1. Development of water-soluble prodrugs of the bisdioxopiperazine topoisomerase IIβ inhibitor ICRF-193 as potential cardioprotective agents against anthracycline cardiotoxicity.
- Author
-
Bavlovič Piskáčková H, Jansová H, Kubeš J, Karabanovich G, Váňová N, Kollárová-Brázdová P, Melnikova I, Jirkovská A, Lenčová-Popelová O, Chládek J, Roh J, Šimůnek T, Štěrba M, and Štěrbová-Kovaříková P
- Subjects
- Animals, Cardiotonic Agents chemistry, Cardiotoxicity metabolism, Dexrazoxane chemistry, Dexrazoxane pharmacology, Diketopiperazines chemistry, Male, Myocytes, Cardiac drug effects, Myocytes, Cardiac metabolism, Piperazine chemistry, Prodrugs chemistry, Prodrugs pharmacology, Rabbits, Razoxane chemistry, Razoxane pharmacology, Topoisomerase II Inhibitors chemistry, Water chemistry, Anthracyclines adverse effects, Cardiotonic Agents pharmacology, Cardiotoxicity drug therapy, DNA Topoisomerases, Type II metabolism, Diketopiperazines pharmacology, Piperazine pharmacology, Topoisomerase II Inhibitors pharmacology
- Abstract
The bisdioxopiperazine topoisomerase IIβ inhibitor ICRF-193 has been previously identified as a more potent analog of dexrazoxane (ICRF-187), a drug used in clinical practice against anthracycline cardiotoxicity. However, the poor aqueous solubility of ICRF-193 has precluded its further in vivo development as a cardioprotective agent. To overcome this issue, water-soluble prodrugs of ICRF-193 were prepared, their abilities to release ICRF-193 were investigated using a novel UHPLC-MS/MS assay, and their cytoprotective effects against anthracycline cardiotoxicity were tested in vitro in neonatal ventricular cardiomyocytes (NVCMs). Based on the obtained results, the bis(2-aminoacetoxymethyl)-type prodrug GK-667 was selected for advanced investigations due to its straightforward synthesis, sufficient solubility, low cytotoxicity and favorable ICRF-193 release. Upon administration of GK-667 to NVCMs, the released ICRF-193 penetrated well into the cells, reached sufficient intracellular concentrations and provided effective cytoprotection against anthracycline toxicity. The pharmacokinetics of the prodrug, ICRF-193 and its rings-opened metabolite was estimated in vivo after administration of GK-667 to rabbits. The plasma concentrations of ICRF-193 reached were found to be adequate to achieve cardioprotective effects in vivo. Hence, GK-667 was demonstrated to be a pharmaceutically acceptable prodrug of ICRF-193 and a promising drug candidate for further evaluation as a potential cardioprotectant against chronic anthracycline toxicity.
- Published
- 2021
- Full Text
- View/download PDF