16 results on '"Rebolini E"'
Search Results
2. Evidence for an electromagnon in GdMn2O5 : A multiferroic with a large electric polarization
- Author
-
Berrod, Quentin, Vaunat, A, Balédent, V, Petit, S, Roy, P, Brubach, J, Giri, G, Rebolini, E, Steffens, P, Raymond, S, Lepetit, M, Foury-Leylekian, P, Synthèse, Structure et Propriétés de Matériaux Fonctionnels (STEP ), SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SYMMES), Institut de Chimie du CNRS (INC)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Léon Brillouin (LLB - UMR 12), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), ILL, Magnétisme et Diffusion Neutronique (MDN ), Modélisation et Exploration des Matériaux (MEM), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Théorie de la Matière Condensée (TMC), Institut Néel (NEEL), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Théorie de la Matière Condensée (NEEL - TMC)
- Subjects
[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft] - Abstract
International audience; We report in this paper the dynamical properties of GdMn2O5 studied by inelastic neutron scattering and infrared spectroscopy assisted by ab initio calculations. Our work sheds light on the electromagnon, a magnetic mode that can be excited by an electric field. Combining spin-wave measurements, simulations, and ab initio calculations of the single-ion anisotropies and the superexchange interactions, we describe in detail themagnetic contribution to this mode. An exhaustive study of the temperature and polarization dependence of its electroactivity completes this comprehensive study of the complex GdMn2O5 system.
- Published
- 2021
- Full Text
- View/download PDF
3. Evidence for an electromagnon in GdMn2O5 : A multiferroic with a large electric polarization
- Author
-
Vaunat, A., primary, Balédent, V., additional, Petit, S., additional, Roy, P., additional, Brubach, J. B., additional, Giri, G., additional, Rebolini, E., additional, Steffens, P., additional, Raymond, S., additional, Berrod, Q., additional, Lepetit, M. B., additional, and Foury-Leylekian, P., additional
- Published
- 2021
- Full Text
- View/download PDF
4. Representation of the virtual space in extended systems – a correlation energy convergence study
- Author
-
Hansen, A. S., primary, Baardsen, G., additional, Rebolini, E., additional, Maschio, L., additional, and Pedersen, T. B., additional
- Published
- 2020
- Full Text
- View/download PDF
5. Magnetic structure of a multiferroic compound: Cu 2 OCl 2 .
- Author
-
Lévêque J, Rebolini E, Saúl A, and Lepetit MB
- Abstract
The Cu
2 OCl2 compound has been shown to be a high-temperature spin-driven multiferroic system, with a linear magneto-electric coupling. In this paper we propose a complete study of its magnetic structure. We derive the low energy magnetic Hamiltonian using ab initio multi-reference configuration interaction and the spin structure using Monte-Carlo simulations. Among the three magnetic structures proposed in the literature from different experimental results, our calculations support the incommensurate cycloid magnetic structure with a q⃑ = ( qa ,0,0) propagation vector. Using symmetry analysis, we show that all experimental results (polarization, magnetic order, magneto-electric coupling) can be accounted for in the Fd ' d '2 magnetic space group (2-fold axis along c⃑ ).- Published
- 2024
- Full Text
- View/download PDF
6. Why the pyrochlore-like antiferromagnet NaCu 3 F 7 is magnetically non-frustrated.
- Author
-
Lévêque J, Rebolini E, Lepetit MB, and Saúl A
- Abstract
We present a theoretical study of the magnetic properties for the pyrochlore-like NaCu
3 F7 compound, which surprisingly experience little or no frustration. The magnetic effective exchange interactions were calculated using ab-initio methods explicitly treating the electronic correlation. A model Hamiltonian (quantum Heisenberg Hamiltonian, and for comparison a spin 1/2 Ising Hamiltonian) was built from these interactions and used to determine the zero temperature magnetic order versus magnetic field. The magnetic order at zero magnetic field is non frustrated and associated with the propagation vectorq→=(0,0,0). The magnetization versus magnetic field reveals the existence of a 1/3 plateau that could be observed in high-pulsed magnetic field experiments. Analyzing the magnetic interactions, we highlight the importance of the magnetic ion nature, and the lattice distortion, in the non-frustrated nature of the NaCu3 F7 magnetic structure, despite its triangular/Kagome subnetworks. We believe that this non-frustrated behavior could also take place in other triangular copper-based systems., (© 2024 IOP Publishing Ltd.)- Published
- 2024
- Full Text
- View/download PDF
7. The OpenMolcas Web : A Community-Driven Approach to Advancing Computational Chemistry.
- Author
-
Li Manni G, Fdez Galván I, Alavi A, Aleotti F, Aquilante F, Autschbach J, Avagliano D, Baiardi A, Bao JJ, Battaglia S, Birnoschi L, Blanco-González A, Bokarev SI, Broer R, Cacciari R, Calio PB, Carlson RK, Carvalho Couto R, Cerdán L, Chibotaru LF, Chilton NF, Church JR, Conti I, Coriani S, Cuéllar-Zuquin J, Daoud RE, Dattani N, Decleva P, de Graaf C, Delcey MG, De Vico L, Dobrautz W, Dong SS, Feng R, Ferré N, Filatov Gulak M, Gagliardi L, Garavelli M, González L, Guan Y, Guo M, Hennefarth MR, Hermes MR, Hoyer CE, Huix-Rotllant M, Jaiswal VK, Kaiser A, Kaliakin DS, Khamesian M, King DS, Kochetov V, Krośnicki M, Kumaar AA, Larsson ED, Lehtola S, Lepetit MB, Lischka H, López Ríos P, Lundberg M, Ma D, Mai S, Marquetand P, Merritt ICD, Montorsi F, Mörchen M, Nenov A, Nguyen VHA, Nishimoto Y, Oakley MS, Olivucci M, Oppel M, Padula D, Pandharkar R, Phung QM, Plasser F, Raggi G, Rebolini E, Reiher M, Rivalta I, Roca-Sanjuán D, Romig T, Safari AA, Sánchez-Mansilla A, Sand AM, Schapiro I, Scott TR, Segarra-Martí J, Segatta F, Sergentu DC, Sharma P, Shepard R, Shu Y, Staab JK, Straatsma TP, Sørensen LK, Tenorio BNC, Truhlar DG, Ungur L, Vacher M, Veryazov V, Voß TA, Weser O, Wu D, Yang X, Yarkony D, Zhou C, Zobel JP, and Lindh R
- Abstract
The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.
- Published
- 2023
- Full Text
- View/download PDF
8. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science.
- Author
-
Teale AM, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov AV, Ayers PW, Baerends EJ, Barone V, Calaminici P, Cancès E, Carter EA, Chattaraj PK, Chermette H, Ciofini I, Crawford TD, De Proft F, Dobson JF, Draxl C, Frauenheim T, Fromager E, Fuentealba P, Gagliardi L, Galli G, Gao J, Geerlings P, Gidopoulos N, Gill PMW, Gori-Giorgi P, Görling A, Gould T, Grimme S, Gritsenko O, Jensen HJA, Johnson ER, Jones RO, Kaupp M, Köster AM, Kronik L, Krylov AI, Kvaal S, Laestadius A, Levy M, Lewin M, Liu S, Loos PF, Maitra NT, Neese F, Perdew JP, Pernal K, Pernot P, Piecuch P, Rebolini E, Reining L, Romaniello P, Ruzsinszky A, Salahub DR, Scheffler M, Schwerdtfeger P, Staroverov VN, Sun J, Tellgren E, Tozer DJ, Trickey SB, Ullrich CA, Vela A, Vignale G, Wesolowski TA, Xu X, and Yang W
- Subjects
- Humans, Materials Science
- Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
- Published
- 2022
- Full Text
- View/download PDF
9. For an ab initio calculation of the magnetic excitations: RelaxSE!
- Author
-
Rebolini E and Lepetit MB
- Abstract
In this paper, we present a novel efficient and parallel implementation, RelaxSE, for the calculation of the low-lying excited states and energies of strongly correlated systems. RelaxSE is based on the fully uncontracted multi-reference method of Selected Active Space + Single excitations. This method has been specifically designed to be able to tackle systems with numerous open shells per atoms. It is, however, computationally challenging due to the rapid scaling of the number of determinants and their non-trivial ordering induced by the selection process. We propose a combined determinant-driven and integral-driven approach designed for hybrid OpenMP/MPI parallelization. The performances of RelaxSE are evaluated on a controlled test set and show linear scaling with respect to the number of determinants and a small overhead due to the parallelization. Systems with up to 1 × 10
9 determinants are successfully computed.- Published
- 2021
- Full Text
- View/download PDF
10. Pressure-dependent X-ray diffraction of the multiferroics RMn 2 O 5 .
- Author
-
Peng W, Balédent V, Lepetit MB, Vaunat A, Rebolini E, Greenblatt M, and Foury-Leylekian P
- Abstract
The room-temperature structural properties of the RMn
2 O5 multiferroics have been investigated under pressure, using powder X-ray scattering and density functional theory (DFT) calculations. It was possible to determine the lattice parameters and the main atomic positions as a function of pressure. Good agreement was observed between the X-ray and DFT results for most of the determined crystallographic data. From the DFT calculations, it was possible to infer the pressure evolution of the exchange interactions, and this analysis led to the conclusion that the onset of the q = (½, 0, ½) magnetic structure under pressure is related to the increase in the J1 super-exchange terms (due to the reduction in the Mn-O distances) compared with the Mn-R exchange interactions. In addition, the 1D antiferromagnetic character of the compounds should be reinforced under pressure.- Published
- 2019
- Full Text
- View/download PDF
11. Divide-Expand-Consolidate Second-Order Møller-Plesset Theory with Periodic Boundary Conditions.
- Author
-
Rebolini E, Baardsen G, Hansen AS, Leikanger KR, and Pedersen TB
- Abstract
We present a generalization of the divide-expand-consolidate (DEC) framework for local coupled-cluster calculations to periodic systems and test it at the second-order Møller-Plesset (MP2) level of theory. For simple model systems with periodicity in one, two, and three dimensions, comparisons with extrapolated molecular calculations and the local MP2 implementation in the Cryscor program show that the correlation energy errors of the extended DEC (X-DEC) algorithm can be controlled through a single parameter, the fragment optimization threshold. Two computational bottlenecks are identified: the size of the virtual orbital spaces and the number of pair fragments required to achieve a given accuracy of the correlation energy. For the latter, we propose an affordable algorithm based on cubic splines interpolation of a limited number of pair-fragment interaction energies to determine a pair cutoff distance in accordance with the specified fragment optimization threshold.
- Published
- 2018
- Full Text
- View/download PDF
12. Comparison of Three Efficient Approximate Exact-Exchange Algorithms: The Chain-of-Spheres Algorithm, Pair-Atomic Resolution-of-the-Identity Method, and Auxiliary Density Matrix Method.
- Author
-
Rebolini E, Izsák R, Reine SS, Helgaker T, and Pedersen TB
- Abstract
We compare the performance of three approximate methods for speeding up evaluation of the exchange contribution in Hartree-Fock and hybrid Kohn-Sham calculations: the chain-of-spheres algorithm (COSX; Neese , F. Chem. Phys. 2008 , 356 , 98 - 109 ), the pair-atomic resolution-of-identity method (PARI-K; Merlot , P. J. Comput. Chem. 2013 , 34 , 1486 - 1496 ), and the auxiliary density matrix method (ADMM; Guidon , M. J. Chem. Theory Comput. 2010 , 6 , 2348 - 2364 ). Both the efficiency relative to that of a conventional linear-scaling algorithm and the accuracy of total, atomization, and orbital energies are compared for a subset containing 25 of the 200 molecules in the Rx200 set using double-, triple-, and quadruple-ζ basis sets. The accuracy of relative energies is further compared for small alkane conformers (ACONF test set) and Diels-Alder reactions (DARC test set). Overall, we find that the COSX method provides good accuracy for orbital energies as well as total and relative energies, and the method delivers a satisfactory speedup. The PARI-K and in particular ADMM algorithms require further development and optimization to fully exploit their indisputable potential.
- Published
- 2016
- Full Text
- View/download PDF
13. Range-separated time-dependent density-functional theory with a frequency-dependent second-order Bethe-Salpeter correlation kernel.
- Author
-
Rebolini E and Toulouse J
- Abstract
We present a range-separated linear-response time-dependent density-functional theory (TDDFT) which combines a density-functional approximation for the short-range response kernel and a frequency-dependent second-order Bethe-Salpeter approximation for the long-range response kernel. This approach goes beyond the adiabatic approximation usually used in linear-response TDDFT and aims at improving the accuracy of calculations of electronic excitation energies of molecular systems. A detailed derivation of the frequency-dependent second-order Bethe-Salpeter correlation kernel is given using many-body Green-function theory. Preliminary tests of this range-separated TDDFT method are presented for the calculation of excitation energies of the He and Be atoms and small molecules (H2, N2, CO2, H2CO, and C2H4). The results suggest that the addition of the long-range second-order Bethe-Salpeter correlation kernel overall slightly improves the excitation energies.
- Published
- 2016
- Full Text
- View/download PDF
14. Excitation energies along a range-separated adiabatic connection.
- Author
-
Rebolini E, Toulouse J, Teale AM, Helgaker T, and Savin A
- Abstract
We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn-Sham electronic system to the physical interacting system by progressively switching on the electron-electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for the He and Be atoms and the H2 molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron-electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn-Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H2 molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.
- Published
- 2014
- Full Text
- View/download PDF
15. Assessment of range-separated time-dependent density-functional theory for calculating C6 dispersion coefficients.
- Author
-
Toulouse J, Rebolini E, Gould T, Dobson JF, Seal P, and Ángyán JG
- Abstract
We assess a variant of linear-response range-separated time-dependent density-functional theory (TDDFT), combining a long-range Hartree-Fock (HF) exchange kernel with a short-range adiabatic exchange-correlation kernel in the local-density approximation (LDA) for calculating isotropic C6 dispersion coefficients of homodimers of a number of closed-shell atoms and small molecules. This range-separated TDDFT tends to give underestimated C6 coefficients of small molecules with a mean absolute percentage error of about 5%, a slight improvement over standard TDDFT in the adiabatic LDA which tends to overestimate them with a mean absolute percentage error of 8%, but close to time-dependent Hartree-Fock which has a mean absolute percentage error of about 6%. These results thus show that introduction of long-range HF exchange in TDDFT has a small but beneficial impact on the values of C6 coefficients. It also confirms that the present variant of range-separated TDDFT is a reasonably accurate method even using only a LDA-type density functional and without adding an explicit treatment of long-range correlation.
- Published
- 2013
- Full Text
- View/download PDF
16. Solid-phase synthesis of peptide-viologen conjugates.
- Author
-
Reczek JJ, Rebolini E, and Urbach AR
- Subjects
- Molecular Structure, Peptides chemistry, Viologens chemistry, Peptides chemical synthesis, Viologens chemical synthesis
- Abstract
This paper presents a robust method for the conjugation of viologens to peptides using an amide coupling strategy that is compatible with standard Fmoc solid-phase peptide synthesis. Methodology is presented for monitoring the milligram scale process quantitatively by UV spectroscopy. This chemistry enables the synthesis of a broad range of asymmetric viologens in high yield at room temperature and is compatible with a wide range of functional groups, including amine, guanidinyl, thiol, carboxylic acid, phenol, and indole.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.