7 results on '"Re-paramétrisation"'
Search Results
2. Bayesian multi‐level mixed‐effects model for influenza dynamics.
- Author
-
Huang, Hanwen
- Subjects
MULTILEVEL models ,MARKOV chain Monte Carlo ,INFLUENZA ,ORDINARY differential equations ,INFLUENZA A virus ,INFLUENZA viruses - Abstract
Influenza A viruses (IAV) are the only influenza viruses known to cause flu pandemics. Understanding the evolution of different sub‐types of IAV on their natural hosts is important for preventing and controlling the virus. We propose a mechanism‐based Bayesian multi‐level mixed‐effects model for characterising influenza viral dynamics, described by a set of ordinary differential equations (ODE). Both strain‐specific and subject‐specific random effects are included for the ODE parameters. Our models can characterise the common features in the population while taking into account the variations among individuals. The random effects selection is conducted at strain level through re‐parameterising the covariance parameters of the corresponding random effect distribution. Our method does not need to solve ODE directly. We demonstrate that the posterior computation can proceed via a simple and efficient Markov chain Monte Carlo algorithm. The methods are illustrated using simulated data and a real data from a study relating virus load estimates from influenza infections in ducks. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
3. On the necessity of proper quarantine without lock down for 2019-nCoV in the absence of vaccine
- Author
-
Prasanta Sahoo, Himadri S. Mondal, Zakia Hammouch, Thabet Abdeljawad, Dwaipayan Mishra, and Motahar Reza
- Subjects
Epidemic model ,Diffusion model ,Reproductive rate ,Re-parametrisation ,Phase plane analysis ,Wave speed ,Physics ,QC1-999 - Abstract
Presently the world is passing through a critical phase due to the prevalence of the Novel Corona virus, 2019-nCoV or COVID-19, which has been declared a pandemic by WHO. The virus transmits via droplets of saliva or discharge from the nose when an infected person coughs or sneezes. Due to the absence of vaccine, to prevent the disease, social distancing and proper quarantine of infected populations are needed. Non-resident citizens coming from several countries need to be quarantined for 14 days prior to their entrance. The same is to be applied for inter-state movements within a country. The purpose of this article is to propose mathematical models, based on quarantine with no lock down, that describe the dynamics of transmission and spread of the disease thereby proposing an effective preventive measure in the absence of vaccine.
- Published
- 2021
- Full Text
- View/download PDF
4. On the necessity of proper quarantine without lock down for 2019-nCoV in the absence of vaccine
- Author
-
Prasanta Sahoo, Thabet Abdeljawad, Zakia Hammouch, Dwaipayan Mishra, Himadri Shekhar Mondal, and Motahar Reza
- Subjects
2019-20 coronavirus outbreak ,Record locking ,Coronavirus disease 2019 (COVID-19) ,QC1-999 ,Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,Re-parametrisation ,Article ,law.invention ,Critical phase ,law ,Epidemic model ,0103 physical sciences ,Quarantine ,Pandemic ,medicine ,Phase plane analysis ,010302 applied physics ,Transmission (medicine) ,Physics ,Diffusion model ,Wave speed ,021001 nanoscience & nanotechnology ,medicine.disease ,Reproductive rate ,Medical emergency ,Business ,0210 nano-technology - Abstract
Presently the world is passing through a critical phase due to the prevalence of the Novel Corona virus, 2019-nCoV or COVID-19, which has been declared a pandemic by WHO. The virus transmits via droplets of saliva or discharge from the nose when an infected person coughs or sneezes. Due to the absence of vaccine, to prevent the disease, social distancing and proper quarantine of infected populations are needed. Non-resident citizens coming from several countries need to be quarantined for 14 days prior to their entrance. The same is to be applied for inter-state movements within a country. The purpose of this article is to propose mathematical models, based on quarantine with no lock down, that describe the dynamics of transmission and spread of the disease thereby proposing an effective preventive measure in the absence of vaccine.
- Published
- 2020
5. On the necessity of proper quarantine without lock down for 2019-nCoV in the absence of vaccine.
- Author
-
Sahoo, Prasanta, Mondal, Himadri S., Hammouch, Zakia, Abdeljawad, Thabet, Mishra, Dwaipayan, and Reza, Motahar
- Abstract
Presently the world is passing through a critical phase due to the prevalence of the Novel Corona virus, 2019-nCoV or COVID-19, which has been declared a pandemic by WHO. The virus transmits via droplets of saliva or discharge from the nose when an infected person coughs or sneezes. Due to the absence of vaccine, to prevent the disease, social distancing and proper quarantine of infected populations are needed. Non-resident citizens coming from several countries need to be quarantined for 14 days prior to their entrance. The same is to be applied for inter-state movements within a country. The purpose of this article is to propose mathematical models, based on quarantine with no lock down, that describe the dynamics of transmission and spread of the disease thereby proposing an effective preventive measure in the absence of vaccine. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
6. Intégration multi-échelles des données de réservoir et quantification des incertitudes
- Author
-
Gentilhomme, Théophile, GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine, Guillaume Caumon, and Jean-Jacques Royer
- Subjects
Inverse problems ,Optimization ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Caractérisation des réservoirs ,Seismic ,Lifting scheme ,Production data ,Optimisation ,Multiple points geostatistics ,History-Matching ,Multi-échelles ,Données de production ,Gisements pétrolifères ,Multi-scale ,Sismique ,Ondelettes de seconde génération ,Géostatistiques multipoints ,Re-paramétrisation ,Étude des ,Calage historique ,Analyse multiéchelle ,Problèmes inverses ,Second generation wavelets ,Schéma de lifting ,Re-parameterization ,Reservoir characterization - Abstract
Accès restreint aux membres de l'Université de Lorraine jusqu'au 2015-01-10; In this work, we propose to follow a multi-scale approach for spatial reservoir properties characterization using direct (well observations) and indirect (seismic and production history) data at different resolutions. Two decompositions are used to parameterize the problem: the wavelets and the Gaussian pyramids. Using these parameterizations, we show the advantages of the multi-scale approach with two uncertainty quantification problems based on minimization. The first one concerns the simulation of property fields from a multiple points geostatistics algorithm. It is shown that the multi-scale approach based on Gaussian pyramids improves the quality of the output realizations, the match of the conditioning data and the computational time compared to the standard approach. The second problem concerns the preservation of the prior models during the assimilation of the production history. In order to re-parameterize the problem, we develop a new 3D grid adaptive wavelet transform, which can be used on complex reservoir grids containing dead or zero volume cells. An ensemble-based optimization method is integrated in the multi-scale history matching approach, so that an estimation of the uncertainty is obtained at the end of the optimization. This method is applied on several application examples where we observe that the final realizations better preserve the spatial distribution of the prior models and are less noisy than the realizations updated using a standard approach, while matching the production data equally well.; Dans ce travail, nous proposons de suivre une approche multi-échelles pour simuler des propriétés spatiales des réservoirs, permettant d'intégrer des données directes (observation de puits) ou indirectes (sismique et données de production) de résolutions différentes. Deux paramétrisations sont utilisées pour résoudre ce problème: les ondelettes et les pyramides gaussiennes. A l'aide de ces paramétrisations, nous démontrons les avantages de l'approche multi-échelles sur deux types de problèmes d'estimations des incertitudes basés sur la minimisation d'une distance. Le premier problème traite de la simulation de propriétés à partir d'un algorithme de géostatistique multipoints. Il est montré que l'approche multi-échelles basée sur les pyramides gaussiennes améliore la qualité des réalisations générées, respecte davantage les données et réduit les temps de calculs par rapport à l'approche standard. Le second problème traite de la préservation des modèles a priori lors de l'assimilation des données d'historique de production. Pour re-paramétriser le problème, nous développons une transformée en ondelette 3D applicable à des grilles stratigraphiques complexes de réservoir, possédant des cellules mortes ou de volume négligeable. Afin d'estimer les incertitudes liées à l'aspect mal posé du problème inverse, une méthode d'optimisation basée ensemble est intégrée dans l'approche multi-échelles de calage historique. A l'aide de plusieurs exemples d'applications, nous montrons que l'inversion multi-échelles permet de mieux préserver les modèles a priori et est moins assujettie au bruit que les approches standards, tout en respectant aussi bien les données de conditionnement.
- Published
- 2014
7. Multi-scale reservoir data integration and uncertainty quantification
- Author
-
Gentilhomme, Théophile, UL, Thèses, GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine, Guillaume Caumon, and Jean-Jacques Royer
- Subjects
Inverse problems ,Optimization ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Caractérisation des réservoirs ,Seismic ,Lifting scheme ,Production data ,Optimisation ,Multiple points geostatistics ,History-Matching ,Multi-échelles ,Données de production ,Gisements pétrolifères ,Multi-scale ,Sismique ,Ondelettes de seconde génération ,Géostatistiques multipoints ,Re-paramétrisation ,Étude des ,Calage historique ,Analyse multiéchelle ,Problèmes inverses ,Second generation wavelets ,[SDU.STU] Sciences of the Universe [physics]/Earth Sciences ,Schéma de lifting ,Re-parameterization ,Reservoir characterization - Abstract
In this work, we propose to follow a multi-scale approach for spatial reservoir properties characterization using direct (well observations) and indirect (seismic and production history) data at different resolutions. Two decompositions are used to parameterize the problem: the wavelets and the Gaussian pyramids. Using these parameterizations, we show the advantages of the multi-scale approach with two uncertainty quantification problems based on minimization. The first one concerns the simulation of property fields from a multiple points geostatistics algorithm. It is shown that the multi-scale approach based on Gaussian pyramids improves the quality of the output realizations, the match of the conditioning data and the computational time compared to the standard approach. The second problem concerns the preservation of the prior models during the assimilation of the production history. In order to re-parameterize the problem, we develop a new 3D grid adaptive wavelet transform, which can be used on complex reservoir grids containing dead or zero volume cells. An ensemble-based optimization method is integrated in the multi-scale history matching approach, so that an estimation of the uncertainty is obtained at the end of the optimization. This method is applied on several application examples where we observe that the final realizations better preserve the spatial distribution of the prior models and are less noisy than the realizations updated using a standard approach, while matching the production data equally well., Dans ce travail, nous proposons de suivre une approche multi-échelles pour simuler des propriétés spatiales des réservoirs, permettant d'intégrer des données directes (observation de puits) ou indirectes (sismique et données de production) de résolutions différentes. Deux paramétrisations sont utilisées pour résoudre ce problème: les ondelettes et les pyramides gaussiennes. A l'aide de ces paramétrisations, nous démontrons les avantages de l'approche multi-échelles sur deux types de problèmes d'estimations des incertitudes basés sur la minimisation d'une distance. Le premier problème traite de la simulation de propriétés à partir d'un algorithme de géostatistique multipoints. Il est montré que l'approche multi-échelles basée sur les pyramides gaussiennes améliore la qualité des réalisations générées, respecte davantage les données et réduit les temps de calculs par rapport à l'approche standard. Le second problème traite de la préservation des modèles a priori lors de l'assimilation des données d'historique de production. Pour re-paramétriser le problème, nous développons une transformée en ondelette 3D applicable à des grilles stratigraphiques complexes de réservoir, possédant des cellules mortes ou de volume négligeable. Afin d'estimer les incertitudes liées à l'aspect mal posé du problème inverse, une méthode d'optimisation basée ensemble est intégrée dans l'approche multi-échelles de calage historique. A l'aide de plusieurs exemples d'applications, nous montrons que l'inversion multi-échelles permet de mieux préserver les modèles a priori et est moins assujettie au bruit que les approches standards, tout en respectant aussi bien les données de conditionnement.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.