernasconi, L., additional, Roy, R., additional, Baudouin, P., additional, Brunetto, L., additional, Sposetti, S., additional, and Manzini, F., additional
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.