29 results on '"Reano S"'
Search Results
2. Cardiometabolic rewiring in the context of doxorubicin-induced cardiotoxicity: fuel preference changes from fatty acids to glucose oxidation
- Author
-
Russo, M, primary, Guerra, G, additional, Priolo, R, additional, Riganti, C, additional, Reano, S, additional, Filigheddu, N, additional, Hirsch, E, additional, and Ghigo, A, additional
- Published
- 2023
- Full Text
- View/download PDF
3. Natural products to counteract muscle atrophy
- Author
-
Salvadori, L., Mandrone, M., Manenti, T., Ercolani, C., Cornioli, L., Lianza, M. C., Tomasi, P., Reano, S., Chiappalupi, S., Poli, F., Filigheddu, N., Sorci, G., and Riuzzi, F
- Subjects
Sarcopenia ,Muscle atrophy ,Natural compounds - Published
- 2020
4. Mitochondrial respiratory states and rates
- Author
-
Gnaiger, Erich, Aasander Frostner, Eleonor, Abdul Karim, Norwahidah, Abumrad, Nada A, Acuna-Castroviejo, Dario, Adiele, Reginald C, Ahn, Bumsoo, Ali, Sameh S, Alton, Lesley, Alves, Marco G, Amati, Francesca, Amoedo, Nivea Dias, Andreadou, Ioanna, Arago, Marc, Aral, Cenk, Arandarcikaite, Odeta, Armand, Anne-Sophie, Arnould, Thierry, Avram, Vlad Florian, Bailey, Damian M, Bajpeyi, Sudip, Bajzikova, Martina, Bakker, Barbara M, Barlow, Jonathan, Bastos Sant'Anna Silva, Ana Carolina, Batterson, Philip, Battino, Maurizio, Bazil, Jason, Beard, Daniel A, Bednarczyk, Piotr, Bello, Fiona, Ben-Shachar, Dorit, Bergdahl, Andreas, Berge, Rolf K, Bergmeister, Lisa, Bernardi, Paolo, Berridge, Michael V, Bettinazzi, Stefano, Bishop, David, Blier, Pierre U, Blindheim, Dan Filip, Boardman, Neoma T, Boetker, Hans Erik, Borchard, Sabine, Boros, Mihaly, Borsheim, Elisabet, Borutaite, Vilma, Botella, Javier, Bouillaud, Frederic, Bouitbir, Jamal, Boushel, Robert C, Bovard, Josh, Breton, Sophie, Brown, David A, Brown, Guy C, Brown, Robert A, Brozinick, Joseph T, Buettner, Garry R, Burtscher, Johannes, Calabria, Elisa, Calbet, Jose A, Calzia, Enrico, Cannon, Daniel T, Cano Sanchez, Maria, Canto Alvarez, Carlos, Cardoso, Luiza Helena Daltro, Carvalho, Eugenia, Casado Pinna, Marta, Cassar, Samantha, Cassina, Adriana M, Castelo, Maria P, Gonzalez-Franquesa, A, Cavalcanti-de-Albuquerque, Joao Paulo, Cervinkova, Zuzana, Chabi, Beatrice, Chakrabarti, Lisa, Chakrabarti, Sasanka, Chaurasia, Bhagirath, Chen, Qi, Chicco, Adam J, Chinopoulos, Christos, Chowdhury, Subir K, Cizmarova, Beata, Clementi, Emilio, Coen, Paul M, Cohen, Bruce H, Coker, Robert H, Collin, Anne, Crisostomo, Luis, Dahdah, Norma, Dalgaard, Louise T, Dambrova, Maija, Danhelovska, Tereza, Darveau, Charles A, Das, Anibh M, Dash, Ranjan K, Davidova, Eliska, Davis, Michael S, De Goede, Paul, De Palma, Clara, Dembinska-Kiec, Aldona, Detraux, Damien, Devaux, Yvan, Di Marcello, Marco, Dias, Tania R, Distefano, Giovanna, Doermann, Niklas, Doerrier, Carolina, Dong, Lan-Feng, Donnelly, Chris, Drahota, Zdenek, Duarte, Filipe Valente, Dubouchaud, Herve, Duchen, Michael R, Dumas, Jean-Francois, Durham, William J, Dymkowska, Dorota, Dyrstad, Sissel E, Dyson, Alex, Dzialowski, Edward M, Eaton, Simon, Ehinger, Johannes, Elmer, Eskil, Endlicher, Rene, Engin, Ayse B, Escames, Germaine, Ezrova, Zuzana, Falk, Marni Joy, Fell, David A, Ferdinandy, Peter, Ferko, Miroslav, Ferreira, Julio Cesar Batista, Ferreira, Rita, Ferri, Alessandra, Fessel, Joshua P, Filipovska, Aleksandra, Fisar, Zdenek, Fischer, Christine, Fischer, Michael, Fisher, Gordon, Fisher, Joshua J, Ford, Ellen, Fornaro, Mara, Galina, Antonio, Galkin, Alexander, Gallee, Leon, Galli, Gina L, Gama Perez, Pau, Gan, Zhenji, Ganetzky, Rebecca, Garcia-Rivas, Gerardo, Garcia-Roves, Pablo Miguel, Garcia-Souza, Luiz Felipe, Garipi, Enis, Garlid, Keith D, Garrabou, Gloria, Garten, Antje, Gastaldelli, Amalia, Gayen, Jiaur, Genders, Amanda J, Genova, Maria Luisa, Giovarelli, Matteo, Goncalo Teixeira da Silva, Rui, Goncalves, Debora Farina, Gonzalez-Armenta, Jenny L, Gonzalez-Freire, Marta, Gonzalo, Hugo, Goodpaster, Bret H, Gorr, Thomas A, Gourlay, Campbell W, Granata, Cesare, Grefte, Sander, Guarch, Meritxell Espino, Gueguen, Naig, Gumeni, Sentiljana, Haas, Clarissa B, Haavik, Jan, Haendeler, Judith, Haider, Markus, Hamann, Andrea, Han, Jin, Han, Woo Hyun, Hancock, Chad R, Hand, Steven C, Handl, Jiri, Hargreaves, Ian P, Harper, Mary Ellen, Harrison, David K, Hassan, Hazirah, Hausenloy, Derek J, Heales, Simon JR, Heiestad, Christina, Hellgren, Kim T, Hepple, Russell T, Hernansanz-Agustin, Pablo, Hewakapuge, Sudinna, Hickey, Anthony J, Ho, Dieu Hien, Hoehn, Kyle L, Hoel, Frederik, Holland, Olivia J, Holloway, Graham P, Hoppel, Charles L, Hoppel, Florian, Houstek, Josef, Huete-Ortega, Maria, Hyrossova, Petra, Iglesias-Gonzalez, Javier, Irving, Brian A, Isola, Raffaella, Iyer, Shilpa, Jackson, Christophe B, Jadiya, Pooja, Jana, Prado Fabian, Jang, David H, Jang, Young C, Janowska, Joanna, Jansen, Kirsten, Jansen-Duerr, Pidder, Jansone, Baiba, Jarmuszkiewicz, Wieslawa, Jaskiewicz, Anna, Jedlicka, Jan, Jespersen, Nichlas R, Jha, Rajan K, Jurczak, Michael J, Jurk, Diana, Kaambre, Tuuli, Kaczor, Jan J, Kainulainen, Heikki, Kampa, Rafal Pawel, Kandel, Sunil M, Kane, Daniel A, Kapferer, Werner, Kappler, Lisa, Karabatsiakis, Alexander, Karkucinska-Wieckowska, Agnieszka, Kaur, Sarbjot, Keijer, Jaap, Keller, Markus A, Keppner, Gloria, Khamoui, Andy V, Kidere, Dita, Kilbaugh, Todd, Kim, Hyoung Kyu, Kim, Julian KS, Klepinin, Aleksandr, Klepinina, Lyudmila, Klingenspor, Martin, Klocker, Helmut, Komlódi, Timea, Koopman, Werner JH, Kopitar-Jerala, Natasa, Kowaltowski, Alicia J, Kozlov, Andrey V, Krajcova, Adela, Krako Jakovljevic, Nina, Kristal, Bruce S, Krycer, Jamer R, Kuang, Jujiao, Kucera, Otto, Kuka, Janis, Kwak, Hyo Bum, Kwast, Kurt, Laasmaa, Martin, Labieniec-Watala, Magdalena, Lai, Nicola, Land, John M, Lane, Nick, Laner, Verena, Lanza, Ian R, Larsen, Terje S, Lavery, Gareth G, Lazou, Antigone, Lee, Hong Kyu, Leeuwenburgh, Christiaan, Lehti, Maarit, Lemieux, Helene, Lenaz, Giorgio, Lerfall, Jorgen, Li, Pingan A, Li Puma, Lance, Liepins, Edgars, Lionett, Sofie, Liu, Jiankang, Lopez, Luis C, Lucchinetti, Eliana, Ma, Tao, Macedo, Maria P, Maciej, Sarah, MacMillan-Crow, Lee Ann, Majtnerova, Pavlina, Makarova, Elina, Makrecka-Kuka, Marina, Malik, Afshan N, Markova, Michaela, Martin, Daniel S, Martins, Ana Dias, Martins, Joao D, Maseko, Tumisang Edward, Maull, Felicia, Mazat, Jean Pierre, McKenna, Helen T, McKenzie, Matthew, Menze, Michael A, Merz, Tamara, Meszaros, Andras T, Methner, Axel, Michalak, Slawomir, Moellering, Douglas R, Moisoi, Nicoleta, Molina, Anthony JA, Montaigne, David, Moore, Anthony L, Moreau, Kerrie, Moreira, Bruno P, Moreno-Sanchez, Rafael, Mracek, Tomas, Muccini, Anna Maria, Muntane, Jordi, Muntean, Danina M, Murray, Andrew J, Musiol, Eva, Nabben, Miranda, Nair, K Sreekumaran, Nehlin, Jan O, Nemec, Michal, Neufer, P Darrell, Neuzil, Jiri, Neviere, Remi, Newsom, Sean A., Nozickova, Katerina, O'Brien, Katie A, O'Gorman, Donal, Olgar, Yusuf, Oliveira, Ben, Oliveira, Marcus F, Oliveira, Marcos Tulio, Oliveira, Pedro F, Oliveira, Paulo J, Orynbayeva, Zulfiya, Osiewacz, Heinz D, Pak, Youngmi K, Pallotta, Maria L, Palmeira, Carlos M, Parajuli, Nirmala, Passos, Joao F, Passrugger, Manuela, Patel, Hemal H, Pavlova, Nadia, Pecina, Petr, Pedersen, Tina M, Pereira da Silva Grilo da Silva, Filomena, Perez Valencia, Juan A, Perks, Kara L, Pesta, Dominik, Petit, Patrice X, Pettersen, Ina Katrine Nitschke, Pichaud, Nicolas, Pichler, Irene, Piel, Sarah, Pietka, Terri A, Pino, Maria F, Pirkmajer, Sergej, Plangger, Mario, Porter, Craig, Porter, Richard K, Procaccio, Vincent, Prochownik, Edward V, Prola, Alexandre, Pulinilkunnil, Thomas, Puskarich, Michael A, Puurand, Marju, Radenkovic, Filip, Ramzan, Rabia, Rattan, Suresh IS, Reboredo, Patricia, Renner-Sattler, Kathrin, Rial, Eduardo, Robinson, Matthew M, Roden, Michael, Rodriguez, Enrique, Rodriguez-Enriquez, Sara, Roesland, Gro Vatne, Rohlena, Jakub, Rolo, Anabela Pinto, Ropelle, Eduardo R, Rossignol, Rodrigue, Rossiter, Harry B, Rubelj, Ivica, Rybacka-Mossakowska, Joanna, Saada, Ann, Safaei, Zahra, Sarlak, S, Salin, Karine, Salvadego, Desy, Sandi, Carmen, Saner, Nicholas, Sanz, Alberto, Sazanov, Leonid A, Scatena, Roberto, Schartner, Melanie, Scheibye-Knudsen, Morten, Schilling, Jan M, Schlattner, Uwe, Schoenfeld, Peter, Schots, Pauke C, Schulz, Rainer, Schwarzer, Christoph, Scott, Graham R, Selman, Colin, Shabalina, Irina G, Sharma, Pushpa, Sharma, Vipin, Shevchuk, Igor, Shirazi, Reza, Shiroma, Jonathan G, Siewiera, Karolina, Silber, Ariel M, Silva, Ana Maria, Sims, Carrie A, Singer, Dominique, Singh, Brijesh Kumar, Skolik, Robert A, Smenes, Benedikte Therese, Smith, James, Soares, Félix Alexandre Antunes, Sobotka, Ondrej, Sokolova, Inna, Sonkar, Vijay K, Sowton, Alice P, Sparagna, Genevieve C, Sparks, Lauren M, Spinazzi, Marco, Stankova, Pavla, Starr, Jonathan, Stary, Creed, Stelfa, Gundega, Stepto, Nigel K, Stiban, Johnny, Stier, Antoine, Stocker, Roland, Storder, Julie, Sumbalova, Zuzana, Suomalainen, Wartiovaara Anu, Suravajhala, Prashanth, Svalbe, Baiba, Swerdlow, Russel H, Swiniuch, Daria, Szabo, Ildiko, Szewczyk, Adam, Szibor, Marten, Tanaka, Masashi, Tandler, Bernard, Tarnopolsky, Mark A, Tausan, Daniel, Tavernarakis, Nektarios, Tepp, Kersti, Thakkar, Himani, Thapa, Maheshwo, Thyfault, John P, Tomar, Dhanendra, Ton, Riccardo, Torp, May-Kristin, Towheed, Atif, Tretter, Laszlo, Trewin, Adam J, Trifunovic, Aleksandra, Trivigno, Catherine, Tronstad, Karl Johan, Trougakos, Ioannis P, Truu, Laura, Tuncay, Erkan, Turan, Belma, Tyrrell, Daniel J, Urban, Tomas, Valentine, Joseph Marco, Van Bergen, Nicole J, Van Hove, Johan, Varricchio, Frederick, Vella, Joanna, Vendelin, Marko, Vercesi, Anibal E, Victor, Victor Manuel, Vieira Ligo Teixeira, Camila, Vidimce, Josif, Viel, Christian, Vieyra, Adalberto, Vilks, Karlis, Villena, Joseph A, Vincent, Vinnyfred, Vinogradov, Andrey D, Viscomi, Carlo, Vitorino, Rui Miguel Pinheiro, Vogt, Sebastian, Volani, Chiara, Volska, Kristine, Votion, Dominique-Marie, Vujacic-Mirski, Ksenija, Wagner, Brett A, Ward, Marie Louise, Warnsmann, Verena, Wasserman, David H, Watala, Cezary, Wei, Yau-Huei, Whitfield, Jamie, Wickert, Anika, Wieckowski, Mariusz R, Wiesner, Rudolf J, Williams, Caroline M, Winwood-Smith, Hugh, Wohlgemuth, Stephanie E, Wohlwend, Martin, Wolff, Jonci Nikolai, Wrutniak-Cabello, Chantal, Wuest, Rob C I, Yokota, Takashi, Zablocki, Krzysztof, Zanon, Alessandra, Zanou, Nadege, Zaugg, Kathrin, Zaugg, Michael, Zdrazilova, Lucie, Zhang, Yong, Zhang, Yi Zhu, Zikova, Alena, Zischka, Hans, Zorzano, Antonio, Zvejniece, Liga, Lagarrigue, Sylviane, Munro, Daniel, Pereira, Susana, Laranjinha, Joäo, Almeida, Angeles, Diederich, M, Hecker, M, Jusic, A, Prigione, A, Sommer, N, Weissig, V, Abdel-Rahman, EA, Sova, M, Amorim, R, Beleza, J, Bravo-Sagua, R, Celen, MC, Coxito, P, Crispim, M, Dias, C, Evinova, A, Fuertes Agudo, M, Gao, Y, Garcia, G, Goikoetxea Usandizaga, N, Grilo, L, Minuzzi, LM, Hachmo, Y, Hajrulahovic, A, Hatokova, Z, Henrique, A, Holzner, L, Kimoloi, S, Ledo, AM, Machado, IF, Magalhaes, J, Magri, A, Nunes, S, Oliveira, J, Pinho, SA, Preguica, I, Reano, S, Rodrigues, AS, Santos, D, Sardao, V, Stevanovic, J, Teodoro, J, Van der Ende, M, Zujovic, T, Djafarzadeh, S, Schneider Gasser, EM, Jaspers, RT, Arias-Reyes, C, Bairam, A, Laouafa, S, Marcouiller, F, Soliz, J, Glatz, J, Antunes, D, Bach de Courtade, SM, Bardal, T, Di Paola, FJ, Fulton, M, Grams, B, Joseph, V, Kwon, OS, Liang, L, Mila Guasch, M, Moore, C, Norman, J, O'Brien, K, Olsen, RE, Paez, H, Rees, BB, Roshanravan, B, Scaife, P, Sendon, PM, Vlachaki Walker, J, Crossland, H, Jones, JG, Bento, G, Perales, JC, and Aragones Lopez, J
- Subjects
uncoupling ,Mitochondrial respiratory control ,coupling control ,protonmotive force ,oxidative phosphorylation ,mitochondrial respiratory control ,NARILIS ,ET [electron transfer] ,electron transfer ,residual oxygen consumption ,flux ,normalization ,efficiency ,flow ,oxygen ,mitochondrial preparations ,proton leak - Abstract
As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow guidelines of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of databases of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery.
- Published
- 2019
- Full Text
- View/download PDF
5. Dissecting the Mechanism of Action of Spiperone—A Candidate for Drug Repurposing for Colorectal Cancer
- Author
-
Annamaria Antona, Marco Varalda, Konkonika Roy, Francesco Favero, Eleonora Mazzucco, Miriam Zuccalà, Giovanni Leo, Giulia Soggia, Valentina Bettio, Martina Tosi, Miriam Gaggianesi, Beatrice Riva, Simone Reano, Armando Genazzani, Marcello Manfredi, Giorgio Stassi, Davide Corà, Sandra D’Alfonso, Daniela Capello, Antona A., Varalda M., Roy K., Favero F., Mazzucco E., Zuccala M., Leo G., Soggia G., Bettio V., Tosi M., Gaggianesi M., Riva B., Reano S., Genazzani A., Manfredi M., Stassi G., Cora D., Dalfonso S., and Capello D.
- Subjects
cancer stem cells ,Cancer Research ,repurposing ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,colorectal cancer ,psychotropic drugs ,phospholipase C ,endoplasmic reticulum stress ,intracellular calcium ,lipid metabolism ,mitochondria ,Golgi ,Oncology ,  ,Settore MED/46 - Scienze Tecniche Di Medicina Di Laboratorio ,RC254-282 - Abstract
Approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease, highlighting the need for novel therapeutic strategies. Drug repurposing is attracting increasing attention because, compared to traditional de novo drug discovery processes, it may reduce drug development periods and costs. Epidemiological and preclinical evidence support the antitumor activity of antipsychotic drugs. Herein, we dissect the mechanism of action of the typical antipsychotic spiperone in CRC. Spiperone can reduce the clonogenic potential of stem-like CRC cells (CRC-SCs) and induce cell cycle arrest and apoptosis, in both differentiated and CRC-SCs, at clinically relevant concentrations whose toxicity is negligible for non-neoplastic cells. Analysis of intracellular Ca2+ kinetics upon spiperone treatment revealed a massive phospholipase C (PLC)-dependent endoplasmic reticulum (ER) Ca2+ release, resulting in ER Ca2+ homeostasis disruption. RNA sequencing revealed unfolded protein response (UPR) activation, ER stress, and induction of apoptosis, along with IRE1-dependent decay of mRNA (RIDD) activation. Lipidomic analysis showed a significant alteration of lipid profile and, in particular, of sphingolipids. Damage to the Golgi apparatus was also observed. Our data suggest that spiperone can represent an effective drug in the treatment of CRC, and that ER stress induction, along with lipid metabolism alteration, represents effective druggable pathways in CRC.
- Published
- 2022
- Full Text
- View/download PDF
6. Antifibrotic activity of acylated and unacylated ghrelin
- Author
-
Nicoletta Filigheddu, Andrea Graziani, Michele Ferrara, Emanuela Agosti, Elia Angelino, Simone Reano, Angelino, E, Reano, S, Ferrara, M, Agosti, E, Graziani, Andrea, and Filigheddu, N.
- Subjects
medicine.medical_specialty ,Necrosis ,Endocrinology, Diabetes and Metabolism ,media_common.quotation_subject ,Review Article ,lcsh:Diseases of the endocrine glands. Clinical endocrinology ,Extracellular matrix ,Endocrinology ,Fibrosis ,Internal medicine ,medicine ,Receptor ,Fibroblast ,media_common ,lcsh:RC648-665 ,Endocrine and Autonomic Systems ,business.industry ,digestive, oral, and skin physiology ,Appetite ,medicine.disease ,medicine.anatomical_structure ,Apoptosis ,Ghrelin ,medicine.symptom ,business - Abstract
Fibrosis can affect almost all tissues and organs, it often represents the terminal stage of chronic diseases, and it is regarded as a major health issue for which efficient therapies are needed. Tissue injury, by inducing necrosis/apoptosis, triggers inflammatory response that, in turn, promotes fibroblast activation and pathological deposition of extracellular matrix. Acylated and unacylated ghrelin are the main products of the ghrelin gene. The acylated form, through its receptor GHSR-1a, stimulates appetite and growth hormone (GH) release. Although unacylated ghrelin does not bind or activate GHSR-1a, it shares with the acylated form several biological activities. Ghrelin peptides exhibit anti-inflammatory, antioxidative, and antiapoptotic activities, suggesting that they might represent an efficient approach to prevent or reduce fibrosis. The aim of this review is to summarize the available evidence regarding the effects of acylated and unacylated ghrelin on different pathologies and experimental models in which fibrosis is a predominant characteristic.
- Published
- 2015
7. Ghrelin: A novel neuromuscular recovery promoting factor?
- Author
-
Raimondo, Stefania, Ronchi, Giulia, Geuna, Stefano, Pascal, Davide, Reano, Simone, Filigheddu, Nicoletta, GRAZIANI, ANDREA, Raimondo, S, Ronchi, G, Geuna, S, Pascal, D, Reano, S, Filigheddu, N, Graziani, A, Perroteau, I, Tos, P, Battiston, B, Raimondo, Stefania, Ronchi, Giulia, Geuna, Stefano, Pascal, Davide, Reano, Simone, Filigheddu, Nicoletta, and Graziani, Andrea
- Subjects
Animal ,Ghrelin ,Injury ,Peripheral nerve ,Regeneration ,Skeletal muscle ,Animals ,Axons ,Humans ,Nerve Regeneration ,Neuromuscular Agents ,Peripheral Nerve Injuries ,Recovery of Function ,Neurology (clinical) ,Cellular and Molecular Neuroscience ,Peripheral Nerve Injurie ,Axon ,Human ,Neuromuscular Agent - Abstract
Promoting neuromuscular recovery after neural injury is a major clinical issue. While techniques for nerve reconstruction are continuously improving and most peripheral nerve lesions can be repaired today, recovery of the lost function is usually unsatisfactory. This evidence claims for innovative nonsurgical therapeutic strategies that can implement the outcome after neural repair.Although no pharmacological approach for improving posttraumatic neuromuscular recovery has still entered clinical practice, various molecules are explored in experimental models of neural repair. One of such molecules is the circulating peptide hormone ghrelin. This hormone has proved to have a positive effect on neural repair after central nervous system lesion, and very recently its effectiveness has also been demonstrated in preventing posttraumatic skeletal muscle atrophy. By contrast, no information is still available about its effectiveness on peripheral nerve regeneration although preliminary data from our laboratory suggest that this molecule can have an effect also in promoting axonal regeneration after nerve injury and repair.Should this be confirmed, ghrelin might represent an ideal candidate as a therapeutic agent for improving posttraumatic neuromuscular recovery because of its putative effects at all the various structural levels involved in this regeneration process, namely, the central nervous system, the peripheral nerve, and the target skeletal muscle. © 2013 Elsevier Inc.
- Published
- 2013
8. Ghrelin and unacylated ghrelin inhibit muscle atrophy in C2C12 myotubes through p38 AND mTORC2 pathways without stimulating mTORC1 and protein synthesis
- Author
-
Ferrara, Michele, Reano, Simone, Porporato, Pe, Nicoletta Filigheddu, Graziani, Andrea, Ferrara, M, Reano, S, Porporato, Pe, Filigheddu, N, and Graziani, Andrea
- Published
- 2011
9. ER-mitochondria distance is a critical parameter for efficient mitochondrial Ca 2+ uptake and oxidative metabolism.
- Author
-
Dematteis G, Tapella L, Casali C, Talmon M, Tonelli E, Reano S, Ariotti A, Pessolano E, Malecka J, Chrostek G, Kulkovienė G, Umbrasas D, Distasi C, Grilli M, Ladds G, Filigheddu N, Fresu LG, Mikoshiba K, Matute C, Ramos-Gonzalez P, Jekabsone A, Calì T, Brini M, Biggiogera M, Cavaliere F, Miggiano R, Genazzani AA, and Lim D
- Subjects
- Humans, Calcium Signaling, Inositol 1,4,5-Trisphosphate Receptors metabolism, Oxidation-Reduction, Induced Pluripotent Stem Cells metabolism, Induced Pluripotent Stem Cells cytology, Mitochondria metabolism, Endoplasmic Reticulum metabolism, Calcium metabolism, Astrocytes metabolism, Parkinson Disease metabolism, Parkinson Disease pathology
- Abstract
IP
3 receptor (IP3 R)-mediated Ca2+ transfer at the mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) drives mitochondrial Ca2+ uptake and oxidative metabolism and is linked to different pathologies, including Parkinson's disease (PD). The dependence of Ca2+ transfer efficiency on the ER-mitochondria distance remains unexplored. Employing molecular rulers that stabilize ER-mitochondrial distances at 5 nm resolution, and using genetically encoded Ca2+ indicators targeting the ER lumen and the sub-mitochondrial compartments, we now show that a distance of ~20 nm is optimal for Ca2+ transfer and mitochondrial oxidative metabolism due to enrichment of IP3 R at MERCS. In human iPSC-derived astrocytes from PD patients, 20 nm MERCS were specifically reduced, which correlated with a reduction of mitochondrial Ca2+ uptake. Stabilization of the ER-mitochondrial interaction at 20 nm, but not at 10 nm, fully rescued mitochondrial Ca2+ uptake in PD astrocytes. Our work determines with precision the optimal distance for Ca2+ flux between ER and mitochondria and suggests a new paradigm for fine control over mitochondrial function., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
10. Unravelling the metabolic rewiring in the context of doxorubicin-induced cardiotoxicity: Fuel preference changes from fatty acids to glucose oxidation.
- Author
-
Guerra G, Russo M, Priolo R, Riganti C, Reano S, Filigheddu N, Hirsch E, and Ghigo A
- Subjects
- Animals, Class Ib Phosphatidylinositol 3-Kinase metabolism, Glycolysis drug effects, Autophagy drug effects, Male, Signal Transduction drug effects, Myocytes, Cardiac metabolism, Myocytes, Cardiac drug effects, Myocytes, Cardiac pathology, Citric Acid Cycle drug effects, Mice, Inbred C57BL, Heart Diseases chemically induced, Heart Diseases metabolism, Heart Diseases pathology, Heart Diseases prevention & control, Heart Diseases physiopathology, Mitochondria, Heart metabolism, Mitochondria, Heart drug effects, Mitochondria, Heart pathology, Mitochondria, Heart enzymology, Mice, Knockout, Disease Models, Animal, Reactive Oxygen Species metabolism, Glucose Transporter Type 4 metabolism, Antibiotics, Antineoplastic toxicity, Antibiotics, Antineoplastic adverse effects, Doxorubicin toxicity, Oxidation-Reduction, Glucose metabolism, Cardiotoxicity, Fatty Acids metabolism, Energy Metabolism drug effects
- Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic agent whose clinical use is hindered by the onset of cardiotoxic effects, resulting in reduced ejection fraction within the first year from treatment initiation. Recently it has been demonstrated that DOX accumulates within mitochondria, leading to disruption of metabolic processes and energetic imbalance. We previously described that phosphoinositide 3-kinase γ (PI3Kγ) contributes to DOX-induced cardiotoxicity, causing autophagy inhibition and accumulation of damaged mitochondria. Here we intend to describe the maladaptive metabolic rewiring occurring in DOX-treated hearts and the contribution of PI3Kγ signalling to this process. Metabolomic analysis of DOX-treated WT hearts revealed an accumulation of TCA cycle metabolites due to a cycle slowdown, with reduced levels of pyruvate, unchanged abundance of lactate and increased Acetyl-CoA production. Moreover, the activity of glycolytic enzymes was upregulated, and fatty acid oxidation downregulated, after DOX, indicative of increased glucose oxidation. In agreement, oxygen consumption was increased in after pyruvate supplementation, with the formation of cytotoxic ROS rather than energy production. These metabolic changes were fully prevented in KD hearts. Interestingly, they failed to increase glucose oxidation in response to DOX even with autophagy inhibition, indicating that PI3Kγ likely controls the fuel preference after DOX through an autophagy-independent mechanism. In vitro experiments showed that inhibition of PI3Kγ inhibits pyruvate dehydrogenase (PDH), the key enzyme of Randle cycle regulating the switch from fatty acids to glucose usage, while decreasing DOX-induced mobilization of GLUT-4-carrying vesicles to the plasma membrane and limiting the ensuing glucose uptake. These results demonstrate that PI3Kγ promotes a maladaptive metabolic rewiring in DOX-treated hearts, through a two-pronged mechanism controlling PDH activation and GLUT-4-mediated glucose uptake., (Copyright © 2024.)
- Published
- 2024
- Full Text
- View/download PDF
11. Astroglial calcium signaling and homeostasis in tuberous sclerosis complex.
- Author
-
Romagnolo A, Dematteis G, Scheper M, Luinenburg MJ, Mühlebner A, Van Hecke W, Manfredi M, De Giorgis V, Reano S, Filigheddu N, Bortolotto V, Tapella L, Anink JJ, François L, Dedeurwaerdere S, Mills JD, Genazzani AA, Lim D, and Aronica E
- Subjects
- Humans, Astrocytes pathology, Calcium Signaling, Calcium metabolism, TOR Serine-Threonine Kinases metabolism, Homeostasis, Seizures, Tuberous Sclerosis pathology, Epilepsy genetics
- Abstract
Tuberous Sclerosis Complex (TSC) is a multisystem genetic disorder characterized by the development of benign tumors in various organs, including the brain, and is often accompanied by epilepsy, neurodevelopmental comorbidities including intellectual disability and autism. A key hallmark of TSC is the hyperactivation of the mechanistic target of rapamycin (mTOR) signaling pathway, which induces alterations in cortical development and metabolic processes in astrocytes, among other cellular functions. These changes could modulate seizure susceptibility, contributing to the progression of epilepsy and its associated comorbidities. Epilepsy is characterized by dysregulation of calcium (Ca
2+ ) channels and intracellular Ca2+ dynamics. These factors contribute to hyperexcitability, disrupted synaptogenesis, and altered synchronization of neuronal networks, all of which contribute to seizure activity. This study investigates the intricate interplay between altered Ca2+ dynamics, mTOR pathway dysregulation, and cellular metabolism in astrocytes. The transcriptional profile of TSC patients revealed significant alterations in pathways associated with cellular respiration, ER and mitochondria, and Ca2+ regulation. TSC astrocytes exhibited lack of responsiveness to various stimuli, compromised oxygen consumption rate and reserve respiratory capacity underscoring their reduced capacity to react to environmental changes or cellular stress. Furthermore, our study revealed significant reduction of store operated calcium entry (SOCE) along with strong decrease of basal mitochondrial Ca2+ concentration and Ca2+ influx in TSC astrocytes. In addition, we observed alteration in mitochondrial membrane potential, characterized by increased depolarization in TSC astrocytes. Lastly, we provide initial evidence of structural abnormalities in mitochondria within TSC patient-derived astrocytes, suggesting a potential link between disrupted Ca2+ signaling and mitochondrial dysfunction. Our findings underscore the complexity of the relationship between Ca2+ signaling, mitochondria dynamics, apoptosis, and mTOR hyperactivation. Further exploration is required to shed light on the pathophysiology of TSC and on TSC associated neuropsychiatric disorders offering further potential avenues for therapeutic development., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
12. Boosting intracellular sodium selectively kills hepatocarcinoma cells and induces hepatocellular carcinoma tumor shrinkage in mice.
- Author
-
Clemente N, Baroni S, Fiorilla S, Tasso F, Reano S, Borsotti C, Ruggiero MR, Alchera E, Corrazzari M, Walker G, Follenzi A, Crich SG, and Carini R
- Subjects
- Mice, Humans, Animals, Sodium metabolism, Monensin therapeutic use, Cell Line, Water, Carcinoma, Hepatocellular pathology, Liver Neoplasms pathology
- Abstract
Pharmacological treatments for advanced hepatocellular carcinoma (HCC) have a partial efficacy. Augmented Na
+ content and water retention are observed in human cancers and offer unexplored targets for anticancer therapies. Na+ levels are evaluated upon treatments with the antibiotic cation ionophore Monensin by fluorimetry, ICP-MS,23 Na-MRI, NMR relaxometry, confocal or time-lapse analysis related to energy production, water fluxes and cell death, employing both murine and human HCC cell lines, primary murine hepatocytes, or HCC allografts in NSG mice. Na+ levels of HCC cells and tissue are 8-10 times higher than that of healthy hepatocytes and livers. Monensin further increases Na+ levels in HCC cells and in HCC allografts but not in primary hepatocytes and in normal hepatic and extrahepatic tissue. The Na+ increase is associated with energy depletion, mitochondrial Na+ load and inhibition of O2 consumption. The Na+ increase causes an enhancement of the intracellular water lifetime and death of HCC cells, and a regression and necrosis of allograft tumors, without affecting the proliferating activity of either HCCs or healthy tissues. These observations indicate that HCC cells are, unlike healthy cells, energetically incapable of compensating and surviving a pharmacologically induced Na+ load, highlighting Na+ homeostasis as druggable target for HCC therapy., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
13. Dissecting the Mechanism of Action of Spiperone-A Candidate for Drug Repurposing for Colorectal Cancer.
- Author
-
Antona A, Varalda M, Roy K, Favero F, Mazzucco E, Zuccalà M, Leo G, Soggia G, Bettio V, Tosi M, Gaggianesi M, Riva B, Reano S, Genazzani A, Manfredi M, Stassi G, Corà D, D'Alfonso S, and Capello D
- Abstract
Approximately 50% of colorectal cancer (CRC) patients still die from recurrence and metastatic disease, highlighting the need for novel therapeutic strategies. Drug repurposing is attracting increasing attention because, compared to traditional de novo drug discovery processes, it may reduce drug development periods and costs. Epidemiological and preclinical evidence support the antitumor activity of antipsychotic drugs. Herein, we dissect the mechanism of action of the typical antipsychotic spiperone in CRC. Spiperone can reduce the clonogenic potential of stem-like CRC cells (CRC-SCs) and induce cell cycle arrest and apoptosis, in both differentiated and CRC-SCs, at clinically relevant concentrations whose toxicity is negligible for non-neoplastic cells. Analysis of intracellular Ca
2+ kinetics upon spiperone treatment revealed a massive phospholipase C (PLC)-dependent endoplasmic reticulum (ER) Ca2+ release, resulting in ER Ca2+ homeostasis disruption. RNA sequencing revealed unfolded protein response (UPR) activation, ER stress, and induction of apoptosis, along with IRE1-dependent decay of mRNA (RIDD) activation. Lipidomic analysis showed a significant alteration of lipid profile and, in particular, of sphingolipids. Damage to the Golgi apparatus was also observed. Our data suggest that spiperone can represent an effective drug in the treatment of CRC, and that ER stress induction, along with lipid metabolism alteration, represents effective druggable pathways in CRC.- Published
- 2022
- Full Text
- View/download PDF
14. The Atrophic Effect of 1,25(OH) 2 Vitamin D 3 (Calcitriol) on C2C12 Myotubes Depends on Oxidative Stress.
- Author
-
Raiteri T, Zaggia I, Reano S, Scircoli A, Salvadori L, Prodam F, and Filigheddu N
- Abstract
Dysfunctional mitochondrial metabolism has been linked to skeletal muscle loss in several physio-pathological states. Although it has been reported that vitamin D (VD) supports cellular redox homeostasis by maintaining normal mitochondrial functions, and VD deficiency often occurs in conditions associated with skeletal muscle loss, the efficacy of VD supplementation to overcome muscle wasting is debated. Investigations on the direct effects of VD metabolites on skeletal muscle using C2C12 myotubes have revealed an unexpected pro-atrophic activity of calcitriol (1,25VD), while its upstream metabolites cholecalciferol (VD3) and calcidiol (25VD) have anti-atrophic effects. Here, we investigated if the atrophic effects of 1,25VD on myotubes depend on its activity on mitochondrial metabolism. The impact of 1,25VD and its upstream metabolites VD3 and 25VD on mitochondria dynamics and the activity of C2C12 myotubes was evaluated by measuring mitochondrial content, architecture, metabolism, and reactive oxygen species (ROS) production. We found that 1,25VD induces atrophy through protein kinase C (PKC)-mediated ROS production, mainly of extramitochondrial origin. Consistent with this, cotreatment with the antioxidant N-acetylcysteine (NAC), but not with the mitochondria-specific antioxidant mitoTEMPO, was sufficient to blunt the atrophic activity of 1,25VD. In contrast, VD3 and 25VD have antioxidant properties, suggesting that the efficacy of VD supplementation might result from the balance between atrophic pro-oxidant (1,25VD) and protective antioxidant (VD3 and 25VD) metabolites.
- Published
- 2021
- Full Text
- View/download PDF
15. Effect of unacylated ghrelin on peripheral nerve regeneration.
- Author
-
Ronchi G, Tos P, Angelino E, Muratori L, Reano S, Filigheddu N, Graziani A, Geuna S, and Raimondo S
- Subjects
- Animals, Female, Median Nerve injuries, Mice, Transgenic, Ghrelin metabolism, Median Nerve metabolism, Nerve Regeneration physiology
- Abstract
Ghrelin is a circulating peptide hormone released by enteroendocrine cells of the gastrointestinal tract as two forms, acylated and unacylated. Acylated ghrelin (AG) binds to the growth hormone secretagogue receptor 1a (GHSR1a), thus stimulating food intake, growth hormone release, and gastrointestinal motility. Conversely, unacylated GHR (UnAG), through binding to a yet unidentified receptor, protects the skeletal muscle from atrophy, stimulates muscle regeneration, and protects cardiomyocytes from ischemic damage. Recently, interest about ghrelin has raised also among neuroscientists because of its effect on the nervous system, especially the stimulation of neurogenesis in spinal cord, brain stem, and hippocampus. However, few information is still available about its effectiveness on peripheral nerve regeneration. To partially fill this gap, the aim of this study was to assess the effect of UnAG on peripheral nerve regeneration after median nerve crush injury and after nerve transection immediately repaired by means of an end-to-end suture. To this end, we exploited FVB1 Myh6/Ghrl transgenic mice in which overexpression of the ghrelin gene (Ghrl) results in selective up-regulation of circulating UnAG levels, but not of AG. Regeneration was assessed by both functional evaluation (grasping test) and morphometrical analysis of regenerated myelinated axons. Results obtained lead to conclude that UnAG could have a role in development of peripheral nerves and during more severe lesions.
- Published
- 2021
- Full Text
- View/download PDF
16. Cholecalciferol (vitamin D 3 ) has a direct protective activity against interleukin 6-induced atrophy in C2C12 myotubes.
- Author
-
Teixeira MA, De Feudis M, Reano S, Raiteri T, Scircoli A, Zaggia I, Ruga S, Salvadori L, Prodam F, Marzullo P, Molinari C, Corà D, and Filigheddu N
- Subjects
- Animals, Cholecalciferol pharmacology, Muscle, Skeletal, Atrophy, Cholecalciferol metabolism, Interleukin-6 adverse effects, Muscle Fibers, Skeletal physiology, Protective Factors
- Abstract
We previously determined that different vitamin D metabolites can have opposite effects on C2C12 myotubes, depending on the sites of hydroxylation or doses. Specifically, 25(OH)D
3 (25VD) has an anti-atrophic activity, 1,25(OH)2 D3 induces atrophy, and 24,25(OH)2 D3 is anti-atrophic at low concentrations and atrophic at high concentrations. This study aimed to clarify whether cholecalciferol (VD3) too, the non-hydroxylated upstream metabolite, has a direct effect on muscle cells. Assessing the effects of VD3 treatment on mouse C2C12 skeletal muscle myotubes undergoing atrophy induced by interleukin 6 (IL6), we demonstrated that VD3 has a protective action, preserving C2C12 myotubes size, likely through promoting the differentiation and fusion of residual myoblasts and by modulating the IL6-induced autophagic flux. The lack, in C2C12 myotubes, of the hydroxylase transforming VD3 in the anti-atrophic 25VD metabolite suggests that VD3 may have a direct biological activity on the skeletal muscle. Furthermore, we found that the protective action of VD3 depended on VDR, implying that VD3 too might bind to and activate VDR. However, despite the formation of VDR-RXR heterodimers, VD3 effects do not depend on RXR activity. In conclusion, VD3, in addition to its best-known metabolites, may directly impact on skeletal muscle homeostasis.- Published
- 2021
- Full Text
- View/download PDF
17. Both ghrelin deletion and unacylated ghrelin overexpression preserve muscles in aging mice.
- Author
-
Agosti E, De Feudis M, Angelino E, Belli R, Alves Teixeira M, Zaggia I, Tamiso E, Raiteri T, Scircoli A, Ronzoni FL, Muscaritoli M, Graziani A, Prodam F, Sampaolesi M, Costelli P, Ferraro E, Reano S, and Filigheddu N
- Subjects
- Acylation, Adipose Tissue drug effects, Animals, Body Weight drug effects, Feeding Behavior drug effects, Gene Expression Regulation, Developmental genetics, Ghrelin pharmacology, Hindlimb Suspension, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Muscle, Skeletal drug effects, Muscle, Skeletal growth & development, Muscular Atrophy metabolism, Psychomotor Performance drug effects, Recognition, Psychology drug effects, Sarcopenia genetics, Sarcopenia pathology, Aging pathology, Ghrelin biosynthesis, Ghrelin genetics, Muscle, Skeletal pathology
- Abstract
Sarcopenia, the decline in muscle mass and functionality during aging, might arise from age-associated endocrine dysfunction. Ghrelin is a hormone circulating in both acylated (AG) and unacylated (UnAG) forms with anti-atrophic activity on skeletal muscle. Here, we show that not only lifelong overexpression of UnAG (Tg) in mice, but also the deletion of ghrelin gene ( Ghrl KO) attenuated the age-associated muscle atrophy and functionality decline, as well as systemic inflammation. Yet, the aging of Tg and Ghrl KO mice occurs with different dynamics: while old Tg mice seem to preserve the characteristics of young animals, Ghrl KO mice features deteriorate with aging. However, young Ghrl KO mice show more favorable traits compared to WT animals that result, on the whole, in better performances in aged Ghrl KO animals. Treatment with pharmacological doses of UnAG improved muscle performance in old mice without modifying the feeding behavior, body weight, and adipose tissue mass. The antiatrophic effect on muscle mass did not correlate with modifications of protein catabolism. However, UnAG treatment induced a strong shift towards oxidative metabolism in muscle. Altogether, these data confirmed and expanded some of the previously reported findings and advocate for the design of UnAG analogs to treat sarcopenia.
- Published
- 2020
- Full Text
- View/download PDF
18. A luminal EF-hand mutation in STIM1 in mice causes the clinical hallmarks of tubular aggregate myopathy.
- Author
-
Cordero-Sanchez C, Riva B, Reano S, Clemente N, Zaggia I, Ruffinatti FA, Potenzieri A, Pirali T, Raffa S, Sangaletti S, Colombo MP, Bertoni A, Garibaldi M, Filigheddu N, and Genazzani AA
- Subjects
- Animals, Calcium metabolism, Female, Male, Mice, Inbred C57BL, Muscle Development, Muscle Fibers, Skeletal metabolism, Muscle Fibers, Skeletal pathology, Muscle Fibers, Skeletal ultrastructure, Myopathies, Structural, Congenital pathology, Phenotype, EF Hand Motifs genetics, Mutation genetics, Myopathies, Structural, Congenital genetics, Stromal Interaction Molecule 1 chemistry, Stromal Interaction Molecule 1 genetics
- Abstract
STIM and ORAI proteins play a fundamental role in calcium signaling, allowing for calcium influx through the plasma membrane upon depletion of intracellular stores, in a process known as store-operated Ca
2+ entry. Point mutations that lead to gain-of-function activity of either STIM1 or ORAI1 are responsible for a cluster of ultra-rare syndromes characterized by motor disturbances and platelet dysfunction. The prevalence of these disorders is at present unknown. In this study, we describe the generation and characterization of a knock-in mouse model (KI - STIM1I115F ) that bears a clinically relevant mutation located in one of the two calcium-sensing EF-hand motifs of STIM1. The mouse colony is viable and fertile. Myotubes from these mice show an increased store-operated Ca2+ entry, as predicted. This most likely causes the dystrophic muscle phenotype observed, which worsens with age. Such histological features are not accompanied by a significant increase in creatine kinase. However, animals have significantly worse performance in rotarod and treadmill tests, showing increased susceptibility to fatigue, in analogy to the human disease. The mice also show increased bleeding time and thrombocytopenia, as well as an unexpected defect in the myeloid lineage and in natural killer cells. The present model, together with recently described models bearing the R304W mutation (located on the coiled-coil domain in the cytosolic side of STIM1), represents an ideal platform to characterize the disorder and test therapeutic strategies for patients with STIM1 mutations, currently without therapeutic solutions.This article has an associated First Person interview with Celia Cordero-Sanchez, co-first author of the paper., Competing Interests: Competing interestsThe authors declare no competing or financial interests., (© 2019. Published by The Company of Biologists Ltd.)- Published
- 2019
- Full Text
- View/download PDF
19. Opposing effects of 25-hydroxy- and 1α,25-dihydroxy-vitamin D 3 on pro-cachectic cytokine-and cancer conditioned medium-induced atrophy in C2C12 myotubes.
- Author
-
Sustova H, De Feudis M, Reano S, Alves Teixeira M, Valle I, Zaggia I, Agosti E, Prodam F, and Filigheddu N
- Subjects
- Cell Line, Tumor, Culture Media, Conditioned, Cytokines metabolism, Humans, Vitamin D metabolism, Cachexia metabolism, Muscle Fibers, Skeletal metabolism, Muscle, Skeletal metabolism, Muscular Atrophy metabolism, Vitamin D analogs & derivatives
- Abstract
Aim: Loss of skeletal muscle is one of the main features of cancer cachexia. Vitamin D (VD) deficiency is associated with impairment of muscle mass and performance and is highly prevalent in cachectic patients; therefore, VD supplementation has been proposed to counteract cancer cachexia-associated muscle loss. However, in both cachectic cancer patients and tumour-bearing animals, VD supplementation led to disappointing results, urging the need for a better understanding of VD activity on skeletal muscle., Methods: Cancer-associated muscle wasting was reproduced in vitro by treating C2C12 myotubes with cancer cell conditioned medium, a combination of TNF-α and IFNγ or IL-6 pro-cachectic cytokines. The biological effects and mechanisms of action of 1,25-dihydroxy VD (1,25 VD) and its precursor 25-hydroxy VD (25 VD) on myotubes were explored., Results: We demonstrated that only 25 VD was able to protect from atrophy by activating Akt signalling, inducing protein synthesis, and stimulating the autophagic flux, while 1,25 VD had an atrophic activity per se, increasing FoxO3 levels, inducing the expression of atrogenes, and blocking the autophagic flux. Furthermore, we showed that the contrasting activities of these VD metabolites on C2C12 myotubes depend on a differential induction of VD-24-hydroxylase and transformation of VD metabolites in pro-atrophic 24-hydroxylated products, as silencing of VD-24-hydroxylase reduced the atrophic activity of 1,25 VD., Conclusions: Altogether these data might explain the lack of efficacy of VD treatment in vivo for the protection of muscle mass in cancer., (© 2019 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
20. Ghrelin knockout mice display defective skeletal muscle regeneration and impaired satellite cell self-renewal.
- Author
-
Angelino E, Reano S, Bollo A, Ferrara M, De Feudis M, Sustova H, Agosti E, Clerici S, Prodam F, Tomasetto CL, Graziani A, and Filigheddu N
- Subjects
- Animals, Ghrelin genetics, Male, Mice, Mice, Knockout, Ghrelin metabolism, Muscle, Skeletal metabolism, Regeneration physiology, Satellite Cells, Skeletal Muscle metabolism
- Abstract
Purpose: Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. The peptides produced by the ghrelin gene, i.e., acylated ghrelin (AG), unacylated ghrelin (UnAG), and obestatin (Ob), affect skeletal muscle biology in several ways, not always with overlapping effects. In particular, UnAG and Ob promote SC self-renewal and myoblast differentiation, thus fostering muscle regeneration., Methods: To delineate the endogenous contribution of preproghrelin in muscle regeneration, we evaluated the repair process in Ghrl
-/- mice upon CTX-induced injury., Results: Although muscles from Ghrl-/- mice do not visibly differ from WT muscles in term of weight, structure, and SCs content, muscle regeneration after CTX-induced injury is impaired in Ghrl-/- mice, indicating that ghrelin-derived peptides actively participate in muscle repair. Remarkably, the lack of ghrelin gene impacts SC self-renewal during regeneration., Conclusions: Although we cannot discern the specific Ghrl-derived peptide responsible for such activities, these data indicate that Ghrl contributes to a proper muscle regeneration.- Published
- 2018
- Full Text
- View/download PDF
21. Metabolic Alterations in a Slow-Paced Model of Pancreatic Cancer-Induced Wasting.
- Author
-
Wyart E, Reano S, Hsu MY, Longo DL, Li M, Hirsch E, Filigheddu N, Ghigo A, Riganti C, and Porporato PE
- Subjects
- Animals, Female, Mice, Mice, Inbred C57BL, Quality of Life, Cachexia physiopathology, Muscle, Skeletal physiopathology, Muscular Atrophy physiopathology, Pancreatic Neoplasms physiopathology
- Abstract
Cancer cachexia is a devastating syndrome occurring in the majority of terminally ill cancer patients. Notably, skeletal muscle atrophy is a consistent feature affecting the quality of life and prognosis. To date, limited therapeutic options are available, and research in the field is hampered by the lack of satisfactory models to study the complexity of wasting in cachexia-inducing tumors, such as pancreatic cancer. Moreover, currently used in vivo models are characterized by an explosive cachexia with a lethal wasting within few days, while pancreatic cancer patients might experience alterations long before the onset of overt wasting. In this work, we established and characterized a slow-paced model of pancreatic cancer-induced muscle wasting that promotes efficient muscular wasting in vitro and in vivo . Treatment with conditioned media from pancreatic cancer cells led to the induction of atrophy in vitro , while tumor-bearing mice presented a clear reduction in muscle mass and functionality. Intriguingly, several metabolic alterations in tumor-bearing mice were identified, paving the way for therapeutic interventions with drugs targeting metabolism.
- Published
- 2018
- Full Text
- View/download PDF
22. Mouse Satellite Cell Isolation and Transplantation.
- Author
-
Angelino E, Reano S, Ferrara M, Agosti E, Sustova H, Malacarne V, Clerici S, Graziani A, and Filigheddu N
- Abstract
Satellite cell (SC) transplantation represents a powerful strategy to investigate SC biology during muscle regeneration. We described here a protocol for SC isolation from green fluorescent protein (GFP)-expressing mice and their transplantation into murine muscles. This procedure was originally used to assess the effects of the hormone unacylated ghrelin on muscle regeneration, in particular evaluating how the increase of unacylated ghrelin in the recipient muscle affected the engraftment of donor SCs ( Reano et al. , 2017 )., (Copyright © 2018 The Authors; exclusive licensee Bio-protocol LLC.)
- Published
- 2018
- Full Text
- View/download PDF
23. Unacylated Ghrelin Enhances Satellite Cell Function and Relieves the Dystrophic Phenotype in Duchenne Muscular Dystrophy mdx Model.
- Author
-
Reano S, Angelino E, Ferrara M, Malacarne V, Sustova H, Sabry O, Agosti E, Clerici S, Ruozi G, Zentilin L, Prodam F, Geuna S, Giacca M, Graziani A, and Filigheddu N
- Subjects
- Acylation, Animals, Cell Count, Cell Differentiation, Dystrophin metabolism, Fibrosis, Gene Expression Regulation, Ghrelin metabolism, Male, Mice, Mice, Inbred C57BL, Mice, Inbred mdx, Muscle, Skeletal pathology, Muscular Dystrophy, Animal genetics, Muscular Dystrophy, Animal pathology, Phenotype, Satellite Cells, Skeletal Muscle pathology, Signal Transduction, p38 Mitogen-Activated Protein Kinases genetics, p38 Mitogen-Activated Protein Kinases metabolism, Dystrophin genetics, Ghrelin genetics, Muscle, Skeletal metabolism, Muscular Dystrophy, Animal metabolism, Regeneration genetics, Satellite Cells, Skeletal Muscle metabolism
- Abstract
Muscle regeneration depends on satellite cells (SCs), quiescent precursors that, in consequence of injury or in pathological states such as muscular dystrophies, activate, proliferate, and differentiate to repair the damaged tissue. A subset of SCs undergoes self-renewal, thus preserving the SC pool and its regenerative potential. Unacylated ghrelin (UnAG) is a circulating hormone that protects muscle from atrophy, promotes myoblast differentiation, and enhances ischemia-induced muscle regeneration. Here we show that UnAG increases SC activity and stimulates Par polarity complex/p38-mediated asymmetric division, fostering both SC self-renewal and myoblast differentiation. Because of those activities on different steps of muscle regeneration, we hypothesized a beneficial effect of UnAG in mdx dystrophic mice, in which the absence of dystrophin leads to chronic muscle degeneration, defective muscle regeneration, fibrosis, and, at later stages of the pathology, SC pool exhaustion. Upregulation of UnAG levels in mdx mice reduces muscle degeneration, improves muscle function, and increases dystrophin-null SC self-renewal, maintaining the SC pool. Our results suggest that UnAG has significant therapeutic potential for preserving the muscles in dystrophies. Stem Cells 2017;35:1733-1746., (© 2017 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.)
- Published
- 2017
- Full Text
- View/download PDF
24. Correction: Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential.
- Author
-
Oltolina F, Zamperone A, Colangelo D, Gregoletto L, Reano S, Pietronave S, Merlin S, Talmon M, Novelli E, Diena M, Nicoletti C, Musarò A, Filigheddu N, Follenzi A, and Prat M
- Published
- 2015
- Full Text
- View/download PDF
25. Human Cardiac Progenitor Spheroids Exhibit Enhanced Engraftment Potential.
- Author
-
Oltolina F, Zamperone A, Colangelo D, Gregoletto L, Reano S, Pietronave S, Merlin S, Talmon M, Novelli E, Diena M, Nicoletti C, Musarò A, Filigheddu N, Follenzi A, and Prat M
- Subjects
- Aged, Aged, 80 and over, Animals, Blotting, Western, Cell Differentiation, Cell Movement, Cell Proliferation, Cells, Cultured, Female, Fluorescent Antibody Technique, Humans, Immunoenzyme Techniques, Male, Mice, Mice, Inbred C57BL, Middle Aged, Myocardium metabolism, RNA, Messenger genetics, Real-Time Polymerase Chain Reaction, Reverse Transcriptase Polymerase Chain Reaction, Spheroids, Cellular metabolism, Stem Cells metabolism, Tissue Scaffolds, Heart physiology, Myocardium cytology, Spheroids, Cellular cytology, Spheroids, Cellular transplantation, Stem Cell Transplantation, Stem Cells cytology, Tissue Engineering
- Abstract
A major obstacle to an effective myocardium stem cell therapy has always been the delivery and survival of implanted stem cells in the heart. Better engraftment can be achieved if cells are administered as cell aggregates, which maintain their extra-cellular matrix (ECM). We have generated spheroid aggregates in less than 24 h by seeding human cardiac progenitor cells (hCPCs) onto methylcellulose hydrogel-coated microwells. Cells within spheroids maintained the expression of stemness/mesenchymal and ECM markers, growth factors and their cognate receptors, cardiac commitment factors, and metalloproteases, as detected by immunofluorescence, q-RT-PCR and immunoarray, and expressed a higher, but regulated, telomerase activity. Compared to cells in monolayers, 3D spheroids secreted also bFGF and showed MMP2 activity. When spheroids were seeded on culture plates, the cells quickly migrated, displaying an increased wound healing ability with or without pharmacological modulation, and reached confluence at a higher rate than cells from conventional monolayers. When spheroids were injected in the heart wall of healthy mice, some cells migrated from the spheroids, engrafted, and remained detectable for at least 1 week after transplantation, while, when the same amount of cells was injected as suspension, no cells were detectable three days after injection. Cells from spheroids displayed the same engraftment capability when they were injected in cardiotoxin-injured myocardium. Our study shows that spherical in vivo ready-to-implant scaffold-less aggregates of hCPCs able to engraft also in the hostile environment of an injured myocardium can be produced with an economic, easy and fast protocol.
- Published
- 2015
- Full Text
- View/download PDF
26. Antifibrotic activity of acylated and unacylated ghrelin.
- Author
-
Angelino E, Reano S, Ferrara M, Agosti E, Graziani A, and Filigheddu N
- Abstract
Fibrosis can affect almost all tissues and organs, it often represents the terminal stage of chronic diseases, and it is regarded as a major health issue for which efficient therapies are needed. Tissue injury, by inducing necrosis/apoptosis, triggers inflammatory response that, in turn, promotes fibroblast activation and pathological deposition of extracellular matrix. Acylated and unacylated ghrelin are the main products of the ghrelin gene. The acylated form, through its receptor GHSR-1a, stimulates appetite and growth hormone (GH) release. Although unacylated ghrelin does not bind or activate GHSR-1a, it shares with the acylated form several biological activities. Ghrelin peptides exhibit anti-inflammatory, antioxidative, and antiapoptotic activities, suggesting that they might represent an efficient approach to prevent or reduce fibrosis. The aim of this review is to summarize the available evidence regarding the effects of acylated and unacylated ghrelin on different pathologies and experimental models in which fibrosis is a predominant characteristic.
- Published
- 2015
- Full Text
- View/download PDF
27. Acylated and unacylated ghrelin administration to blunt muscle wasting.
- Author
-
Reano S, Graziani A, and Filigheddu N
- Subjects
- Acylation, Cachexia drug therapy, Humans, Muscle, Skeletal drug effects, Muscle, Skeletal physiopathology, Muscular Atrophy physiopathology, Receptors, Ghrelin physiology, Ghrelin chemistry, Ghrelin therapeutic use, Muscular Atrophy drug therapy, Wasting Syndrome drug therapy
- Abstract
Purpose of Review: Muscle wasting is a comorbidity often associated with a wide range of disorders that severely affects patient prognosis and quality of life. Ghrelin, through its receptor GHSR-1a, stimulates appetite and growth hormone (GH) release. Several studies indicate that ghrelin administration is a valid treatment for cachexia because it improves muscle mass and function, likely by restoring a positive energy balance., Recent Findings: In addition to its GHSR-1a-mediated effects on muscle mass, ghrelin acts directly on skeletal muscle, wherein it exerts a protective activity against muscle wasting. This direct activity is independent of GHSR-1a and is shared by the unacylated form of ghrelin, which does not bind GHSR-1a and is devoid of the effects on appetite and GH release., Summary: Both the acylated and unacylated forms of ghrelin might have therapeutic potential for the treatment of skeletal muscle wasting.
- Published
- 2014
- Full Text
- View/download PDF
28. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice.
- Author
-
Porporato PE, Filigheddu N, Reano S, Ferrara M, Angelino E, Gnocchi VF, Prodam F, Ronchi G, Fagoonee S, Fornaro M, Chianale F, Baldanzi G, Surico N, Sinigaglia F, Perroteau I, Smith RG, Sun Y, Geuna S, and Graziani A
- Subjects
- Acylation, Animals, Cachexia metabolism, Cachexia prevention & control, Cell Line, Ghrelin metabolism, MAP Kinase Signaling System, Male, Mechanistic Target of Rapamycin Complex 2, Mice, Mice, Inbred C57BL, Mice, Knockout, Mice, Transgenic, Multiprotein Complexes metabolism, Muscle Denervation, Muscle, Skeletal drug effects, Muscle, Skeletal metabolism, Muscle, Skeletal pathology, Muscular Atrophy metabolism, Muscular Atrophy pathology, Protein Binding, Proto-Oncogene Proteins c-akt metabolism, Receptors, Ghrelin metabolism, Signal Transduction, TOR Serine-Threonine Kinases metabolism, Ghrelin chemistry, Ghrelin pharmacology, Muscular Atrophy prevention & control
- Abstract
Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that stimulates growth hormone (GH) release and positive energy balance through binding to the receptor GHSR-1a. Only acylated ghrelin (AG), but not the unacylated form (UnAG), can bind GHSR-1a; however, UnAG and AG share several GHSR-1a-independent biological activities. Here we investigated whether UnAG and AG could protect against skeletal muscle atrophy in a GHSR-1a-independent manner. We found that both AG and UnAG inhibited dexamethasone-induced skeletal muscle atrophy and atrogene expression through PI3Kβ-, mTORC2-, and p38-mediated pathways in myotubes. Upregulation of circulating UnAG in mice impaired skeletal muscle atrophy induced by either fasting or denervation without stimulating muscle hypertrophy and GHSR-1a-mediated activation of the GH/IGF-1 axis. In Ghsr-deficient mice, both AG and UnAG induced phosphorylation of Akt in skeletal muscle and impaired fasting-induced atrophy. These results demonstrate that AG and UnAG act on a common, unidentified receptor to block skeletal muscle atrophy in a GH-independent manner.
- Published
- 2013
- Full Text
- View/download PDF
29. Ghrelin: a novel neuromuscular recovery promoting factor?
- Author
-
Raimondo S, Ronchi G, Geuna S, Pascal D, Reano S, Filigheddu N, and Graziani A
- Subjects
- Animals, Axons metabolism, Ghrelin therapeutic use, Humans, Nerve Regeneration physiology, Neuromuscular Agents therapeutic use, Peripheral Nerve Injuries drug therapy, Ghrelin blood, Neuromuscular Agents blood, Peripheral Nerve Injuries blood, Recovery of Function physiology
- Abstract
Promoting neuromuscular recovery after neural injury is a major clinical issue. While techniques for nerve reconstruction are continuously improving and most peripheral nerve lesions can be repaired today, recovery of the lost function is usually unsatisfactory. This evidence claims for innovative nonsurgical therapeutic strategies that can implement the outcome after neural repair. Although no pharmacological approach for improving posttraumatic neuromuscular recovery has still entered clinical practice, various molecules are explored in experimental models of neural repair. One of such molecules is the circulating peptide hormone ghrelin. This hormone has proved to have a positive effect on neural repair after central nervous system lesion, and very recently its effectiveness has also been demonstrated in preventing posttraumatic skeletal muscle atrophy. By contrast, no information is still available about its effectiveness on peripheral nerve regeneration although preliminary data from our laboratory suggest that this molecule can have an effect also in promoting axonal regeneration after nerve injury and repair. Should this be confirmed, ghrelin might represent an ideal candidate as a therapeutic agent for improving posttraumatic neuromuscular recovery because of its putative effects at all the various structural levels involved in this regeneration process, namely, the central nervous system, the peripheral nerve, and the target skeletal muscle., (© 2013 Elsevier Inc. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.