8 results on '"Rebelo, Maria T"'
Search Results
2. Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium
- Author
-
Silva, Sara E, primary, Seabra, Sofia G, additional, Carvalheiro, Luísa G, additional, Nunes, Vera L, additional, Marabuto, Eduardo, additional, Mendes, Raquel, additional, Rodrigues, Ana S B, additional, Pina-Martins, Francisco, additional, Yurtsever, Selçuk, additional, Laurentino, Telma G, additional, Figueiredo, Elisabete, additional, Rebelo, Maria T, additional, and Paulo, Octávio S, additional
- Published
- 2019
- Full Text
- View/download PDF
3. Diagnosis of coccidiosis by Eimeria spp. in free-range chickens using Mini-FLOTAC and McMaster techniques - preliminary results.
- Author
-
Lozano, João, Anaya, Adriana, Rinaldi, Laura, Cringoli, Giuseppe, Gomes, Lídia, Oliveira, Manuela, Paz-Silva, Adolfo, Rebelo, Maria T., and De Carvalho, Luís Madeira
- Published
- 2021
4. Population genomics of Bombus terrestris reveals high but unstructured genetic diversity in a potential glacial refugium.
- Author
-
Silva, Sara E, Seabra, Sofia G, Carvalheiro, Luísa G, Nunes, Vera L, Marabuto, Eduardo, Mendes, Raquel, Rodrigues, Ana S B, Pina-Martins, Francisco, Yurtsever, Selçuk, Laurentino, Telma G, Figueiredo, Elisabete, Rebelo, Maria T, and Paulo, Octávio S
- Subjects
BOMBUS terrestris ,HAPLOTYPES ,MITOCHONDRIAL DNA ,GENOMICS ,SPECIES pools ,SUBSPECIES ,ALLELES - Abstract
Ongoing climate change is expected to cause an increase in temperature and a reduction of precipitation levels in the Mediterranean region, which might cause changes in many species distributions. These effects negatively influence species gene pools, decreasing genetic variability and adaptive potential. Here, we use mitochondrial DNA and RADseq to analyse population genetic structure and genetic diversity of the bumblebee species Bombus terrestris (subspecies Bombus terrestris lusitanicus), in the Iberian Peninsula. Although this subspecies shows a panmictic pattern of population structure across Iberia and beyond, we found differentiation between subspecies B. t. lusitanicus and B. t. africanus , probably caused by the existence of barriers to gene flow between Iberia and North Africa. Furthermore, the results revealed that the Iberian Peninsula harbours a large fraction of B. terrestris intraspecific genetic variation, with the highest number of mitochondrial haplotypes found when compared with any other region in Europe studied so far, suggesting a potential role for the Iberian Peninsula as a glacial refugium. Our findings strengthen the idea that Iberia is a very important source of diversity for the global genetic pool of this species, because rare alleles might play a role in population resilience against human- or climate-mediated changes. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
5. Ports and Airports: Gateways to Vector-Borne Diseases in Portugal Mainland
- Author
-
Proença, Maria C., Rebelo, Maria T., Alves, Maria J., and Cunha, Sofia
- Subjects
vector-borne diseases ,parasitic diseases ,Human health ,risk assessment ,risk management - Abstract
Vector-borne diseases are transmitted to humans by mosquitos, sandflies, bugs, ticks, and other vectors. Some are re-transmitted between vectors, if the infected human has a new contact when his levels of infection are high. The vector is infected for lifetime and can transmit infectious diseases not only between humans but also from animals to humans. Some vector borne diseases are very disabling and globally account for more than one million deaths worldwide. The mosquitoes from the complex Culex pipiens sl. are the most abundant in Portugal, and we dispose in this moment of a data set from the surveillance program that has been carried on since 2006 across the country. All mosquitos’ species are included, but the large coverage of Culex pipiens sl. and its importance for public health make this vector an interesting candidate to assess risk of disease amplification. This work focus on ports and airports identified as key areas of high density of vectors. Mosquitoes being ectothermic organisms, the main factor for vector survival and pathogen development is temperature. Minima and maxima local air temperatures for each area of interest are averaged by month from data gathered on a daily basis at the national network of meteorological stations, and interpolated in a geographic information system (GIS). The range of temperatures ideal for several pathogens are known and this work shows how to use it with the meteorological data in each port and airport facility, to focus an efficient implementation of countermeasures and reduce simultaneously risk transmission and mitigation costs. The results show an increased alert with decreasing latitude, which corresponds to higher minimum and maximum temperatures and a lower amplitude range of the daily temperature., {"references":["J. S. Brownstein, H. Rosen, D. Purdy, J. R. Miller, M. Merlino, F. Mostashari and D. Fish, \"Spatial analysis of West Nile Virus: rapid risk assessment of an introduced vector-borne zoonosis,\" Vector Borne Zoonotic Diseases, vol. 2, no. 3, pp. 157-164, 2002.","G. L. Hamer, U. D. Kitron, J. D. Brawn, S. R. Loss, M. O. Ruiz, T. L. Goldberg and E. D. Walker, \"Culex pipiens (Diptera: Culicidae): A Bridge Vector of West Nile Virus to Humans,\" J. Med. Entomology, vol. 45, no. 1, pp. 125-128, 2008.","S. Kalluri, P. Gilruth, D. Rogers and M. Szczur, \"Surveillance of arthropod vector-borne infectious diseases using remote sensing techniques: a review,\" PloS Pathogens, vol. 3, no. 10, pp 1361-1371, 2007","S. Paz and I. Albersheim, \"Influence of warming tendency on Culex pipiens population abundance and on the probability of West Nile Fever outbreaks (Israeli case-study: 2001-2005),\" EcoHealth, vol. 5, pp. 40-48, 2008","T.-W. Chuang, M. B. Hildreth, D. L. Vanroekel and M. C. Wimberly, \"Weather and land cover influences on mosquito populations in Sioux Falls, South Dakota,\" J. Med. Entomol., vol. 48, no. 3, pp. 669-1679, 2011","D. Fischer, S. M. Thomas, J. E. Suk, B. Sudre, A. Hess, N. B. Tjaden, C. Beierkuhnlein and J. C. Semenza, \"Climate change effects on Chikungunya transmission in Europe: geospatial analysis of vector's climatic suitability and virus'temperature requirements,\" International Journal of Health Geographics, vol. 12, no. 51, 2013","A. T. Ciota and L. D. Kramer, \"Vector-virus interactions and transmission dynamics of West Nile virus,\" Viruses, vol. 5, pp. 3021-3047, 2013","E. B. Vinogradova, Culex pipiens pipiens mosquitoes: taxonomy, distribution, ecology, physiology, genetics, applied importance and control, Pensoft Publishers, Series Parasitologica, Sofia-Moscow, 250 pp., 2000","M. W. Service, Medical entomology for students, Cambridge University Press, 302 pp., 2004.\n[10]\tM. D. Bentley and J. F. Day, \"Chemical ecology and behavioral aspects of mosquito oviposition,\" Ann. Rev. Entomol., vol. 34, pp. 401-421, 1989\n[11]\tC. Barker, B. Elridge and W. Reisen, \"Seasonal abundance of Culex tarsalis and Culex pipiens complex mosquitoes (Diptera: Culicidae) in California,\" J. Med. Entomology, vol. 47, no. 5, pp. 759-768, 2010.\n[12]\tInstituto Nacional de Estatística, I. P., Estatísticas dos Transportes e Comunicações 2013, Lisboa-Portugal, ISBN 978-989-25-0275-5, 2014\n[13]\tC. A. Sousa, M. Clairouin, G. Seixas, B. Viveiros, M. T. Novo, A. C. Silva, M. T. Escoval and A. Economopoulou, \"Ongoing outbreak of dengue type 1 in the autonomous region of Madeira, Portugal: preliminary report,\" Euro Surveill, vol. 17, no. 49, pii 20333, 2012\n[14]\tR. López-Vélez and R. M. Moreno, \"Cambio climatico en España y riesgo de enefermedades infecciosas y parasitarias transmitidas por artrópodos y roedores,\" Rev. Esp. Salud Publica, vol. 79, pp. 177-190, 2005\n[15]\tD. J. Dohm, M. L. O'Guinn and M. J. Turell, \"Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus,\" J. Med. Entomol., vol. 39, no. 1, pp. 221-225, 2002\n[16]\tJ. I. Blanford, S. Blanford, R. G. Crane, M. E. Mann, K. P. Paaijmans, K. V. Schreiber and M. B. Thomas, \"Implications of temperature variation for malaria parasite development across Africa,\" Scientific Reports, vol. 3, 1300, DOI: 10.1038/srep01300, 2013\n[17]\tA. R. Filipe, \"Isolation in Portugal of West Nile virus from Anopheles maculipennis mosquitoes,\" Acta Virol., vol. 16, no. 4, 361, 1972\n[18]\tA. Benali, J. P. Nunes, F. B. Freitas, C. A. Sousa, M. T. Novo, P. M. Lourenço and J. C. Lima, \"Satellite-derived estimation of environmental suitability for malaria vector development in Portugal,\" Remote Sensing of Environment, vol. 1445, pp 116-130, 2014\n[19]\tM. A. Johansson, N. Arana-Vizcarrondo, B. J. Biggerstaff and J. E. Staples, \"Incubation periods of yellow fever virus,\" Am. J. Trop. Med. Hyg., vol. 83, no. 1, pp. 183-188, 2010\n[20]\tClimate Change 2001: Impacts, adaptation and Vulnerability, IPCC Third Assessment Report, chap. 9 - Human Health, Ed. J.J. McCarthy, O. F. Canziani, N. A. Leary, D. J. Dokken and K. S. White, 2001\n[21]\tX. Zhang, L. Sun and M. G. Rossmann, \"Temperature dependent conformational change of dengue virus,\" Current Opinion in Virology, vol. 12, pp.109-112, 2015\n[22]\tA. P. G. Almeida, Y. M. Gonçalves, M. T. Novo, C. A. Sousa, M. Melim and A. J. S. Gracio, \"Vector monitoring of Aedes aegypti in the autonomous region of Madeira, Portugal,\" Euro Surveill., vol.12, no. 46, pii 3311, 2007\n[23]\tH. C. Osório, F. Amaro, L. Zé-Zé, S. Pardal, L. Mendes, R. Ventim, J. A. Ramos, S. Nunes, REVIVE workgroup and M. J. Alves, \"Mosquito species distribution in mailand Portugal 2005-2008,\" European Mosquito Bulletin, vol. 28, pp. 187-193, 2010\n[24]\tL. Zé-Zé, P. Proença, H. C. Osório, S. Gomes, T. Luz, P. Parreira, M. Fevereiro and M. J. Alves, \"Human case of West Nile neuroinvasive disease in Portugal, Summer 2015,\" Euro Surveill, vol. 20, no. 38, pii 30024, 2015"]}
- Published
- 2016
- Full Text
- View/download PDF
6. Insecticidal activity of three species of Guatteria (Annonaceae) against Aedes aegypti (Diptera: Culicidae)
- Author
-
ACIOLE, SULLAMY D. G., PICCOLI, CARLA F., DUQUE L., JONNY E., COSTA, EMMANOEL V., NAVARRO-SILVA, MARIO A., MARQUES, FRANCISCO A., SALES MAIA, BEATRIZ H. L. N., PINHEIRO, MARIA LÚCIA B., and REBELO, MARIA T.
- Subjects
Dengue ,Essential oils ,Larvicidas ,Aceites esenciales ,Larvicides ,Mosquito control ,Control de mosquitos - Abstract
the products of vegetal origin were assessed for bioactive substances to reduce reliance on organophosphate and pyrethroid insecticides, to which insect populations have become resistant. For this reason the aim of this study was to assess whether the essential oils of Guatteria hispida, G. blepharophylla and G. friesiana have insecticidal effect against A. aegypti under laboratory conditions. Essential oils were extracted through hydrodistillation using a modifed Clevenger apparatus and analyzed by Gas Chromatography (CG-FID), Gas Chromatography coupled to Mass Spec-trometry (GC-MS), and Nuclear Magnetic Resonance (NMR). the bioassays were analyzed according to the Probit model. The GC-MS and NMR analyses confrmed that the leaves of G. blepharophylla have the caryophyllene oxide as their main component; in G. friesiana the a-,b- and g-eudesmols prevail, and in G. hispida a- and b-pinene, and (E)-caryophyllene are the predominant compounds. the lethal concentrations LC50, LC95 and LC99, were respectively 85.74, 199.35 and 282.76ppm for G. hispida; 58.72, 107.6 and 138.37ppm for G. blepharophylla; and 52.6, 94.37 and 120.22ppm for G. friesiana. the oil extracted from G. friesiana presented the best insecticidal effect. Se evalúan productos de origen vegetal en busca de sustancias bioactivas que tengan la capacidad de reducir la dependencia de insecticidas organofosforados y piretroides, a los que las poblaciones de insectos se han vuelto resistentes. Por esta razón el objetivo de este estudio fue evaluar si los aceites esenciales de Guatteria hispida, G. blepharophylla y G. friesiana presentan efecto insecticida contra A. aegypti bajo condiciones de laboratorio. Los aceites esenciales se extrajeron a través de hidrodestilación por medio de un aparato tipo Clevenger, analizados por Cromatografía Gaseosa acoplada a Espectrometría de Masas (CG-EM) y Resonancia Magnética Nuclear (RMN). Los bioensa-yos se analizaron de acuerdo con el modelo Probit. Los análisis de (CG-EM) y (RMN) confrmaron que las hojas de G. blepharophylla presentan óxido de cariofileno como el principal componente; en G. friesiana fue a-, b- y g-eudesmol, y en G. hispida a- y b-pineno y (E)-cariofileno fueron los compuestos predominantes. La concentraciones letales CL50, CL95 y CL99 fueron respectivamente 85,74, 199,35 y 282,76ppm para G. hispida; 58.72, 107.6 y 138.37 ppm para G. blepharophylla; 52,6, 94,37 y 120,22ppm para G. friesiana. El aceite extraído de G. friesiana presentó el mejor efecto insecticida.
- Published
- 2011
7. Insecticidal activity of three species of Guatteria (Annonaceae) against Aedes aegypti (Diptera: Culicidae)
- Author
-
ACIOLE, SULLAMY D. G., primary, PICCOLI, CARLA F., additional, DUQUE-L., JONNY E., additional, COSTA, EMMANOEL V., additional, NAVARRO-SILVA, MARIO A., additional, MARQUES, FRANCISCO A., additional, SALES-MAIA, BEATRIZ H. L. N., additional, PINHEIRO, MARIA LÚCIA B., additional, and REBELO, MARIA T., additional
- Published
- 2011
- Full Text
- View/download PDF
8. Differences in the male calling songs of two sibling species of Cicada (Hemiptera: Cicadoidea) in Greece
- Author
-
SIMÕES, Paula C., primary, BOULARD, Michel, additional, REBELO, Maria T., additional, DROSOPOULOS, Sakis, additional, CLARIDGE, Michael F., additional, MORGAN, John C., additional, and QUARTAU, José A., additional
- Published
- 2000
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.